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Abstract. The article is devoted to the role, importance, and use of animated 
drawings created on computer screens in GeoGebra platform for Mathematics 
teaching at schools and Universities. The use of this platform introduces a new kind 
of visibility in Mathematics learning, which entails not only an increased interest 
to the subject, but also promotes understanding and stronger perception of abstract 
material. In addition, an opportunity appears to remove computing difficulties, 
since the calculations are done by the computer. The user becomes a manager of 
computing and this saves time, but also allows acquiring new competence in useful 
digital technologies in education. Animated graphics help to realize experiments, to 
notice new patterns, to suggest solutions of mathematical problems and to illustrate 
them successfully. All that is of great importance for the formation of the new 
generation, called upon the development of the Russian digital economy.

Keywords: entertainment figure; GeoGebra; computational problem; limaçon 
(Pascal’s snail); quadratic polynomial in the complex plane

Introduction. Computers emerged as instruments to accelerate calculations with num-
bers. Therefore, primary the use of computers in education should be expected to be calcula-
tion assistance. Calculators are already firmly established in computing practice. However, 
a simple calculator can not even process an ordinary fraction, replacing it by its decimal ap-
proximation. Modern computers manipulate not only with numbers, but also with formulae, 
using symbolic computation. A full mastering of computer technologies in the educational 
practice is an urgent task for modern educators. We want to create educational products 
that aim at acquisition of certain mathematical knowledge rather than simple calculations, 
putting this task to computers. Relevant examples are proposed in the sequel.

Another task, which expects assistance of computers, is to make teaching of Mathe-
matics more visual. The problem of visibility in Mathematics is as old as the world is. The 
problem is to make abstract mathematical concepts and statements more concrete. A large 
number of methodologists address to it. Using computer animation is a new solution that 
has appeared fairly recently, thanks to the development of computer technologies.

Computer animation, providing visuals, brings movements into Mathematics teach-
ing (Larin, 2015). It provides ability to simulate specified movements by functions and to 
graph them simultaneously. Movements combine Physics, which studies different kinds of 
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movements, Mathematics as means of studying movements, and also Computer science as 
means to model movements.

A third direction of the computer use in education is connected with the possibility to re-
alize experiments (Sergeeva, Shabanova & Grozdev, 2014), finding solutions of mathemat-
ical problems. Before, in order to formulate and prove a theorem it was necessary to assume 
it being true on experimental basis. Now, computer experimentations become essential part 
of the technology in mathematical problem solving. Animated features of dynamical sys-
tems of Mathematics, such as GeoGebra2), could be the basis of experimentation.

We distinguish the following three kinds of computer animation:
1) Geometric animations based on maintaining consistency in building animated pic-

tures when one of its independent (primary) elements is put in motion: points, straight lines, 
circles and so on.

2) Algebraic animations – controlled changes in formula settings.
3) Text animations – controlled text modifications under visibility conditions.
In practice, these three types of animation are used together, complementing and enrich-

ing one another.

Algebraic animations. The use of animated figures is effective in addressing the fol-
lowing methodological issues. Secondary and post-secondary Mathematics curricula con-
tain many computational algorithms that students must understand. During demonstration 
of computational algorithms and their optimization there often arise cumbersome comput-
ing difficulties, distracting students from the main objective of mastering the algorithm it-
self. Such a methodological problem could be solved in two ways. One could either charge 
the computer with the calculations, or create a task with a predictable solution without com-
puting difficulties. Both solutions are implemented using animated figures.

As an example of correct computing difficulties refer to animated figure 1 performing 
the well-known Euclidean division.

 

1) Geometric animations based on maintaining consistency in building animated pictures when 
one of its independent (primary) elements is put in motion: points, straight lines, circles and so on. 

2) Algebraic animations – controlled changes in formula settings. 
3) Text animations – controlled text modifications under visibility conditions. 
In practice, these three types of animation are used together, complementing and enriching one 

another. 
 
Algebraic animations. The use of animated figures is effective in addressing the following 

methodological issues. Secondary and post-secondary Mathematics curricula contain many 
computational algorithms that students must understand. During demonstration of computational 
algorithms and their optimization there often arise cumbersome computing difficulties, distracting 
students from the main objective of mastering the algorithm itself. Such a methodological problem 
could be solved in two ways. One could either charge the computer with the calculations, or create a 
task with a predictable solution without computing difficulties. Both solutions are implemented 
using animated figures. 

As an example of correct computing difficulties refer to animated figure 1 performing the well-
known Euclidean division. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here the selection of each quotient of a number (under the corner) is carried out by moving the 

point on the slider. We seek to make the double inequality to be true (changing the c changes the 
middle part of the inequality, which is the modul, which must be within the specified bounds). 
When selecting the quotient, the computer generates numbers that are the product of the number 
and the numerator as well as the modulo, so all you have to do is use the ABC button and place into 
the correct space: the number under the corner, the product of the number and the numerator above 
the line, and the modulo below the line. 

 

Figure 1 Figure 1
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Here the selection of each quotient of a number (under the corner) is carried 
out by moving the point on the slider. We seek to make the double inequality to be 
true (changing the c changes the middle part of the inequality, which is the modul, 
which must be within the specified bounds). When selecting the quotient, the com-
puter generates numbers that are the product of the number and the numerator as 
well as the modulo, so all you have to do is use the ABC button and place into the 
correct space: the number under the corner, the product of the number and the nu-
merator above the line, and the modulo below the line.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As you know, the division above is a step the Euclidean algorithm for finding the GCD. This 

allows to create an animated figure in GeoGebra platform which implements the Euclidean 
algorithm while eliminating the necessity of calculations, which are now performed by the 
computer. 

Animated figure 2 allows you to get a pair of natural numbers with given GCD and an invented 
sequence of incomplete quotients during the implementation of Euclidean algorithm. With such 
pairs of numbers we can be safely demonstrate the Euclidean algorithm, with no surprises with 
calculations. 

Let’s note that the animated figures can be easily converted to use with polynomials. 
In accordance with the curriculum of "algebra and theory of numbers" at a pedagogical 

university, students have to solve problems finding rational roots of polynomials with integer 
coefficients. This task is also addressed in the secondary school program in an advanced 
mathematics class. The theory of this question is quite simple. However, the implementation 
sometimes rests in large computational difficulties, so it naturally begs the aid to the computer. 

Animated Figure 3 can take its rightful place in the lessons of mathematics. Consider the use 
of this figure. 

Figure 2 Figure 2 

As you know, the division above is a step the Euclidean algorithm for finding 
the GCD. This allows to create an animated figure in GeoGebra platform which im-
plements the Euclidean algorithm while eliminating the necessity of calculations, 
which are now performed by the computer.

Animated figure 2 allows you to get a pair of natural numbers with given GCD 
and an invented sequence of incomplete quotients during the implementation of 
Euclidean algorithm. With such pairs of numbers we can be safely demonstrate the 
Euclidean algorithm, with no surprises with calculations.

Let’s note that the animated figures can be easily converted to use with polyno-
mials.

In accordance with the curriculum of “algebra and theory of numbers” at a ped-
agogical university, students have to solve problems finding rational roots of pol-
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ynomials with integer coefficients. This task is also addressed in the secondary 
school program in an advanced mathematics class. The theory of this question is 
quite simple. However, the implementation sometimes rests in large computational 
difficulties, so it naturally begs the aid to the computer.

Animated Figure 3 can take its rightful place in the lessons of mathematics. 
Consider the use of this figure.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1) Enter the polynomial 4 3 2( ) 15 29 67 17 30f x x x x z     . 
2) Enter the module of the free term 30m  . A list of all divisors of the number  appears 

on the canvas 
3) Enter the module of the quadratic coefficient 15n  . A list of all divisors of the number 

n  appears on the canvas. 
4) Enter the next contender to the denominator of the root (from the second list), starting 

with 1b  , and for selected denominator, alternately enter the root  numerator candidates (numbers 
from the first list and opposite to it), starting with 1a  , 1a   , 2a  , 2a   ,... The 

characteristic of the fraction 
a
b

, whether is it the root or not, appears on the canvas. 

To reduce the number of tests, use the following fact. If the irreducible fraction with integer 

coefficients 
a
b

 is the root of this polynomial ( )f x , then for any integer k, the number 
( )f k

bk a
 

must be an integer. In particular, the number 
(1)f

b a
 and 

( 1)f
b a



 must be integers. Proving this fact 

is complicated. However, the computer easily finds the value 
af
b

 
 
 

, so the check is not necessary. 

Thus, new technologies in teaching led to a revision of which basic knowledge is essential. 
Within the framework of dynamic mathematics many concepts and theorems become "visible" 

and "tangible" to the students. Along the way, the student learns to use computer technology not 
only in education but also in solving research problems. 

Solving mathematical tasks in a dynamic geometric platform passes through three stages: 
1) Geometric modeling of the conditions of tasks on your computer screen. 

Figure 3 Figure 3

1) Enter the polynomial 4 3 2( ) 15 29 67 17 30f x x x x z= + + − − .
2) Enter the module of the free term 30m = . A list of all divisors of the num-

ber  appears on the canvas
3) Enter the module of the quadratic coefficient 15n = . A list of all divisors of 

the number n  appears on the canvas.
4) Enter the next contender to the denominator of the root (from the second 

list), starting with 1b = , and for selected denominator, alternately enter the root  
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numerator candidates (numbers from the first list and opposite to it), starting with 

1a = , 1a = − , 2a = , 2a = − ,... The characteristic of the fraction 
a
b

, whether 

is it the root or not, appears on the canvas.
To reduce the number of tests, use the following fact. If the irreducible fraction 

with integer coefficients 
a
b

 is the root of this polynomial ( )f x , then for any in-

teger k, the number 
( )f k

bk a−
 must be an integer. In particular, the number 

(1)f
b a−

 

and 
( 1)f

b a
−
+

 must be integers. Proving this fact is complicated. However, the com-

puter easily finds the value 
af
b

 
 
 

, so the check is not necessary. Thus, new tech-

nologies in teaching led to a revision of which basic knowledge is essential.
Within the framework of dynamic mathematics many concepts and theorems 

become “visible” and “tangible” to the students. Along the way, the student learns 
to use computer technology not only in education but also in solving research prob-
lems.

Solving mathematical tasks in a dynamic geometric platform passes through 
three stages:

1) Geometric modeling of the conditions of tasks on your computer screen.
2) Solving the problem on the screen using animations.
3) Building the mathematical model of the solution seen on the screen.

Geometric animations. Let’s look at one observation that led to a mathematical 
assertion as an example of using geometric animation in the study. Students from 
Arkhangelsk, within the framework of the project “We write (Pisemsami)”1) in ac-
cordance with the tasks set out by V. R Meyer in the “matrix article”, researched 
the curve called the limaçon of Pascal. In the book by S.V. Larin (Larin, 2015), 
they found pictures  of images of the unit circle within the projections specified 
by the second degree polynomials in the complex plane, and noticed their resem-
blance with the limaçon of Pascal. They proved that the second degree polynomial 

2 (1 )z k i z+ +  of a complex variable z, whose module is equal to 1, describes the 
limaçon of Pascal, and suggested that this observation will always be true. Below 
we give a mathematical justification of these observations.

Let’s consider the kinematic definition of the limaçon. Let’s suppose that a circle 
rolls on the outside of another circle of the same radius (fig. 4). Let’s fix a certain 
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point on the outer circle. The point, rolling on the outer circle, leaves a path, which 
is called the cardioid (fig. 4a). Now, let’s draw a ray through the center of the circle 
and the rolling point that traces the cardioid; let’s also mark a point D . While roll-
ing on the outer circle, the point D  will trace a path, which is called the limaçon 
of Pascal (fig. 4b, 4c). If the radii of the circles are equal r , and the distance from 
the center of the circle to the point D  is equal R  then the number d R r= −  is 
called the deviation of the limaçon of Pascal from the cardioid. If 0d >  ( 0d < ), 
then the limaçon of Pascal will be called the elongated (shortened) cardioid. The  
Figure 4b shows the elongated and Figure 4c the shortened cardioid. When 0d = , 
the limaçon of Pascal turns into the cardioid.

Note that the limaçon of Pascal turns in a circle if and only if 0R =  and 
d r= − . This is the minimum possible value. Also note that the limaçon of Pascal 
is uniquely identified by specifying the fixed circle and deviations d .

 

Now let's build a unit circle on the complex plane, mark point Z  on it, representing a complex 
number, mark complex numbers 0a  , b , c  with other points, and write the expression 

2w aZ bZ c    on the input line. After entering, a point depicting the complex number w , 
appears on the canvas. Let’s make the point w  leave a path and enable the animation of the point 
Z . As a result, the point w  will trace the image of the unit circle when displaying the specified 
data from the second degree polynomial (fig. 5a). This graph resembles the limaçon of Pascal. Is 
this observation true? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
During the experiment, using the movement of the points that depict the polynomials, we 

change the polynomial coefficients. In any case, it looks like we get the confirmation of our 
guesses. Let’s prove that our observations are true. 

Figure 4 

a b c 

Figure 5 

Figure 4

Now let’s build a unit circle on the complex plane, mark point Z  on it, repre-
senting a complex number, mark complex numbers a ≠ 0, b, c with other points, 
and write the expression 2w aZ bZ c= + +  on the input line. After entering, 
a point depicting the complex number w , appears on the canvas. Let’s make the 
point w  leave a path and enable the animation of the point Z . As a result, the 
point w  will trace the image of the unit circle when displaying the specified data 
from the second degree polynomial (fig. 5a). This graph resembles the limaçon of 
Pascal. Is this observation true?
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Now let's build a unit circle on the complex plane, mark point Z  on it, representing a complex 
number, mark complex numbers 0a  , b , c  with other points, and write the expression 

2w aZ bZ c    on the input line. After entering, a point depicting the complex number w , 
appears on the canvas. Let’s make the point w  leave a path and enable the animation of the point 
Z . As a result, the point w  will trace the image of the unit circle when displaying the specified 
data from the second degree polynomial (fig. 5a). This graph resembles the limaçon of Pascal. Is 
this observation true? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
During the experiment, using the movement of the points that depict the polynomials, we 

change the polynomial coefficients. In any case, it looks like we get the confirmation of our 
guesses. Let’s prove that our observations are true. 

Figure 4 

a b c 

Figure 5 Figure 5

During the experiment, using the movement of the points that depict the polyno-
mials, we change the polynomial coefficients. In any case, it looks like we get the 
confirmation of our guesses. Let’s prove that our observations are true.

Theorem 1. On the complex plane, the limaçon of Pascal that has the unit 
circle as the fixed point and deviation d  from the cardioid is the image of the 
unit circle, with the display of the complex plane, specified by a polynomial 

( 1) 2w d z z= + + .
Proof. Let O  and 1O  respectively be centres of the fixed and rolling circles, 

and let point D  plot the limaçon (fig. 4b, 6). Let’s introduce the rectangular coor-
dinate system, with the center of the fixed circle O  as the origin. The x-axis has the 
starting position on the line 1OO  where the points O , 1O  and D  are collinear. 
The radius of the circle is going to be one unit on the axes. Let’s perform the fol-
lowing additions in Figure 4b (see Figure 6).



549

The Role of Computer Animation...

 

Theorem 1. On the complex plane, the limaçon of Pascal that has the unit circle as the fixed 
point and deviation d  from the cardioid is the image of the unit circle, with the display of the 
complex plane, specified by a polynomial 2( 1) 2w d z z   . 

Proof. Let O  and 1O  respectively be centres of the fixed and rolling circles, and let point 
D  plot the limaçon (fig. 4b, 6). Let’s introduce the rectangular coordinate system, with the center 
of the fixed circle O  as the origin. The x-axis has the starting position on the line 1OO  where the 
points O , 1O  and D  are collinear. The radius of the circle is going to be one unit on the axes. 
Let’s perform the following additions in Figure 4b (see Figure 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
According to the initial statement, B D d  . Let’s construct a point ( 1,0)F d   , then 

draw a circle with the center at the origin, and passing through the point F . Draw a line segment 
DF  and mark the point G  which is the intersection point of the line segment and the circle; 
perform the rest of the building captured in Figure 6. Let the marked angles be equal   and 

GFO   . Let’s prove that    and the quadrangle BDGO  is parallelogram (students 
working within the framework of the above-mentioned project proved this, but for completeness 
and independence we’ll cite our own proof). Looking at the vertical angles, we realise that 

1OOC   . Consequently, the triangle 1OOC  is an isosceles triangle and 1OC OC . But 
then FC DC  and the triangle DFC  is an isosceles triangle, where FDC DFC    , 
and since the triangle FGO  is an isosceles triangle ( FO OG ), then FGO   . Hence, 

FGO FDC   and 1||GO DO . But 1GO DO , therefore the quadrangle BDGO  is a 
parallelogram. But then the lines FD  and OB  are parallel and 1 1GDO DO B    . 

Next, OD OG OB  . Let points G  and D  depict complex numbers z  and w  
respectively. Then 2( 1)OG d z  , 2OB z  and the vector equality becomes 

Figure 6 Figure 6

According to the initial statement, B D d′ = . Let’s construct a point 
( 1,0)F d= − − , then draw a circle with the center at the origin, and passing 

through the point F . Draw a line segment DF  and mark the point G  which is 
the intersection point of the line segment and the circle; perform the rest of the build-
ing captured in Figure 6. Let the marked angles be equal ϕ  and GFO ψ∠ = . 
Let’s prove that ψ ϕ=  and the quadrangle BDGO  is parallelogram (students 
working within the framework of the above-mentioned project proved this, but for 
completeness and independence we’ll cite our own proof). Looking at the verti-
cal angles, we realise that 1OO C ϕ∠ = . Consequently, the triangle 1OO C∆  
is an isosceles triangle and 1OC O C= . But then FC DC=  and the triangle 

DFC∆  is an isosceles triangle, where FDC DFC ψ∠ =∠ = , and since the 
triangle FGO∆  is an isosceles triangle ( FO OG= ), then FGO ψ∠ = . 
Hence, FGO FDC∠ =∠  and 1||GO DO . But 1GO DO= , therefore the 



550

Sergey Larin, Valeriy Mayer

quadrangle BDGO  is a parallelogram. But then the lines FD  and OB  are par-
allel and 1 1GDO DO Bψ ϕ=∠ =∠ = .

Next, OD OG OB= +
  

. Let points G  and D  depict complex numbers z  
and w  respectively. Then 2( 1)OG d z= +



, 2OB z=


 and the vector equality 
becomes 2( 1) 2w d z z= + + . Therefore, the limaçon is a unit circle when dis-
playing the specified derived polynomial. The theorem is proved.

Note that if 1d = − , then the limaçon turns into a  circle, and the resulting 
polynomial into a first degree a polynomial 2w z= .

Theorem 2. On the complex plane each second degree polynomial displays a 
projection, where the image of the unit circle is a limaçon, with a suitable choice of 
the fixed circle and deviations from the cardioid.

Proof. Let’s consider the display of a complex plane that is set by a square 
trinomial 2w az bz c= + +  with complex coefficients. Assuming that 0b = , 
we get a polynomial 2w az c= + . In the animated Figure 5 point b  is placed 
at the origin O . Now we see that the thick circle with the center in point , that 
represents the free member of a polynomial, is the image of the unit circle set by 
the aforementioned polynomial (fig. 7).

 

2( 1) 2w d z z   . Therefore, the limaçon is a unit circle when displaying the specified derived 
polynomial. The theorem is proved. 

Note that if 1d   , then the limaçon turns into a  circle, and the resulting polynomial into a 
first degree a polynomial 2w z . 

Theorem 2. On the complex plane each second degree polynomial displays a projection, 
where the image of the unit circle is a limaçon, with a suitable choice of the fixed circle and 
deviations from the cardioid. 

Proof. Let’s consider the display of a complex plane that is set by a square trinomial 
2w az bz c    with complex coefficients. Assuming that 0b  , we get a polynomial 
2w az c  . In the animated Figure 5 point b  is placed at the origin O . Now we see that the 

thick circle with the center in point , that represents the free member of a polynomial, is the image 
of the unit circle set by the aforementioned polynomial (fig. 7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let’s draw a ray cw  with the point A being the middle of the segment cw , then draw two 

circles with points c  and w  being the respective centers and the radius being r cA . Let’s draw a 
horizontal line through point c  and construct an angle BwB CcA  . Let’s draw a ray wB  
that will help track the rolling of the circle with the center on the point w  on the fixed circle with 
its centre at the point c . The point w  traces the limaçon with the deviation d r   which 
coincides with the thickened circle. 

Consider the case where 0b  . Using parallel migration without changing the appearance 
of the image of the unit circle, we can get rid of the free member and consider this square trinomial 
in the form 2w aZ bZ  . Let’s consider the trigonometric forms of the coefficient and the 
variable: (cos sin )a k i   , (cos sin )b m i   , cos sinZ i   . 
Then we get 

2(cos sin )(cos sin ) (cos sin )(cos sin )w k i i m i i               
(cos( 2 ) sin( 2 )) (cos( ) sin( ))k i m i               . 

Let’s replace the variable considering that 2    . We get 

1 (cos2 sin2 ) (cos sin )(cos( 2) sin( 2)w k i m i i              . 

Figure 7 Figure 7
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Let’s draw a ray cw  with the point A being the middle of the segment cw , then 
draw two circles with points c  and w  being the respective centers and the radius 
being r cA= . Let’s draw a horizontal line through point c  and construct an angle 

BwB CcA′∠ = ∠ . Let’s draw a ray wB′  that will help track the rolling of the 
circle with the center on the point w  on the fixed circle with its centre at the point 
c . The point w  traces the limaçon with the deviation d r= −  which coincides 
with the thickened circle.

Consider the case where 0b ≠ . Using parallel migration without changing 
the appearance of the image of the unit circle, we can get rid of the free member 
and consider this square trinomial in the form 2w aZ bZ= + . Let’s consider the 
trigonometric forms of the coefficient and the variable: (cos sin )a k iα α= + , 

(cos sin )b m iβ β= + , cos sinZ iϕ ϕ= + .
Then we get

2(cos sin )(cos sin ) (cos sin )(cos sin )w k i i m i iα α ϕ ϕ β β ϕ ϕ= + + + + + =
(cos( 2 ) sin( 2 )) (cos( ) sin( ))k i m iα ϕ α ϕ β ϕ β ϕ= + + + + + + + .

Let’s replace the variable considering that 2ϕ ψ α= − . We get 

1 (cos2 sin 2 ) (cos sin )(cos( 2) sin( 2)w k i m i iψ ψ ψ ψ β α β α= + + + − + − .
Let’s multiply the last equality by cos( 2 ) sin( 2 )iα β α β− + − . This will 

lead the the curve made by point 1w  to turn if we change ψ , but that does not 
change the appearance of the curve. At the same time we get a polynomial

2 1(cos( 2 ) sin( 2 ))w w iα β α β= − + − =
(cos(2 2 ) sin(2 2 ))k iψ α β ψ α β= + − + + − +

2
1 1(cos( 2 ) sin( 2 ))m i kz mzψ α β ψ α α β+ + − + + − = + ,

where 1 cos( 2 ) sin( 2 )z iψ α β ψ α α β= + − + + − . Assuming 

1 2
2z z
m

= , 2
4 1kd
m

= − , we get a polynomial 2
2 2 2( 1) 2w d z z= + + . Ac-

cording to Theorem 1 the limaçon with a fixed unit circle and deviation d  is the 
image of the unit circle when displaying the specified latest polynomial. The theo-
rem is proved.

Conclusion. This way digital technology in education is included naturally into 
the arsenal of teaching tools of a school teacher and a university professor. Already 
the examples above suggest that digital technologies in education are shaping the 
new face of modern didactics.
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NOTES
1. Pisemsami: official site [electronic resource]. Access mode: https://sites.google.

com/site/pisemsami/home
2. GeoGebra: official site [electronic resource]. Access mode: http://www.geogebra.

org
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