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Резюме. В настоящата статия е описано едно обобщение на забележителната 
теорема на Фонтене от геометрията на триъгълника.
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1. Въведение. Настоящата работа е посветена на обобщаването на едно забеле-
жително твърдение от геометрията на триъгълника, наречено теорема на Фонтене. 
Формулировката на тази теорема е свързана с понятието педална окръжност на 
точка. Спрямо ABC педална окръжност на точката P, нележаща върху описаната 
окръжност на ABC, се нарича окръжността, минаваща през петите на перпенди-
кулярите, спуснати от P върху правите BC, CA и AB. 

Теорема на Фонтене. Педалната окръжност на дадена точка P спрямо ABC 
се допира до Ойлеровата окръжност на ABC тогава и само тогава, когато 
центърът на описаната около ABC окръжност, точката P и точката Q, изо-
гонално спрегната на P спрямо ABC, са колинеарни.

Две доказателства на тази теорема, използващи комплексни числа, се съдържат 
в (Симеонов, 1996) и (Ненков, 1997), а синтетично доказателство се съдържа в 
(Ненков, 1996). Обобщението, което ще покажем, е свързано с обобщаването на 
някои понятия, които се съдържат явно или скрито във формулировката на теоре-
мата на Фонтене. За целта е необходимо да припомним тези обобщени понятия.

Разглеждаме произволен триъгълник ABC. Спрямо ABC ще използваме ба-
рицентрични координати, като A(1,0,0), B(0,1,0) и C(0,0,1) (Паскалев & Чобанов, 

1985). Средите на страните BC, CA и AB означаваме съответно с 1 10, ,
2 2aM ⎛ ⎞

⎜ ⎟⎝ ⎠
, 

1 1,0,
2 2bM ⎛ ⎞

⎜ ⎟⎝ ⎠
 и 1 1, ,0

2 2cM ⎛ ⎞
⎜ ⎟⎝ ⎠

, а с 1 1 1, ,
3 3 3

G ⎛ ⎞
⎜ ⎟⎝ ⎠

 – медицентъра ABC. В равнината 
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на ABC ще разглеждаме произволно конично сечение k (O) с център O (x0, y0, z0)   
(x0+y0+z0 =1). За пълнота ще разгледаме всички възможности за k (O) в зависимост 
от положението на центъра й O в равнината на ABC.

2. Ойлерова крива, асоциирана с описана за триъгълника крива. Забележи-
телната за триъгълника окръжност на Ойлер може да се обобщи спрямо произволна 
описана за ABC крива в зависимост от положението на центъра O, както това е 
описано в разгледаните по-долу случаи.

2.1. Описана крива, центърът на която не лежи върху страна на триъгъл-
ника. Определяме правите ha, hb и hc като минаващи съответно през върховете A, 
B и C и успоредни съответно на правите OMa, OMb и OMc. Тези прави се пресичат 
в една точка ( )0 0 01 2 ,1 2 ,1 2H x y z− − − , която се получава от O посредством равен-
ството 1

2
GH GO=
 

. Ако 1ah BC A∩ = , 1bh CA B∩ =  и 1ch AB C∩ = , то точките A1, 
B1, C1, Ma, Mb и Mc лежат на едно конично сечение , което наричаме Ойлерова 
крива, асоциирана с k (O) (Гроздев & Ненков, 2014, 1). Уравнението на Ойлеровата 
крива може да се представи във вида:

(1) ( ) :OΩ
( )( )( ) ( )( )( )
( )( )( )

0 0 0 0

0 0

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 0.

y z x x z x y y

x y z z

− − − + − − − +

+ − − − =

2.2. Описана крива, центърът на която лежи върху страна на триъгълника. 
Нека cO M≡  и ( )1 , ,0C l m  ( )1l m+ =  е точка от правата AB. В този случай разглеж-
даме точката H като съвпадаща с C (равенството 1

2
GH GO=
 

 е изпълнено и в този 
случай). Точките aM , bM , cM , C  и 1C  са различни и определят единствена крива 
от втора степен ( )1,cM CΩ , която наричаме Ойлерова крива, асоциирана с k (O). 
Уравнението на Ойлеровата крива може да се представи във вида:

(2) ( )1, :cM CΩ ( ) ( )1 2 1 2 0m x x l y y− + − = .

Случаите, когато aO M≡  и bO M≡ , са аналогични.
Тъй като точката H във всички случаи е аналог на ортоцентъра, ще я наричаме 

ортоид на ABC, определен от описаната крива k (O) (Гроздев & Ненков, 2014, 1).
3. Спрегнати точки, педални криви и Симсънови прави. Двойките изогонал-

но спрегнати точки спрямо ABC имат обща педална окръжност, спрямо центъра 
на която двете точки са симетрични. Освен това, когато една точка е от описаната 
за ABC окръжност, педалната окръжност се заменя с права на Симсън. По от-
ношение на произволно централно коничното сечение k (O) също се определят 
двойки спрегнати точки, педални криви и прави на Симсън.
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3.1. Описана крива, центърът на която не лежи върху страна на триъгъл-
ника. Координатите на точките от k (O) удовлетворяват уравнението

( )3  ( ) :k O ( ) ( ) ( )0 0 0 0 0 01 2 1 2 1 2 0x x yz y y zx z z xy− + − + − = .

Нека ( ), ,P P PP x y z  ( )1P P Px y z+ + =  е точка от равнината на ABC, а правите 
pa, pb и pc минават през P и са съответно успоредни на OMa, OMb и OMc, като 

a aP p BC= ∩ , b bP p CA= ∩  и c cP p AB= ∩ . С sa, sb и sc означаваме правите, кои-
то минават съответно през средите на отсечките PbPc, PcPa и PaPb, така че да са 
спрегнати съответно с правите PbPc, PcPa и PaPb спрямо k (O).

Ако точката P не лежи върху k (O), както следва от (3), изразът

( )4             ( ) ( ) ( ) ( )0 0 0 0 0 01 2 1 2 1 2P P P P P PP x x y z y y z x z z x yϑ = − + − + −

е различен от нула, вследствие на което точките Pa, Pb и Pc образуват триъгълник. 
Тогава правите sa, sb и sc се пресичат в една точка

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

0 0 0 0 0 01 2 1 2 1 2
, ,

2 2 2
P P P P P P P P PP x x x y z P y y y z x P z z z x y

W
P P P

ϑ ϑ ϑ
ϑ ϑ ϑ

⎛ + − + − + − ⎞
⎜ ⎟
⎝ ⎠

,

която е център на описано за PaPbPc конично сечение P. Това конично сечение 
P наричаме педална крива на точката P спрямо описаната крива k (O) (Гроздев 
& Ненков, 2014, 2).

Нека педалната крива P пресича за втори път правите BC, CA и AB съответно 
в точки Qa, Qb и Qc. Правите, минаващи през Qa, Qb и Qc, които са съответно успо-
редни на OMa, OMb и OMc, се пресичат в една точка Q(xQ, yQ, zQ), чиито координати 
са следните:

( )5     ( )
( )

0 01 2 P P
Q

x x y z
x

Pϑ
−

= , ( )
( )
0 01 2 P P

Q

y y z x
y

Pϑ
−

= , ( )
( )

0 01 2 P P
Q

z z x y
z

Pϑ
−

= ,

където ( )Pϑ  се изразява с равенството (4)(Гроздев & Ненков, 2014,2).
Точката Q е симетрична на P спрямо центъра W. Освен това правите, които 

минават съответно през средите на отсечките QbQc, QcQa и QaQb, така че да са 
спрегнати съответно с правите QbQc , QcQa и QaQa, се пресичат в точката W. 
Следователно педалната крива Q на Q съвпада с P, т.е. точките P и Q имат 
обща педална крива, която ще означаваме още и с (P, Q). Тези свойства на 
точката Q (които са аналогични на свойствата на изогонално спрегнатите) ни 
дават основание да я наречем спрегната на P спрямо k (O). Разбира се, спрег-
натата на Q е P.
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Трябва да отбележим още, че педалната крива (P, Q) е елипса или хипербола 
съответно когато k (O) е елипса или хипербола (Гроздев & Ненков, 2014, 3). Освен 
това, ако k (O) и (P, Q)  са хиперболи, те имат успоредни асимптоти (Гроздев & 
Ненков, 2014, 3).

Ако точката P лежи върху k (O), както следва от (3), то е изпълнено равенството

( )6             ( ) ( ) ( )0 0 0 0 0 01 2 1 2 1 2 0P P P P P Px x y z y y z x z z x y− + − + − = ,

вследствие на което точките Pa, Pb и Pc лежат на една права sP. Правата sP наричаме 
Симсънова права на точката P спрямо  k (O) (Ненков, 2007). В този случай правите 
sa, sb и sc са колинеарни с вектора ( ) ( ) ( )( )0 0 0 0 0 01 2 , 1 2 , 1 2P P P P P PQ x x y z y y z x z z x y− − −


 , 

който определя безкрайната точка Q. Точката Q ще наричаме спрегната на P спрямо 
k (O). Обратно, безкрайната точка Q има за спрегната спрямо k (O) точката P от k 
(O) (Гроздев & Ненков, 2012).

3.2. Описана крива, центърът на която лежи върху страна на триъгълни-
ка. Ако ( )0 0 0

1 1, , , ,0
2 2cO x y z M ⎛ ⎞≡ ⎜ ⎟⎝ ⎠

 и ( )1 , ,0C l m  ( )1l m+ =  е точка от правата AB, 

уравнението на описаната крива ( ) ( )1,ck O k M C≡  може да се представи във вида:

( )7                       ( )1, : 0ck M C lyz mzx xy+ + = , ( )1l m+ = .
Нека ( ), ,P P PP x y z  ( )1P P Px y z+ + =  е точка от равнината на ABC, а правите 

pa, pb и pc минават през P и са съответно успоредни на McMa, McMb и CC1, като 

a aP p BC= ∩ , b bP p CA= ∩  и c cP p AB= ∩ . С sa, sb и sc означаваме правите, кои-
то минават съответно през средите на отсечките PbPc, PcPa и PaPb, така че да са 
спрегнати съответно с правите PbPc, PcPa и PaPb спрямо k (Mc, C1).

Ако точката P не лежи върху k (Mc, C1), както следва от (7), изразът

( )8                                  ( )1, P P P P P PP C ly z mz x x yϑ = + +

е различен от нула, вследствие на което точките Pa, Pb и Pc образуват триъгълник. 
Тогава правите sa, sb и sc се пресичат в една точка

( )
( )

( )
( )

( )
( )

1 1 1, , ,
, ,

2 2 2
P P P P P P P P PP C x ly z P C y mz x P C z x y

W
P P P

ϑ ϑ ϑ
ϑ ϑ ϑ

+ + +⎛ ⎞
⎜ ⎟
⎝ ⎠

,

която е център на описано за PaPbPc конично сечение P. Това конично сечение 
P наричаме педална крива на точката P спрямо описаната крива k (Mc, C1).

Нека педалната крива P пресича за втори път правите BC, CA и AB съответно 
в точки Qa, Qb и Qc. Правите, минаващи през Qa, Qb и Qc, които са съответно успо-
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редни на OMa, OMb и CC1, се пресичат в една точка Q(xQ, yQ , zQ), чиито координати 
са следните:

( )9                 
( )1,

P P
Q

ly zx
P Cϑ

= , 
( )1,

P P
Q

mz xy
P Cϑ

= , 
( )1,

P P
Q

x yz
P Cϑ

= ,

където ( )1,P Cϑ  се изразява с равенството (8).
Както в предишния случай (когато O не е среда на страна на ABC) точката Q 

е симетрична на P спрямо центъра W, има педална крива ( ),Q P P Qπ π π≡ ≡  и се 
нарича спрегната на P спрямо k (O).

Трябва да отбележим още, че педалната крива ( ),P Qπ  е елипса или хипербола 
съответно когато ( ),ck M C1  е елипса или хипербола. Освен това, ако ( ),ck M C1  и 
( ),P Qπ  са хиперболи, те имат успоредни асимптоти.
Ако точката P лежи върху k (O), както следва от (3), то е изпълнено равенството

( )10                                     0P P P P P Ply z mz x x y+ + = ,

вследствие на което точките aP , bP  и cP  лежат на една права Ps . Правата Ps  нари-
чаме Симсънова права на точката P спрямо ( ),ck M C1 . В този случай правите 
sa, sb и sc са колинеарни с вектора ( ), ,P P P P P PQ ly z mz x x y


, който определя безкрай-

ната точка Q. Точката Q наричаме спрегната на P спрямо ( ),ck M C1 . Обратно, 
безкрайната точка Q има за спрегната спрямо ( ),ck M C1  точката P от ( ),ck M C1 .

Трябва да се отбележи, че, когато точката P  лежи върху страна ABC∆ , нейната 
спрегната точка е върхът, лежащ срещу тази страна. Ако P AB∈  ( ),P A P B≠ ≠ , 
нейната спрегната точка е върхът C, а педалната крива ( ),P Cπ  е напълно опреде-
лена от точките P, Pa, Pb, C и C1. Центърът на ( ),P Cπ  е средата на отсечката PC.

4. Взаимно еднозначно съответствие между диаметрите на описаната крива 
и точките от спрегнатата й Ойлерова крива. Според обобщената теорема на 
Грифитс, ако точката P се движи по диаметър d на описаната крива k (O), нейната 
педална крива минава през постоянна точка T от Ойлеровата крива (O) (Гроздев 
& Ненков, 2015, 1). Доказателството, проведеното в (Гроздев & Ненков, 2015, 1), 
уточнява, че тази постоянна точка T е център на описана около ABC крива, върху 
която се движи спрегнатата на P точка Q. Следователно на всеки диаметър d за 
k (O) съответства точка T от Ойлеровата крива (O). Ще докажем, че е изпълнено 
и обратното – ако T (O) е център на описана за ABC крива k, спрегнатата на 
движеща се по k точка Q описва диаметър на k (O).

Първо ще отбележим, че, ако (O) е хипербола (тогава и k (O) е хипербола), 
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безкрайните точки на (O) са центрове на параболи, описани за ABC. Тези 
безкрайни точки, както е показано в (Гроздев & Ненков, 2015, 1), са точките, през 
които минават педалните криви на точките от асимптотите на k (O). Следователно 
на безкрайните точки на (O) могат да се съпоставят асимптотите на k (O), т.е. 
между безкрайните точки на (O) и асимптотите на k (O) съществува взаимно 
еднозначно съответствие.

Останалите случаи, в които точката ( ), ,T T TT x y z  ( )1T T Tx y z+ + =  е крайна за 
(O), ще разглеждаме в зависимост от положението на центъра O в равнината на 
ABC. Първо да отбележим, че ако точката ( ), ,U U UU x y z  описва някаква крива 
в равнината на ABC, координатите й могат да се изразят чрез координатите на 
нейната спрегната точка ( ), ,V x y z  по формулите (5) или (9). Така след заместване 
на координатите Ux , Uy  и Uz  в уравнението на описваната от U крива се получава 
уравнението, което удовлетворяват координатите x, y и z на спрегнатата точка V.

4.1. Описана крива, центърът на която не лежи върху страна на триъгъл-
ника. Нека ( ), ,T T TT x y z  не съвпада с никоя от точките Ma, Mb и Mc. Тогава от (3) 
следва, че точките (X, Y, Z) от описаната за ABC крива k (T ) с център T удовлет-
воряват уравнението:

( )11                     ( ) ( ) ( )1 2 1 2 1 2 0T T T T T Tx x YZ y y ZX z z XY− + − + − = .

След заместване на координатите на точката U от (5) в (11) получаваме, че 
координатите на спрегнатата точка V удовлетворяват уравнението

( )( )( ) ( )( )( )
( )( )( )

0 0 0 0 0 0 0 0

0 0 0 0

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 0.
T T T T

T T

y z x x y z x z x y y z x y

x y z z x y z

− − − + − − − +

+ − − − =
Последното уравнение показва, че точката V описва права. След заместване на 

координатите на центъра O в лявата част на това уравнение получаваме

( )( )( ) ( )( )( )
( )( )( )

0 0 0 0 0 0 0

0 0

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 .
T T T T

T T

x y z y z x x z x y y

x y z z

− − − + − − − +⎡⎣
+ − − − ⎤⎦

Тъй като ( )T O∈Ω , от (1) следва, че изразът в скобите е равен на нула. Следо-
вателно правата, която описва точката V, е диаметър на k (O).

Нека сега cT M≡ . От (7) намираме, че уравнението на описаната за ABC крива, 
минаваща през ортоида H, е следното:

( ) ( ) ( )( )0 0 0 0 0 0 01 2 1 2 1 2 0x x YZ y y ZX z y x XY− − − + − − = . 
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След заместване на координатите на точката U от (5) в това уравнение по-
лучаваме, че координатите на спрегнатата точка V удовлетворяват уравнението  
z0x  z0y + (y  x0)z = 0. Очевидно е, че координатите на O удовлетворяват 
последното уравнение. Следователно и в този случай правата, която описва 
точката V, е диаметър на k (O). Случаите T  Ma и T  Mb са аналогични.

4.2. Описана крива, центърът на която лежи върху страна на триъгълни-

ка. Нека ( )0 0 0
1 1, , , ,0
2 2cO x y z M ⎛ ⎞≡ ⎜ ⎟⎝ ⎠

 и ( )1 , ,0C l m  ( )1l m+ = . Първо ще разгледаме 

случая, когато ( ), ,T T TT x y z  не съвпада с никоя от точките Ma, Mb и Mc. Тогава от 
(3) следва, че точките (X, Y, Z) от описанатаза DABC крива k (T) с център T удо-
влетворяват уравнението (11). След заместване на координатите на точката U от (9) 
в (11) получаваме, че координатите на спрегнатата точка V удовлетворяват урав-
нението ( ) ( ) ( )1 2 1 2 1 2 0T T T T T Tx x mx y y ly z z lmz− + − + − = . Последното уравнение 
показва, че точката V описва права. След заместване на координатите на центъра 
O в лявата част на това уравнение получаваме ( ) ( )1 1 2 1 2

2 T T T Tm x x l y y− + −⎡ ⎤⎣ ⎦ . 
Тъй като ( )T O∈Ω , от (2) следва, че изразът в скобите е равен на нула. Следова-
телно правата, която описва точката V, е диаметър на ( ) ( )1,ck O k M C≡ .

Нека сега cT M≡ . Чрез (7) и (9) търсим подходяща крива, описана за DABC, 
така че спрегнатата точка V да описва права през Mc. Желаната крива, която 
трябва да описва точката U, има следното уравнение ( ) 0lYZ mZX l m XY− + − =  . 
Съответният диаметър, който описва спрегнатата точка V, има следното уравне-
ние ( ) 0x y l m z− + − = . По този начин на точката Mc съпоставяме диаметър на 
( )1,ck M C .
Остава да разгледаме случаите, когато aT M≡  и bT M≡ . В съответни-

те случаи получаваме, че ако точката U описва кривите 0lYZ mZX XY− + =  
и 0,lYZ mZX XY− + + =  спрегнатата точка V описва съответно диаметрите 

0x y z− + =  и 0x y z− + + = .
Получените резултати ще обобщим в следната
Теорема 1. Между диаметрите на описаната крива k (O) и точките на асо-

циираната й Ойлерова крива съществува взаимно еднозначно съответствие.
Трябва да отбележим, че в (Гроздев & Ненков, 2014, 4) е доказано подобно 

твърдение, но то се отнася само за диаметри, които пресичат описаната крива k (O).
5. Обобщена теорема на Фонтене. Сега сме готови да формулираме и докажем 

едно обобщение теоремата на Фонтене.
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Теорема 2. Педалната крива на дадена точка P спрямо описаната за ABC  
крива k (O) се допира до асоциираната й Ойлерова крива (O) тогава и само 
тогава, когато центърът на описаната крива k (O), точката P и точката Q, 
спрегната на P спрямо k (O), са колинеарни.

Нека d е диаметър на описаната крива k (O), а P произволна точка от d. Спрег-
натата на P точка Q лежи върху диаметър d на k (O). Според теоремата на Грифитс 
педалните криви на точките от d минават през постоянна точка T от (O), а педал-
ните криви на точките от d минават през постоянна точка T  от (O). Следователно 
общата педална крива (P, Q) на спрегнатите точки P и Q минава през точките T 
и T . От теорема 1 следва, че точките T и T  съвпадат тогава и само тогава, когато 
съвпадат d и d. Затова педалната крива (P, Q) има само една обща точка с (O) 
тогава и само тогава, когато d  d. Това означава, че (P, Q) се допира до (O) 
точно когато точките O, P и Q лежат на една права.

6. Теорема на Фонтене за Симсънови прави. Интересно е да се определи дали 

съществува вариант на теоремата на Фонтене, когато точката ( ), ,P P PP x y z  лежи 
върху описаната крива k (O). Тъй като в този случай педалната крива се заменя с 
права на Симсън, то очакваният вариант е свързан с определянето на случаите, в 
които Симсъновата права се допира до (O). Можем да предположим, че аналогич-
но на теоремата на Фонтене, желаното свойство се получава, когато точките O и P 
лежат на една права с безкрайната точка Q, която е спрегната на P. Ще разгледаме 
отделно двата случая, зависещи от положението на центъра O.

6.1. Описана крива, центърът на която не лежи върху страна на триъгъл-
ника. Първо да отбележим, че когато точката P(xP, yP, zP) лежи върху k (O), то 
е изпълнено равенството (6). Един от резултатите, получени в (Гроздев & Нен-
ков, 2014, 4), е, че векторът ( ) ( ) ( )( )0 0 0 0 0 0, ,P P P P P P P P Pp x z y y z y x z z x z y x x y− − −


 

е колинеарен със Симсъновата права sP на точката P. От друга страна, 
според резултат от (Гроздев & Ненков, 2015, 2), векторът p


 е спрегнат с 

( ) ( ) ( )( )0 0 0 0 0 01 2 , 1 2 , 1 2P P P P P PQ x x y z y y z x z z x y− − −


 . Според отбелязаното в 3.1 
това е направлението, определящо безкрайната точка, спрегната с P спрямо k (O). 
Затова ще определим кога векторите ( )0 0 0, ,P P POP x x y y z z− − −


 и Q


 са колинеарни. 
От координатите следва, че векторите OP


 и Q


 са колинеарни тогава и само тогава, 
когато са изпълнени равенствата: 

( ) ( ) ( )
0 0 0

0 0 0 0 0 01 2 1 2 1 2
P P P

P P P P P P

x x y y z z
x x y z y y z x z z x y
− − −= =

− − −  
. 

Оттук намираме равенствата:
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Фиг. 1 

( ) ( ) ( )
( )( ) ( )( ) ( )

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 2 1 2

1 2 1 1 2 1 1 2 ,
P P P P

P P P P

z y y y z y x z z x y

y x y z x x y z x y z x x y z

− − + − − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= − − − + − − − −

( ) ( ) ( )
( )( ) ( )( ) ( )

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 2 1 2

1 2 1 1 2 1 1 2 .
P P P P

P P P P

z x y y y z y z z x y

z x y z x x z x y z y x x y z

− − − − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= − − − + − − − −

Разглеждайки тези равенства като система уравнения спрямо изразите в ква-
дратните скоби, определяме

( ) ( ) ( ) ( )( ) ( )0 0 0 0 0 0 0 0 0 0 0 0 0 01 2 1 1 1 1 2P P P P P P Py y z x x y z x y y z y z y x y z x y y z− = − − − − − − + − ,

( ) ( ) ( )( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 0 0 0 01 2 1 1 1 1 2P P P P P P Pz z x y x y z x y z x z y z y z z x z y z− = − − − − − − + − .

След почленно събиране на последните равенства, като използваме ( )6 , полу-
чаваме равенство, което можем да запишем във вида

( )12                     ( )( )0 0 0 0

0 0

1 2 1 2
2 2

P P P P Px y z z y y z x x
y z

− + − − += .

По аналогичен начин се получават равенствата

( )13  ( )( )0 0 0 0

0 0

1 2 1 2
2 2

P P P P Py z x x z z x y y
z x

− + − − += , ( )( )0 0 0 0

0 0

1 2 1 2
2 2

P P P P Pz x y y x x y z z
x y

− + − − += .



Сава Гроздев, Веселин Ненков

630

Според резултатите, получени в (Гроздев & Ненков, 2014, 4), общите точки на 
Симсъновата права sP с Ойлеровата крива (O) са следните

( )( ) ( )( ) ( )( )0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

1 2 1 2 1 2
, ,

2 2 2
P P P P P P P P P P P Px y z z y y z y z x x z z x z x y y x x y

T
y z z x x y

− + − − + − − + −⎛ ⎞
⎜ ⎟
⎝ ⎠

,

0 0 01 2 1 2 1 2, ,
2 2 2

P P Px x y y z zP − + − + − +⎛ ⎞
⎜ ⎟⎝ ⎠

.

Следователно правата sP е допирателна за (O) тогава и само тогава, когато 
P T≡ . Това е изпълнено точно когато са изпълнени равенствата (12) и (13), т.е. 
когато sP и OP са спрегнати спрямо k (O).

6.2. Описана крива, центърът на която лежи върху страна на триъгълника. 

Нека ( )0 0 0
1 1, , , ,0
2 2cO x y z M ⎛ ⎞≡ ⎜ ⎟⎝ ⎠

 и ( )1 , ,0C l m  ( )1l m+ = . В този случай векторът 

( )( ), ,P P P P P P Pp z x y z z y x− −


 е колинеарен със Симсъновата права sP на точката P, а 

негов спрегнат вектор е ( ), ,P P P P P PQ ly z mz x x y


. Векторите 
1 1, ,
2 2c P P PM P x y z⎛ ⎞− −⎜ ⎟⎝ ⎠


 

и Q


 са колинеарни тогава и само тогава, когато са изпълнени равенствата: 
0 0 0P P P

P P P P P P

x x y y z z
ly z mz x x y
− − −= = . Оттук, както в предишния случай ( cO M≠ ), намираме 

равенствата:

Фиг. 2 
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( )14        ( )1 2
2
P

P P
xlz y− = , ( )1 2

2
P

P P
ymz x− = , 12

2
P

P P P P
zx y x y ++ − = .

От друга страна, общите точки на Симсъновата права sP с Ойлеровата 
крива ( )1,cM CΩ  са следните ( ) ( )( )1 2 , 1 2 , 2P P P P P P P PT lz y mz x x y x y− − + −  и 

1, ,
2 2 2
P P Px y zP +⎛ ⎞

⎜ ⎟⎝ ⎠
. Следователно правата Ps  е допирателна за ( )1,cM CΩ  тогава 

и само тогава, когато са изпълнени равенствата (14), които означават, че правите 

sP и McP са спрегнати спрямо ( )1,ck M C .

Фиг. 3 Фиг. 4 

Получените резултати обобщаваме в следната
Теорема 3. Симсъновата права sP на дадена точка P от описаната за ABC  

крива k (O) се допира до асоциираната й Ойлеровата крива (O) тогава и само 
тогава, когато sP и OP са спрегнати прави спрямо k (O).

7. Крива на Фонтене. От теорема 2 следва, че спрегнатите точки P и Q имат 
педална крива, допираща се до Ойлеровата (O), когато те лежат върху диаметър 
на k (O). От друга страна, теорема 2 не ни дава информация дали върху даден 
диаметър на k (O)  съществува поне една двойка спрегнати точки. От резултатите, 
получени в (Гроздев & Ненков, 2015, 1), се вижда, че когато едната от спрегнати-



Сава Гроздев, Веселин Ненков

632

те точки P и Q описва диаметър d, другата описва крива от втора степен kd (това 
беше използвано съществено при доказването на теорема 2). Ако точката P лежи 
едновременно на d и kd, нейната спрегната също ще лежи едновременно на d и kd. 
Следователно, ако върху d има спрегнати точки, те са общите точки на d и kd. Така 
получаваме, че върху произволен диаметър на k (O) има най-много две спрегнати 
точки. Можем да предположим, че двойките спрегнати точки, лежащи на един 
диаметър, описват някаква крива F(O) в равнината на ABC. От друга страна, 
върху тази крива трябва да лежат и точките на  k (O), Симсъновите прави на които 
се допират до (O). Затова е интересно да се установи какъв е броят на точките, 
чиито Симсънови прави са допирателни за (O). Това ще ни даде възможност да 
разберем в колко точки се пресичат кривите k (O) и F(O). Изясняването на тези 
въпроси ще извършим отново в зависимост от положението на центъра O в рав-
нината на ABC.

7.1. Описана крива, центърът на която не лежи върху страна на триъгълни-
ка. Спрегнатите точки ( ), ,P P PP x x y y z z= = =  и ( ), ,Q Q QQ x y z  лежат на диаметър за 

k (O) точно когато е изпълнено равенството 
0 0 0

0P P P

Q Q Q

x y z
x y z
x y z

=  (Паскалев & Чобанов, 

1985). След заместване на (5) в това равенство получаваме

( )15  ( ) :F O ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 0 01 2 1 2 1 2 0x x z y y z yz y y x z z x zx z z y x x y xy− − + − − + − − = .

Равенството (15) е уравнение на крива от трета степен, която ще наричаме крива 
на Фонтене спрямо описаната крива  k (O). 

Интересно е да се отбележат някои специални случаи за кривата на Фонтене. Ако 
x0=y0 (центърът O лежи върху медианата CMc), кривата F(O) се разпада на медианата 
CMc : x  y = 0 и кривата от втора степен :cf ( ) ( ) ( )2

0 0 0 02 1 2 1 4 1 0.x z x yz x zx x xy+ − + − + − =  
Кривата fc минава през точките A, B, 1A AO BC= ∩ , 1B BO CA= ∩  и има за център 
медицентъра G. Ако k (O) е елипса, то fc е хипербола, която пресича k (O) в точки 
U и V. Тези точки лежат върху правата, минаваща през средата на отсечката OC 
и е успоредна на AB. Симсъновите прави sU и sV съответно на точките U и V се 
пресичат върху правата CMc и са допирателни за (O). Когато k (O) е хипербола, 
тогава fc е елипса, която няма други общи точки с k (O) освен върховете A и B. 
И в двата случая правата CMc пресича k (O) в точка M, която е симетрична на C 
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спрямо O. Симсъновата права sM на точката M е правата AB, която, от своя страна, 
е допирателна за (O). Освен това педалната крива на всяка точка от медианата 
CMc се допира до Ойлеровата крива в средата Mc.

Фиг. 5 

Фиг. 6 
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Когато 0 0 0
1
3

x y z= = =  ( O G≡ ), кривата F(O) се разпада на медианите :aAM

0y z− = , :bBM z x= , :cCM 0x y− = , които пресичат k (O) съответно в точките M, L, 
N. Симсъновите прави sM, sL и sN са съответно правите BC, CA и AB, които, от своя 
страна, са допирателни за (G). Педалните криви на точките от медианите AMa, 
BMb и CMc се допират до Ойлеровата крива (G) съответно в средите Ma, Mb и Mc.

Точките P(xP, yP, zP), Симсъновите прави на които са допирателни за (O), 
удовлетворяват равенствата (12) и (13). От тези равенства, след елиминиране на 
yP и zP, получаваме кубичното уравнение

( )( ) ( )( )
( ) ( )( )( )

3 2
0 0 0 0 0

2 2
0 0 0 0 0 0 0 0

1 2 1 2 3 1 2 1 2

3 1 2 3 1 2 1 1 0.
P P

P

y z x x y z x

x x y z x x x y z

− − − − − −

− − − + − − − =

След извършване на смяната 0Px x x= +  последното уравнение се превръща в 

следното 3 0x px q+ + = , където 
( )( )

2
0 0 0

0 0

3
1 2 1 2

x y zp
y z

= −
− −

 и ( )
( )( )

2
0 0 0 0

0 0

1
1 2 1 2
x y z x

q
y z

−
=

− −
. Броят 

на решенията на кубичното уравнение зависи от знака на величината
( ) ( )

( ) ( ) ( )( )( )

2 23 2 4 2 2
0 0 0 0 0 0

2 2
0 0 00 0

1 2 1.
3 2 1 2 1 2 1 21 2 1 2

x y z x y zp qD
x y zy z

− −⎛ ⎞ ⎛ ⎞ ⎡ ⎤= + =⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ − − − −⎝ ⎠ − − ⎣ ⎦
.

Кубичното уравнение има един реален корен при ( )( )( )0 0 01 2 1 2 1 2 0x y z∆ = − − − − >  , 
а в противен случай ( 0∆ < ) – три реални корена (някои от тях може да съвпадат). 
От друга страна, при 0∆ >  описаната крива k (O) е хипербола и е елипса при 0∆ <  . 
Така получаваме следната

Теорема 4. Ако k (O) е хипербола, има точно една точка върху k (O), чиято 
Симсънова права е допирателна за (O). Ако k (O) е елипса, има точно три точки 
върху k (O), чиито Симсънови прави са допирателни за (O).

Трябва да се отбележи, че теорема 4 е доказана в (Гроздев & Ненков, 2014, 4), 
но по различен начин.

От теорема 4 и уравнението (15) на кривата F(O) следва, че броят на общите 
точки на F(O) и k (O) е четири или шест, съответно когато k(O) е хипербола или 
елипса.

7.2. Описана крива, центърът на която лежи върху страна на триъгълника. 

Нека ( )0 0 0
1 1, , , ,0
2 2cO x y z M ⎛ ⎞≡ ⎜ ⎟⎝ ⎠

 и ( )1 , ,0C l m  ( )1l m+ = . В този случай кривата на 

Фонтене има следното уравнение
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( )16                      ( )1, :cF M C ( ) ( )2 0mx ly z x y xy− + − = .

Кривата на Фонтене ( )1,cF M C  се разпада на медианата :cCM 0x y− =  и хипер-

болата :cf
2 2 0z xy+ = , когато 1

2
l m= = , т.е. когато ( ),c ck M M  е елипсата с център 

Mc, имаща за допирателна във върха C правата, успоредна на AB. Хиперболата fc 
се допира до правите BC и CA съответно в точките A и B. Освен това fc пресича 
( ),c ck M M  в точките U и V, които лежат на правата MaMb. Симсъновите прави  sU 

и sV съответно на точките U и V се пресичат върху правата CMc и са допирателни 
за Ойлеровата крива (Mc, Mc). Правата CMc пресича ( ),c ck M M  в точка M, която 
е симетрична на C спрямо Mc. Симсъновата права sM на точката M е правата AB, 
която, от своя страна, е допирателна за (Mc, Mc). От друга страна, педалната кри-
ва на всяка точка от медианата CMc се допира до Ойлеровата крива в средата Mc.

Също както в случая cO M≠  се установява валидността на теорема 4. Оттук и 
от уравнението (16) следва и същият извод за броя на общите точки на ( )1,cF M C  
и ( )1,ck M C .

Фиг. 7 
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Фиг. 8 

Най-общо трябва да се отбележи, че центърът O и ортоида H (които са спрегнати 
точки спрямо k (O) винаги принадлежат на кривата на Фонтене. Ойлеровата крива 
на тези точки е (O) и може да считаме, че тя се допира до себе си във всяка своя 
точка. Освен това от получените резултати могат да се направят някои изводи за 
кривата на Фонтене в зависимост от описаната крива k (O). Броят на общите точки 
на k (O) и F(O) (без върховете на ABC) показва, че кривата F(O) се състои от три 
части, когато k (O) е елипса, и от две части (едната, от които е затворена), когато 
k (O) е хипербола. Това се дължи на факта, че кривата F(O) освен точките от k (O) 
съдържа и техните спрегнати безкрайни точки. От получените резултати заклю-
чаваме още, че разпадащите се криви на Фонтене се получават, когато центърът O 
лежи върху медиана на ABC. От друга страна обаче, точките Ma, Mb и Mc (които 
също лежат върху медианите) са центрове на цели класове от описани за ABC 
криви, които пораждат неразпадащи се криви на Фонтене.

8. Заключение. Теоремата на Фонтене е обобщение на теоремата на Фойербах: 
всяка вписана окръжност в ABC се допира до неговата Ойлерова окръжност. От 
своя страна, теорема 2 е обобщение на теоремата на Фонтене. По същите причини, 
при които теоремата на Фонтене е обобщение на теоремата на Фойербах, теорема 2 
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е обобщение на една теорема, обобщаваща теоремата на Фойербах и доказана в 
(Ненков, 2008). В тази теорема са определени четири вписани за ABC, които 
са свързани по специален начин с описаната крива k (O) и обобщават вписаните 
окръжности в случая, когато k (O) е описаната за ABC окръжност. Всъщност 
тази теорема ни дава основание такава комбинация от описана и вписани криви 
да наричаме Фойербахова конфигурация (Ненков, 2010). Всички описани за ABC 
елипси пораждат Фойербахови конфигурации, което означава, че те се включват 
като частни случаи на теорема 2. От друга страна, съществуват описани хиперболи, 
които не пораждат Фойербахови конфигурации, но за тях е изпълнена теорема 2. 
Следователно теорема 2 има много по-общ характер от всички споменати теореми.
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FONTENÉ THEOREM WITH RESPECT 
TO SURCUMSCRIBED CENTRAL CONICS

Abstract. A generalization of the remarkable Fontené theorem from the geometry of 
triangle is described in the present paper.  
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