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Резюме. Работата се състои от две части – теоретична и приложна. В теоре-
тичната част е направена селекция и класификация на основните понятия (обекти 
и релации) и твърдения (аксиоми и теореми) от геометричната система на Вайл 
за целите на векторно-алгебричното моделиране в елементарната геометрия. В 
приложната част са поместени в определен ред и са решени с векторни средства 
шест геометрични задачи, които освен доказателствени илюстрират и евристични 
възможности на векторно-алгебричното моделиране в обучението по геометрия.
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 Предварителни бележки. До 1918 г., когато излиза от печат книгата „Простран-

ство, време, материя“ на  големия немски математик Херман Вайл (1885 – 1955), 
векторите са все още „физични“ величини, изучавани само за целите на механи-
ката, и курсовете по геометрия се изграждат без „векторно“ участие. Лекциите 
на професор Вайл запознават математическата общественост с нова, различна от  
Eвклидовата, концепция за изграждане на елементарната геометрия. Водеща в тази 
концепция е идеята за векторно пространство. Тази идея разкрива фундаментал-
ната роля, която векторите играят в най-древната математическа наука, и променя 
традиционното разбиране и за училищния курс по геометрия. 

От формална гледна точка системата на Вайл е само един от възможните пътища 
за аксиоматизиране на геометрията, еквивалентен на хилбертовския, който позво-
лява да се докажат всички теореми. Но от методологическа гледна точка пътят на 
Вайл е много важен. Вместо уморителните и дълги вериги от разсъждения вайлев-
ската схема дава изключително ясно изложение, наситено със съвременни идеи, 
близки и много актуални и в други раздели на човешкото знание. В своята книга 
„Линейна алгебра и аналитична геометрия“, когато говори за векторния метод, 
известният френски математик Жан Дьодоне пише: „Обучението по математика 
„по Евклид“ е било нелоша подготовка за по-нататъшни занимания с математика 
за съвременниците на Виет и даже за съвременниците на Коши“ (Дьодоне, 1972: 
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11). Сега положението коренно се е изменило. „С помощта на тривиални изчис-
ления може непосредствено и на няколко реда да се получи всичко това, за което 
по-рано е било нужно въвеждането на „каскада“ от изкуствени и сложни системи 
триъгълници, за да може на всяка цена да се сведе задачата към „свещените“ случаи 
на еднаквост и подобност на триъгълници – към единствената основа на цялата 
традиционна техника на Евклид“ (Дьедоне, 1972: 14).

Методът на Вайл има и особена методическа стойност, защото позволява гео-
метричните ситуации да бъдат заменени с векторно-алгебрични. От една страна, в 
много случаи векторното моделиране алгоритмизира решението на геометричната 
задача, а от друга страна, открива пътя за нейни обобщения, продължения или 
аналогии. И всичко това прави задачата достъпна не само за студента по матема-
тика – бъдещ учител, но и за ученика от последните класове на средното училище. 
В този ред на мисли ще добавим, че една от важните компетенции на съвременния 
учител по математика е владеенето не само на векторно-алгебричния метод, но и 
доброто познаване на неговите евристични възможности. 

За тази цел, позовавайки се на книгата „Элементарная геометрия“ (Болтянский, 
1985), ние избрахме и систематизирахме най-важните (по наше мнение) векторно-
алгебрични понятия и твърдения, чрез които се моделират основните елементарно-
геометрични обекти и релации. Идеята е да бъдат улеснени учащите се в прехода 
от геометрия към векторна алгебра и обратно. Известно е, че съществува богата 
колекция от съдържателни приложения на векторната алгебра в геометрията, при 
които не е необходимо да се използва метрика. Това обстоятелство мотивира нашето 
решение да ограничим предмета на търсенията и да се съсредоточим в рамките на 
афинно векторно-алгебрично моделиране, още повече че аксиоматиката на Вайл 
ясно и точно отделя афинната от метричната геометрия. 

Моделиране на геометрични обекти, независещи от размерността. Основ-
ни принципи на векторно-алгебричното моделиране в геометрията са заложени в 
няколко твърдения, някои от които са аксиоми в геометричната система на Вайл. 

От първата група аксиоми (за свойствата на нанасянето на вектор) от аксио-
матиката на Вайл непосредствено следва, че геометричното понятие наредена 
двойка точки (насочена отсечка) се моделира с понятието вектор. Става дума 
за първите три аксиоми.

А1. За всяка точка A и всеки вектор 
→
a  съществува единствена точка B, така че   →

AB  = 
→
a  (Правило за нанасяне на даден вектор с дадено начало).

А2. Ако векторите 
→
AB  и 

→
AC  са равни, т.е. 

→
AB  = 

→
AC , то точките B и C съвпадат, 

т.е.  B º C (Ако два равни вектора имат общо начало, то те имат и общ край.)
От същата група твърдения следва, че релацията наредена тройка точки (A, 

B, C) се моделира с векторното равенство 
→
AB+ 

→
BC= 

→
AC .
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А3. За всеки три точки A, B, C е вярно равенството 
→
AB+ 

→
BC= 

→
AC  (Правило на 

триъгълника) (Болтянский, 1985/стр. 11).
От втората група аксиоми (за свойствата на събирането на вектори) от аксиома-

тиката на Вайл непосредствено следва, че наредената двойка съвпадащи точки 
(нулевата отсечка) (А, А) се моделира с нулевия вектор, а наредените двойки 
точки (насочени отсечки) (А, В) и (В, А) се моделират с противоположни вектори. 
Това са аксиомите А4 и А5.

А4. За всяка точка A е вярно, че 
→
AA  = 

→
0 ;

А5. За всеки две точки A и B е вярно равенството 
→
AB  = – 

→
BA , т.е. векторите 

→
AB  

и 
→
BA  са противоположни.
Става ясно, че между множеството на точките (от пространството) и множе-

ството на векторите с общо начало О (радиус-векторите) съществува биективно 
изображение, т. е. на всяка точка А съответства точно един вектор 

→
OA и обратно. 

Векторът 
→
OA се нарича радиус-вектор на точката А.

От формулираните аксиоми произтичат следствия за: среда на отсечка, деление 
на отсечка от точка в дадено отношение, медиана в триъгълник, медицентър на 
триъгълник, средна отсечка в триъгълник, средна отсечка в четириъгълник, 
медицентър на четириъгълник, ъглополовяща в триъгълник, пресечна точка 
на ъглополовящите, изразени със съответни векторно-алгебрични равенства.  
И по-конкретно, това са теоремите от Т1 до Т13.

Т1.Точката М е среда на отсечката АВ тогава и само тогава, когато 
→
AM = 1

2
→
AB .

Т2. Точката М е среда на отсечката АВ тогава и само тогава, когато
→
OM = 1

2
→
OA+ 

1
2

→
OA, където О е произволна точка.

От теорема Т2 следва „векторната“ формула за медианата АА1 в триъгълник АВС
→
AA1  = 1

2
→
AB+ 

1
2

→
AC .

Т3. Точката М дели отсечката АВ в отношение k (k ¹ –1), считано от А тогава и 

само тогава, когато 
→
AM = k

1+k  
→
AB .

Т4. Точката М дели отсечката АВ в отношение k (k ¹ –1), считано от А, тогава и 

само тогава, когато 
→
OM = k

1+k  
→
OA + k

1+k  
→
OB, където О е произволна точка.

Т5. Точката М е медицентър на триъгълник АВС тогава и само тогава, когато 
→
MA + 

→
MB + 

→
MC = 

→
0 .
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Т6. Точката М е медицентър на триъгълник АВС тогава и само тогава, когато 
→
OM = 1

3
→
OA + 

1
3

→
OB+ 

1
3

→
OC, където О е произволна точка.

Т7. Точката М е медицентър на читириъгълник (тетраедър) АВСD тогава и само 

тогава, когато 
→
MA + 

→
MB + 

→
MC + 

→
MD = 

→
0 .

T8. Точката М е медицентър на четириъгълник (тетраедър) АВСD тогава и само 

тогава, когато 
→
OM = 1

4  
→
OA + 

1
4  

→
OB + 

1
4  

→
OC+ 

1
4  

→
OD, където О е произволна точка.

Т9. Ако точките M и N са среди съответно на отсечките AC и ВС, то 
→
MN = 1

3
→
AB .

Т10. Ако точките M и N са среди съответно на отсечките AD и ВС, то 
→
MN = 1

2   
→
AB  + 

1
2  

→
DC.

Т11. Отсечката CC1 e вътрешна ъглополовяща на триъгълник АВС със страни 

СВ = a и СА = b  тогава и само тогава, когато 
→
CC1= a

a+b  
→
CA + b

a+b  
→
CB .

Т12. Точката L e пресечна точка на вътрешните ъглополовящи (център на 
вътрешно вписаната окръжност) на D АВС със страни съответно a, b и c тогава и 

само тогава, когато a
→
LA  + b

→
LB  + c

→
LC  = 

→
0 .

T13. Точката L e пресечна точка на вътрешните ъглополовящи (център на 
вътрешно вписаната окръжност) на D АВС със страни a, b и c съответно тогава 
и само тогава, когато 

→
OL  = a

a+b+c 
→
OA + 

b
a+b+c 

→
OB + 

c
a+b+c 

→
OC, където точката О е 

произволна.

Моделиране на геометрични обекти, зависещи от размерността. Правата 
е производно понятие в аксиоматиката на Вайл, което се дефинира с векторно-
алгебрични средства. Дефиницията на Вайл дава възможност понятието права и 
релациите принадлежност на точка към права, колинеарност на три точки и 
колинеарност на две прави да се моделират с векторни равенства. Тук се включват 
теоремите Т14, Т15 и Т16.

Т14. Правата а, определена от точката О и ненулевия вектор 
→
a , е множество от 

точки М, така че 
→
OM = x

→
a , където числото х описва множеството на реалните числа. 

Векторът 
→
a  се нарича база (направляващ вектор) на правата а.

Т15. Точката М принадлежи на правата АВ (точките А и В са различни) тогава 
и само тогава, когато съществува число х, така че 

→
AM  = x

→
AB .

В частност, точката M принадлежи на отсечката АВ тогава и само тогава, когато   
х ∈[0,1] (при х = 0, M ≡  A; при х = 1, M ≡  В).
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По друг начин казано, правата a е едномерно векторно прострнство с база, 
определена от който и да е ненулев вектор 

→
a , колинеарен на правата.

Т16. Правите а и b с вектори съответно 
→
a  и 

→
b  са колинеарни (съвпадащи или 

успоредни) тогава и само тогава, когато векторите 
→
a  и 

→
b  са колинеарни (същест-

вува число х, така че 
→
b  = х

→
a )

Равнината е производно понятие в аксиоматиката на Вайл, което се дефинира с 
векторно-алгебрични средства. Дефиницията на Вайл дава възможност понятието 
равнина и релациите принадлежност на точка към равнина, компланарност на 
четири точки, компланарност на права и равнина, компланарност на две рав-
нини да се моделират с векторни равенства. Става дума за теоремите Т17, Т18, Т19.

Т17. Равнината a, определена от точката О и двойката неколинеарни вектори   
(

→
a , 

→
b ), е множеството от точки М, така че 

→
OM = х a + у b , където всяко от числата 

х и у описва множеството на реалните числа.
Двойката вектори (

→
a , 

→
b ) се нарича база на равнината a.

Т18. Точката М принадлежи на равнината (АВС) (точките А, В, С са неколине-
арни) тогава и само тогава, когато съществува двойка числа (х, у), така че 

→
AM  = x 

→
AB + y

→
AC .

В частност, точката М  принадлежи на вътрешността или страните на успоред-
ника с определящи вектори 

→
AB , 

→
AC  тогава и само тогава, когато x Î [0,1] и у Î [0,1] 

(при х = 0, у = 0,  М º A; при х = 1, у = 0, М º В).
По друг начин казано, равнината a е двумерно векторно пространство с база 

двойка неколинеарни вектори (
→
a , 

→
b ). 

Т19. Правата с с направляващ вектор 
→
c  е компланарна на равнината a с двойка 

базисни вектори (
→
a , 

→
b ) тогава и само тогава, когато векторът 

→
c  е линейно зависим 

от базата (
→
a , 

→
b ) (съществуват числа х и у, така че  

→
c = х

→
a + у

→
b ).

Т20. Равнините a и b с бази съответно (
→
a , 

→
b ) и (

→
c , 

→
d ) са компланарни (съв-

падащи или успоредни) тогава и само тогава, когато векторите на едната база (
→
c , 

→
d  ) са линейно зависими от другата база (

→
a , 

→
b ) (съществуват числа х, у, u, v, така 

че
→
c  = x

→
a  + y

→
b , 

→
d  = u

→
a  + v

→
b ).

1Пространството също може да бъде дефинирано с помощта на векторно-алге-
брични средства. Тази дефиниция позволява релацията принадлежност на точка 
към тримерното пространство да се моделира с векторни равенства на основата 
на теореми Т21 и Т22. 
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Т21. Нека (
→
a , 

→
b , 

→
c ) е тройка некомпланарни вектори и О е точка. За всяка точка 

М съществува единствена наредена тройка числа (х, у, z), така че 
→
OM  = х

→
a + у

→
b + z

→
c .

Тройката некомпланарни вектори (
→
a , 

→
b , 

→
c ) се нарича база на пространството.

С други думи, пространството е тримерно с база всяка тройка (
→
a , 

→
b , 

→
c ) неком-

планарни вектори.
Т22. Нека точките А, В, С, D са некомпланарни. За всяка точка М съществува 

единствена наредена тройка числа (х, у, z), така че 
→
AM = х

→
AB + у

→
AC + z

→
AD .

В частност, точката М принадлежи на вътрешността на паралелепипеда с оп-
ределящи вектори 

→
AB , 

→
AC , 

→
AD  тогава и само тогава, когато х Î [0,1], у Î [0,1] и 

z Î [0,1] (при х = 0, у = 0, z = 0, М º A; при х = 1, у = 0, z = 0, М º В)

Моделиране на отношения на дължини, отношения на лица, отношения 
на обеми. В тази точка ще формулираме още три твърдения (теореми – Т23, Т24, 
Т25), които осигуряват възможност за моделиране на отношения на дължини на 
колинеарни отсечки, отношения на лица на компланарни триъгълници (успоред-
ници), отношения на обеми на тетраедри (паралелепипеди). 

Т23. Нека векторът 
→
a  определя отсечка с дължина d и векторът 

→
a  определя 

отсечка с дължина d1 и 
→
a  = a 

→
a . Тогава d1 = |a| d.

Т24. Нека двойката вектори (
→
a , 

→
b ) определя триъгълник с лице S и двойката 

вектори (
→
a1, 

→
b1) определя триъгълник с лице S1 и 

→
a1= a11

→
a  + a12

→
b  

→
b1= a21

→
a  + a22

→
b

Тогава S1 = |D| S, където D е детерминантата на матрицата 11 12

21 22

a a
a a

 
 
 

.

Т25. Нека тройката вектори (
→
a , 

→
b , 

→
c ) определя тетраедър с обем V и тройката 

вектори (
→
a1, 

→
b1, 

→
c1) определя тетраедър с обем V1 и 

→
a1= a11

→
a  + a12

→
b  + a13

→
c

→
b1= a21

→
a  + a22

→
b  + a23

→
c

→
c1= a31

→
a  + a32

→
b  + a33

→
c

Тогава V1 = |D| V, където D е детерминантата на матрицата 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

.
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Векторно-алгебричното моделиране – съвременен подход в обучението по 
геометрия. Последователното изучаване и приложение на векторно-алгебричното 
моделиране в обучението по геометрия може да бъде направено с две основни 
цели. Първата цел се отнася до намиране на решението (доказателството) на вече 
поставена геометрична задача (теорема). Ако ученик (студент) не вижда геомет-
рично (синтетично) решение, то той би могъл да моделира задачата (теоремата) 
с векторно-алгебрични средства, с което задачата (теоремата) от геометрична се 
преобразува във векторно-алгебрична. Обикновено при векторно-алгебричната 
задача (теорема) идеята за решението е „прозрачна“ и в този случай съставянето 
на план за решение не представлява трудност. Реализацията на плана се извършва 
с инструментариума на векторната алгебра. Понякога векторно-алгебричното ре-
шение е свързано със сложни преобразувания и затова е необходимо решаващият 
да има добра „векторна“ техника. Но усилията си заслужават, защото крайният 
резултат (решението или доказателството) е почти винаги гарантиран. Накрая ве-
кторно-алгебричният резултат се интерпретира в геометричен, с което решението 
(доказателството) е завършено.

 Втората цел, в името на която векторно-алгебричното моделиране може да бъде 
използвано като евристичен подход, е свързана с откриване на нови (непознати 
досега) верни твърдения (теореми) в геометрията, т.е. с формулиране на хипотези 
и тяхната проверка. Още Кеплер е казал, че аналогиите са най-добрите учители в 
геометрията. Но често пъти аналогията не е достатъчно ясно очертана. Например 
пространственият аналог на триъгълника в едни случаи е тетраедър (триъгълна 
пирамида), а в други случаи – триъгълна призма. 

Векторното пространство, в чиято основа е векторната алгебра (и векторите са 
негови обекти), от математико-психологическа гледна точка осигурява почти очеви-
ден преход от двумерното към тримерното и по естествен начин отваря „входа“ към 
n-мерното пространство. Естествено е закономерностите във векторната алгебра 
да се търсят по пътя на аналогията, преминавайки от обекти, „определени“ от два 
вектора (в двумерното пространство), да се преминава към обекти, „определени“ 
от три вектора (в тримерното пространство), след това към обекти, „определени“ 
от четири вектора (в четиримерното пространство) и т. н. С други думи, има ос-
нование да се предполага, че пътят на обобщението (или специализацията) във 
векторната алгебра е по-ясно очертан, отколкото в елементарната геометрия. Ето 
защо си струва при търсене на „точния“ аналог на геометричното понятие отна-
чало да се намери неговият „векторно-алгебричен“ образ и след това да се търси 
аналог на образа. 

Приложение. За да илюстрираме познавателните възможности на векторно-
алгебричното моделиране и неговата евристична роля в обучението по геометрия, 
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поместваме шест геометрични задачи и техните векторно-алгебрични решения. 
Задачите са обединени от понятията медиана и медицентър и засягат проблемни 
ситуаци, свързани със съвпадане на точки, колинеарност и компланарност на точ-
ки и съотношения на лица на триъгълници и обеми на тетраедри. Първата група 
задачи се отнася за ситуации, независещи от размерността на пространството, а 
втората и третата групи описват ситуации в двумерното и тримерното простран-
ство. Четири от задачите (с малки изменения) са взети от (Лалчев & Вутова, 2005) 
и (Лалчев & Вутова, 2009). 

Първа група задачи
Задача 1. Да се докаже, че съществува триъгълник, чиито страни са съответно 

успоредни и равни на медианите на даден триъгълник.
Доказателство. Нека ABC е триъгълник с медиани AA1, BB1, CC1, (Фигура 1) 
За да докажем, че съществува триъгълник, чиито страни са съответно успоредни 

и равни на медианите на DABC, e достатъчно да построим начупена линия OPQR, 
съставена от три отсечки (OP, PQ, QR), съответно успоредни и равни на медианите 
на DABC, за която началото (точката  О) и краят (точката R) съвпадат.

Фигура 1.

Нека О е произволна точка. Построяваме начупената линия OPQR, така че 
отсечката OP е успоредна и равна на медианата АА1, отсечката PQ е успоредна и 
равна на медианата BB1 и отсечката  QR  е успоредна и равна на медианата CC1. 

От построението следва, че
→
OP = 

→
AA1, 

→
PQ = 

→
BB1 и 

→
QR = 

→
CC1.

Ще докажем, че точката R съвпада с точката О. За целта e достатъчно да дока-
жем, че 

→
OR  е нулев вектор.  И действително:
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→
OR  = 

→
OP  + 

→
PQ  + 

→
QR  = 

→
AA1 + 

→
BB1 + 

→
CC1 = 

1
2

→
AB  + 

1
2

→
AC  + 

1
2

→
BA  + 

1
2

→
BC  + 

1
2

→
CA + 

1
2

→
CB  =

→
O .

Следователно точката R съвпада с точката О. Последното означава, че начупе-
ната линия OPQR е затворена, т.е. OPQR е триъгълник.

Задача 2. Да се докаже, че съществува четириъгълник, чиито страни са съот-
ветно успоредни и равни на медианите на даден четириъгълник.

Доказателство. Нека ABCD е четириъгълник с медиани AA1, BB1, CC1, DD1 
(Фигура 2).

За да докажем, че съществува четириъгълник, чиито страни са съответно успо-
редни и равни на медианите на четириъгълника ABCD, e достатъчно да построим 
начупена линия OPQRS, съставена от четири отсечки (OP, PQ, QR, RS), съответно 
успоредни и равни на медианите на ABCD, за която началото (точката  О) и краят 
(точката S) съвпадат.

Нека О е произволна точка. Построяваме начупената линия OPQRS, така че 
отсечката OP е успоредна и равна на медианата АА1, отсечката PQ е успоредна и 
равна на медианата BB1, отсечката QR е успоредна и равна на медианата CC1 и 
отсечката RS е успоредна и равна на медианата DD1.

Фигура 2.
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От построението следва, че
→
OP  = 

→
AA1, 

→
PQ  = 

→
BB1, 

→
QR  = 

→
CC1 и 

→
RS  = 

→
DD1

Ще докажем, че точката S съвпада с точката О. За целта e достатъчно да дока-
жем, че 

→
OS  е нулев вектор.  И действително:

→
OS = 

→
OP +

→
PQ +

→
QR +

→
RS  = 

→
AA1 + 

→
BB1 + 

→
CC1 + 

→
DD1 = 

= 1
3

→
AB  + 

1
3

→
AC  + 

1
3

→
AD + 

1
3

→
BA  + 

1
3

→
BC  + 

1
3

→
BD +

= 1
3

→
CA + 

1
3

→
CB  + 

1
3

→
CD + 

1
3

→
DA + 

1
3

→
DB + 

1
3

→
DC = 

→
O .

Следователно точката S съвпада с точката О. Следователно начупената линия 
OPQRS е затворена, т.е. OPQRS е четириъгълник.

Втора група задачи
Задача 3. Точките А1 и В1 принадлежат съответно на страните ОА и ОВ на 

триъгълника ОАВ с медицентър G. Известно е, че точките А1, В1 и G лежат на 

една права. Да се докаже, че OA
OA1

 + OB
OB1

 = 3.
Доказателство (Фигура 3)
От това, че G е точка от правата A1B1, следва, че съществува двойка числа  (a, b) 

така, че 
→
OG = a

→
OA1 + b

→
OB1 и  a + b  = 1. (1)

Да въведем числа x (x > 0), y (y > 0), за които 
ОА1 = хОА,  ОВ1 = уОВ. 

Фигура 3.
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От това, че G е медицентър на триъгълника ОАВ, следва:  
→
GO + 

→
GA + 

→
GB  = 

→
O   Û

→
GO + 

→
GO + 

→
OA + 

→
GO +

→
OB  = 

→
O   Û

3 
→
GO + 

→
OA +

→
OB  = 

→
O   Û

→
OG  =  

1
3

→
OA + 

1
3

→
OB.    (2)

Тъй като двойката вектори (
→
OA, 

→
OB) образуват база в равнината, то от (1) и (2) 

следва:
1
3  = a x и 1

3  = b y, т.е. a = 1
3x  и b = 1

3y .

Тъй като a + b = 1, то 1
3x  + 1

3y  = 1, т.е. 1
x  + 

1
y  = 3.

Следователно  OA
OA1

 + OB
OB1

 = 3.

Задача 4. Точките А1, В1 и С1 принадлежат съответно на ръбовете ОА, ОВ и ОС 
на тетраедъра ОАВС с медицентър G. Известно е, че точките А1, В1, С1 и G лежат 
в една равнина. Да се докаже, че 

OA
OA1

 + OB
OB1

+ OC
OC1

 = 4.

Фигура 4.
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Доказателство (Фигура 4)
От това, че G е точка от равнината A1B1C1, следва, че съществува тройка числа  

(a, b, g)  така, че 
→
OG = a

→
OA1 + b

→
OB1 + g

→
OC1 и a + b + g = 1.

Да въведем числа x (x > 0), y (y > 0) и  z (z > 0), за които ОА1 = хОА, ОВ1 = уОВ, 

ОС1 = zОС.

Тогава 
→
OG = ax

→
OA  + by

→
OB  + gz

→
OC .           (1)

От това, че G е медицентър на тетраедъра ОАВС, следва:  

→
GO + 

→
GA + 

→
GB + 

→
GC  = 

→
O   Û

→
GO + 

→
GO + 

→
OA + 

→
GO +

→
OB + 

→
GO +

→
OC  = 

→
O   Û

4 
→
GO + 

→
OA +

→
OB +

→
OC  = 

→
O   Û

→
OG  =  

1
4

→
OA + 

1
4

→
OB + 

1
4

→
OC.    (2)

	 Тъй като тройката вектори (
→
OA ,

→
OB ,

→
OC) образуват база в пространството, 

то от (1) и (2) следва:
1
4  = ax и 1

4  = by и 1
4  = gz, т.е. a = 1

4x  и b = 1
4y  и g = 1

4z .

Тъй като a + b + g = 1, то 1
4x  + 1

4y  + 
1
4z  = 1, т.е. 1

x  + 
1
y  + 

1
z  = 4.

Следователно  OA
OA1

 + OB
OB1

 + OC
OC1

 = 4.

Трета група задачи
Задача 5. Нека АВС е триъгълник с медицентър G. Права, минаваща през точ-

ката G, пресича страните СА и СВ в точките А1 и В1. Да се докаже, че сборът от 
лицата на триъгълниците AA1B1 и BA1B1 е равен на лицето на триъгълник CA1B1.

Доказателство (Фигура 5)
Да изберем за база двойката вектори (

→
CA ,

→
CB ) и да означим лицата на триъгъл-

ниците ABC, АA1B1, BB1А1, CA1B1 съответно с S, SA, SB, SC. От това, че точката А1 
е от отсечката СА, следва, че съществува число α, така че: 

→
CA1 = a

→
CA и   0 < α < 1.   

От това, че точката В1 е от отсечката СВ, следва, че съществува число β, така 
че 

→
CB1 = b

→
CB  и 0 < β < 1.
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Фигура 5.

Тогава за лицето на триъгълник CA1B1 получаваме:

Като вземем предвид, че

→
A1A  = 

→
A1C + 

→
CA = -a

→
CA +

→
CA = (1-a)

→
CA и

→
A1B1  = 

→
A1C + 

→
C1B = -a

→
CA + -b

→
CB,

за лицето на триъгълник АA1B1 получаваме:

   
 Като вземем предвид, че     
→
B1B  = 

→
B1C + 

→
CB  = -b

→
CB + 

→
CB = (1-b)

→
CB и 

→
B1A1  = a

→
CA -b

→
CB,

за лицето на триъгълник BB1А1 получаваме:

                                                              
От горните равенства следва, че: SА +  SВ = (1−α)βS + α(1−β)S = (α+β−2αβ)S.    
Точката G е медицентър на ∆АВС. Тогава:
→
CG  =  

1
3

→
CA + 

1
3

→
CB .    (1)
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Точката G е точка от правата A1B1. Тогава има числа m и n, (m + n = 1), така че:

 
→
CG = m

→
CA1 + n

→
CB1  т.е. 

→
CM = ma

→
CA  + nb

→
CB        (2)

От равенствата (1) и (2) следва, че:	

 mα = 1
3 ,  т.е. m = 1

3a
, (α ≠ 0) и nβ = 1

3 , т.е. n = 1
3b

, (β ≠ 0).

Като вземем предвид, че m + n = 1, получаваме: 1
3a

+ 1
3b

 = 1,  т.е. α + β = 3αβ.	
Тогава: SА + SВ = (α+β−2αβ)S = (3αβ−2αβ)S = αβS = SС.

С това задачата е решена.

Задача 6. Даден е тетраедър ABCD с медицентар G. Равнина, минаваща през 
точката G, пресича ръбовете DA, DB и DC съответно в точките A1, B1 и C1. Да се 
докаже, че сборът от обемите на тетраедрите АA1B1C1, BB1C1A1 и CC1A1B1 e равен 
на обема на тетраедъра DA1B1C1. 

Фигура 6.

Доказателство (Фигура 6)
Да изберем за база тройката вектори (

→
DA, 

→
DB, 

→
DC). От това, че точката G e ме-

дицентър на тетраедър АBCD, следва, че:
→
DG = 1

4  
→
DA + 

1
4  

→
DB + 

1
4  

→
DC+ 

1
4  

→
OD.                 (1)

От това, че точката A1 принадлежи на отсечката DA, следва, че съществува 

число a, така че 
→
DA1 = a

→
DA  и  0 < a < 1.             (2)
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Аналогично: 
→
DB1 = b

→
DB , където 0 < b < 1.     (3)

Аналогично 
→
DC1 = g

→
DC , където 0 < g < 1.       (4)

От това, че точката G принадлежи на вътрешността на D A1B1C1, следва, че 
съществуват числа  x, y, z, така че:

→
DG = x

→
DA1 + y

→
DB1 + z

→
DC1 , където  x + y + z = 1 и 

0 < x < 1,  0 < y < 1,  0 < z < 1                            (5)

От условията (1), (2), (3), (4) и (5) следва, че:

ax = 1
4 , ay = 1

4 , gz = 1
4 , (x + y + z = 1).

След изразяване на x, y и z от първите три равенства съответно и заместване в 
четвъртото равенство получаваме:

ab + bg + ga = 4 abg                                         (6)

 Да означим обема на тетраедъра АBCD с V, а обемите на тетраедрите АA1B1C1, 
BB1C1A1, CC1A1B1  и  DA1B1C1 съответно с VA, VB, VC и VD.

От векторните равенства:
→
AA1 = 

→
AD + 

→
DA1 = (a -1) 

→
AD,

→
AB1 = 

→
AD + 

→
DB1 =  -

→
DA + b

→
DB,

→
AC1 = 

→
AD + 

→
DC1 =  -

→
DA + g

→
DB

следва, че:

По аналогичен начин установяваме, че:
VB = a (1 − b)gV, VC = ab(1 − g)V и VD = abgV. 
След като образуваме сбора на VA, VB и VC и вземем предвид равенство (6), 

получаваме: VA + VB + VC = (bg + ag + ab −3 abg)V = abgV = VD.
С това задачата е решена. 
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THEORETICAL-PRACTICAL BASE 

OF VECTOR-ALGEBRAIC MODELING
IN GEOMETRY EDUCATION

Abstract. The paper consists of two parts – theoretical and applied. In the theoretical 
part a selection and classification of the basic concepts (objects and relations) and 
statements (axioms and theorems) of Veil’s geometric system has been made, with the 
help of which a vector-algebraic modeling of concepts and statements from the Euclidean 
geometry could be established. Six geometric problems have been chosen and presented in 
the applied part. The problems are solved, using vector means. It is shown that in geometry 
education vector-algebraic modeling can be used not only for proving statements but as 
a heuristic possibility as well. 
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