
517

Maтематика и информатика, година LV, кн. 6, 2012         Mathematics and Informatics, Volume 55, Number 6, 2012

Теорема на Понселе  
за четириъгълници

Сава Гроздев, Веселин Ненков

На нашия колега и приятел Светльо Дойчев

Резюме. Статията е посветена на етюди върху теоремата на Понселе за пораждане 
на четириъгълници, вписани в една крива и описани около друга. 

Keywords: inscribed quadrilateral, circumscribed quadrilateral, conic. 

Нека 1k  е едно описано за четириъгълника 1 2 3 4A A A A  конично сечение, а 2k  
е негово вписано коничното сечение, като правите 1 2A A , 2 3A A , 3 4A A  и 4 1A A  се 
допират до 2k  съответно в точките 1T , 2T , 3T  и 4T . След като кривите 1k  и 2k  
са вече установени, четириъгълникът 1 2 3 4A A A A  може да се възстанови само по 
една от точките jA  и jT  ( )1,2,3,4j =  чрез построяване на допирателни към 2k  
и намиране на пресечните им точки с 1k . Затова, когато 1k  и 2k  са предварително 
известни, ще казваме, че всяка от тези точки поражда четириъгълник 1 2 3 4A A A A  , 
вписан в 1k  и описан около 2k . Относно пораждането на четириъгълници, вписа-
ни в една крива и описани около друга, е известна теоремата на Понселе, която 
можем да формулираме по следния начин:

Теорема 1. Ако две конични сечения 1k  и 2k  са разположени в равнината по 
такъв начин, че съществува четириъгълник, който е вписан в 1k  и описан около 

2k , то всяка точка от тези конични сечения поражда четириъгълник, който е 
вписан в 1k  и описан около 2k .

Тази теорема е открита от френския математик Жан-Виктор Понселе (1788 – 
1867) в по-обща формулировка, която се отнася до многоъгълници с проиволен 
брой върхове. Доказателство на теоремата може да се намери в (Берже, 1984). 
Доказателство на теорема 1, когато 1k  и 2k  са окръжности и 2k  се намира въ-
тре в 1k , се съдържа в (Прасолов, 1986). Доказателство на по-общото твърдение, 
отнасящо се за многоъгълници, вписано-описани за окръжности 1k  и 2k , като 

2k  се намира в 1k , може да се намери в (Шарыгин, 1986). Тук ще изложим едно 
доказателство на теорема 1, което ще проведем в два етапа.
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1. Доказателство на теоремата на Понселе за квадрат. Ще докажем следния 
частен случай на теоремата на Понселе.

Теорема 2. Ако две конични сечения 1k  и 2k  са разположени в равнината по 
такъв начин, че съществува квадрат, който е вписан в 1k  и описан около 2k , то 
всяка точка от тези конични сечения поражда успоредник, който е вписан в 1k  
и описан около 2k  (Фиг. 1).

Нека 1 2 3 4A A A A  е квадрат с център O . Избираме Декартова координатна 
система Oxy  с оси по диагоналите на 1 2 3 4A A A A  така, че ( )1 1,0A − , ( )2 0, 1A −  , ( )3 1,0A  и ( )4 0,1A  (Фиг. 1). Спрямо Oxy  произволна крива от втора степен k  
има уравнение от вида

( )1 	 2 2
11 22 12 13 23 33: 2 2 2 0k a x a y a xy a x a y a+ + + + + = ,

където ija  ( )1 , 3i j≤ ≤  са реални коефициенти.
Нека 1k k≡  е произволна крива, която е описана около 1 2 3 4A A A A . Тъй като 

1k  минава през 1A  и 3A , от ( )1  се получават равенствата 11 13 332 0a a a− + =  
и 11 13 332 0a a a+ + = , откъдето следва, че 13 0a =  и 11 33a a= − . Аналогично от 
факта, че 1k  минава през 2A  и 4A , се получава 23 0a =  и 22 33a a= − . Следова-
телно уравнението на 1k  има вида 2 2

33 33 12 332 0a x a y a xy a− − + + = . Тъй като 1k  
не минава през O , то 33 0a ≠  и затова, след като разделим на 33a−  и положим 

12

33

ab
a

= − , получаваме представяне на 1k  в следния вид:

( )2 	 2 2
1 : 2 1 0k x y bxy+ − − = .

Абсцисите на общите точки на произволна крива k  с правите 3 4 : 1A A x y+ =  , 
1 2 : 1A A x y+ = − , 4 1 : 1A A x y− + =  и 2 3 : 1A A x y− =  се определят съответно от 

уравненията:
( ) ( )2

11 12 22 12 22 13 23 22 23 332 2 2 0a a a x a a a a x a a a− + − − + − + + + + = ,
( ) ( )2

11 12 22 12 22 13 23 22 23 332 2 2 0a a a x a a a a x a a a− + − − − + + − + = ,
( ) ( )2

11 12 22 12 22 13 23 22 23 332 2 2 0a a a x a a a a x a a a+ + − − − − − + + + = ,
( ) ( )2

11 12 22 12 22 13 23 22 23 332 2 2 0a a a x a a a a x a a a+ + − + − − + − + = .
Сумата от дискриминантите на първите две уравнения е:

( )2 2 2
1 11 22 22 33 33 11 12 13 23 13 23 12 332 2D a a a a a a a a a a a a a= + + − + + − + ,

а на последните две е:
( )2 2 2

2 11 22 22 33 33 11 12 13 23 13 23 12 332 2D a a a a a a a a a a a a a= + + − + + + − .
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Нека 2k k≡  е произволна крива, която се допира до правите 3 4A A , 1 2A A , 
4 1A A  и 2 3A A  съответно в точките 3T , 1T , 4T  и 2T  (Фиг. 1). Абсцисите на тези 

точки са двойните корени на съответните уравнения по-горе. Следователно абс-

цисите на точките 3T , 1T , 4T  и 2T  са равни съответно на 12 22 13 23

11 12 222
a a a a
a a a

− + − +
− +

, 

12 22 13 23

11 12 222
a a a a

a a a
− − +

− +
, 12 22 13 23

11 12 222
a a a a
a a a

− − − −
+ +

 и 12 22 13 23

11 12 222
a a a a

a a a
+ − −

+ +
. Тъй като двой-

ките точки 3T , 1T  и 4T , 2T  са симетрични спрямо O , то сумите на абсцисите 
им са равни на нула, откъдето получаваме съответно равенствата 13 23 0a a− + =  
и 13 23 0a a+ = . Последните две равенства имат единствено решение 13 0a =  и 

23 0a = . От друга страна дискриминантите на квадратните уравнения са равни 
на нула, затова 1 2 0D D= = . Като вземем предвид и последните две равенства, 
получаваме 12 33 0a a = . Но 2k  не минава през O , затова 33 0a ≠  и 12 0a = . Така 
получихме 12 13 23 0a a a= = = . От тези равенства и изразите за 1D  и 2D  получа-
ваме още, че 11 22 22 33 33 11 0a a a a a a+ + = . Тъй като 2k  не е парабола, то 11 0a ≠  и 

22 0a ≠  и можем да положим 33

11

0a a
a

= ≠ , което според последното равенство 

води до 33

22

1 0a a
a

= − − ≠ . Сега след заместване в ( )1  получаваме уравнението на 

2k  във вида:

( )3 	 ( ) ( )2 2
2 : 1 1 0k a x ay a a+ − + + = .

 

 

точка от тези конични сечения поражда успоредник, който е вписан в 1k  и описан 
около 2k  (Фиг. 1). 

Нека 1 2 3 4A A A A  е квадрат с център O . Избираме Декартова координатна система 
Oxy  с оси по диагоналите на 1 2 3 4A A A A  така, че ( )1 1,0A − , ( )2 0, 1A − , ( )3 1,0A  и ( )4 0,1A  
(Фиг. 1). Спрямо Oxy  произволна крива от втора степен k  има уравнение от вида 
( )1  2 2

11 22 12 13 23 33: 2 2 2 0k a x a y a xy a x a y a+ + + + + = , 

където ija  ( )1 , 3i j≤ ≤  са реални коефициенти. 
Нека 1k k≡  е произволна крива, която е описана около 1 2 3 4A A A A . Тъй като 1k  

минава през 1A  и 3A , от ( )1  се получават равенствата 11 13 332 0a a a− + =  и 

11 13 332 0a a a+ + = , откъдето следва, че 13 0a =  и 11 33a a= − . Аналогично от факта, че 1k  
минава през 2A  и 4A , се получава 23 0a =  и 22 33a a= − . Следователно уравнението на 1k  
има вида 2 2

33 33 12 332 0a x a y a xy a− − + + = . Тъй като 1k  не минава през O , то 33 0a ≠  и 

затова, след като разделим на 33a−  и положим 12

33

ab
a

= − , получаваме представяне на 1k  

в следния вид: 
( )2  2 2

1 : 2 1 0k x y bxy+ − − = . 
Абсцисите на общите точки на произволна крива k  с правите 3 4 : 1A A x y+ = , 

1 2 : 1A A x y+ = − , 4 1 : 1A A x y− + =  и 2 3 : 1A A x y− =  се определят съответно от 
уравненията: 

( ) ( )2
11 12 22 12 22 13 23 22 23 332 2 2 0a a a x a a a a x a a a− + − − + − + + + + = , 

( ) ( )2
11 12 22 12 22 13 23 22 23 332 2 2 0a a a x a a a a x a a a− + − − − + + − + = , 

( ) ( )2
11 12 22 12 22 13 23 22 23 332 2 2 0a a a x a a a a x a a a+ + − − − − − + + + = , 

( ) ( )2
11 12 22 12 22 13 23 22 23 332 2 2 0a a a x a a a a x a a a+ + − + − − + − + = . 

Сумата от дискриминантите на първите две уравнения е: 
( )2 2 2

1 11 22 22 33 33 11 12 13 23 13 23 12 332 2D a a a a a a a a a a a a a= + + − + + − + , 
а на последните две е: 

( )2 2 2
2 11 22 22 33 33 11 12 13 23 13 23 12 332 2D a a a a a a a a a a a a a= + + − + + + − . 

 

 
Фиг. 1 
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Нека ( )0 0 0,T x y  е произволна точка от 2k . От ( )3  следва, че са изпълнени 
равенствата:

( )4 	 ( )( )2 2
0 01ay a x a= + + , ( ) ( )2 2

0 01 1a x a y a+ = − − .

Дохирателната 0t  на 2k  в точката 0T  има следното уравнение:

( )5 	 ( ) ( )0 0 0: 1 1 0t a x x ay y a a+ − + + = .

След елиминиране на y  от ( )2  и ( )5 , като използваме равенствата ( )4 , по-
лучаваме квадратното уравнение

( )6 	 ( ) ( )2 2 2 2 2
0 0 0 02 1 2 1 0x y bxy x aby a x x a x+ − − − − + + − =   .

Корените на ( )6  са абсцисите на пресечните точки ( )1 1 1,B x y  и ( )2 2 2,B x y  
на 0t  с 1k . Следователно от ( )6 , според формулите на Виет, се получават равен-
ствата:

( )7 	
( )0 0

1 2

2 1aby a x
x x

f
− +  + = , 

2 2

1 2
a xx x

f
−= ,

където 2 2
0 0 2 1f x y bxy= + − − .

От ( )5  за ординатите на 1B  и 2B  получаваме равенствата:

( )8 	
( ) ( )0 1 2

1 2
0

1 2a x x x a
y y

ay
+ + +  + = ,

( ) ( )2 2 2
0 1 2 0 1 2

1 2 2 2
0

1a x x x ax x x a
y y

a y

 + + + + = .

От ( )7  и ( )8 , като използваме ( )4 , получаваме равенствата:

( )9 	
( )0 0

1 2

2 1ay a bx
y y

f
− +  + = , 

( )2 2
0

1 2

1a y
y y

f
+ −

= .

Нека 0t′  е правата, симетрична на 0t  спрямо O . Следователно 0t′  е допирател-
на за 2k  и пресича 1k  в точки ( )3 1 1,B x y− −  и ( )4 2 2,B x y− − , които са симетрич-
ни съответно на 1B  и 2B . Правата 1 4B B  е определена с уравнението
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( )10 	 ( ) ( )1 4 1 2 1 2: 0B B y y x x x y ɣ+ − + + = ,
където 2 1 1 2x y x yɣ = − .

От ( )3  и ( )10  намираме, че абсцисите на общите точки на 2k  и 1 4B B  удовлет-
воряват квадратното уравнение

( )( ) ( ) ( ) ( )( )2 2 22 2
1 2 1 2 1 2 1 21 2 1 0a x x a y y x a y y x a a x xɣ ɣ   + + − + − − + + + − =    .

Тъй като, за да бъде вярна теорема 2, очакваме 1 4B B  да е допи-
рателна за 2k , последното уравнение трябва да има един двоен ко-
рен. Това е изпълнено тогава и само тогава, когато дискриминантата му 

( )( ) ( ) ( )( )2 2 22
1 2 1 2 1 21 1a a x x a y y a x xɣ + + + + − + +   е равна на нула. Както се виж-

да от последното равенство, това се случва точно когато е изпълнено равенството 
( )( ) ( )2 22

1 2 1 21a x x a y yɣ = + + − + . След заместване в това равенство на съот-
ветните изрази от ( )7  и ( )9 , като използваме ( )4 , получаваме, че 1 4B B  и 2k  се 
допират точно когато

( )11 	
( ) ( )( )2

2
2

4 1 1 1a a a a b f

f
ɣ

 + + − + = .

От друга страна за 2ɣ  е изпълнено равенството

( )12 	
( )( ) ( )( ) ( )
( ) ( )

2
1 2 1 2 1 2 1 2 1 1 2 2

2 2
1 2 1 2 1 2 1 2 .

x x y y x x y y x y x y

x x y y y y x x

ɣ = + + + + − + −  
 − + + + 

Следователно, за да докажем теорема 2, трябва да докажем, че десните части 

на ( )11  и ( )12  съвпадат.

Тъй като 1B  и 2B  лежат върху правата 0t , от уравнението й ( )5  следва ра-

венството 
( ) ( ) ( )2

0 1 2 1 2 0 1 2

1 1 2 2
0

1 2a x x x a x x x x x
x y x y

ay

 + + + + − + = . От това равен-

ство, ( )8 , ( )7  и ( )4  получаваме последователно равенствата

( )13  ( )( ) ( ) ( ) ( ) 0 0
1 2 1 2 1 1 2 2 1 2 0 1 2

0

2 11 2
a a b x yax x y y x y x y a x x x x x

ay f f
+ − +  + + − + = + + =  

След това от ( )7  и ( )9 , с помощта на ( )4 , получаваме равенството
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Фиг. 2

( )14  ( )( )
( ) ( )2

0 0
1 2 1 2 2

4 1 1a a bf b x y
x x y y

f

 + + − + + = .

накрая, отново от ( )7 , ( )9  и ( )4 , получаваме равенството

( )15  

( ) ( )
( ) ( ) ( )( ) ( ) ( ){

( ) }

2 2
1 2 1 2 1 2 1 2

2 2 2 2 2
0 0 0 03

2 2 2
0 0

4 1
1 1 2 1 2 1

2 2 1 .

x x y y y y x x

a a
b a a x a a y x y a a

f

x y a a f

+ + + =

+
 = − + + + − − + + − 

− + − − −

Сега заместваме ( )13 , ( )14  и ( )15  в ( )12  и получаваме равенството

( )16  
( ) ( )( ) ( ) ( ) ( ){ }2 2 2 2 2

0 03

4 1
1 1 2 1 1 1

a a
f a a b f b a x ay a a

f
ɣ

+    = + − + − − + − + +  

Остава да съобразим, че от ( )0 0 0 2,T x y k∈  следва ( ) ( )2 2
0 01 1 0a x ay a a+ − + + =  , за да заключим, че стойността на ( )12  съвпада с тази на ( )11 . С това е доказано, 

че 1 4B B  е допирателна за 2k . Оттук, поради симетрията спрямо O , следва, че 
2 3B B  също е допирателна за 2k .
Всички тези резултати водят до извода, че произволна точка 0T  от 2k  поражда 

успоредик, който е вписан в 1k  и описан около 2k . От друга страна, допирател-
ната през точката 1B  (от 1k ) към 2k  през точката 0T  поражда същия успоредник. 
Следователно всяка точка от 1k  също поражда успоредик, който е вписан в 1k  и 
описан около 2k . С това теорема 2 е доказана.



523

Теорема на Понселе за четириъгълници

Успоредниците, породени от теорема 2, притежават следните интересни свойства:
От факта, че всички успоредници имат общ център на симетрия, следва:
1) диагоналите им имат една и съща пресечна точка; 
2) допирните точки на двойките срещуположни страни на всеки успоредник с 

вписаната крива определят прави, минаващи през една точка.
От успоредността на срещуположните страни на успоредниците следва:
3) двойките срещуположни страни на всеки успоредник се “пресичат” върху 

една права – “безкрайната права”.
От факта, че вписана и описаната криви имат общ център, следва:
4) общата точка на диагоналите и “безкрайната права”, върху която се “пре-

сичат” двойките срещуположни страни, са полюс и поляра едновременно спрямо 
описаната и вписаната криви.

2. Доказателство на теорема 1. За да докажем теоремата на Понселе за про-
изолен четириъгълник, ще направим преход от теорема 2 към теорема 1 с проек-
тивни средства.

Нека 1k  е произволна описана крива за четириъгълника 1 2 3 4A A A A , а 2k  е не-
гова вписана крива. Разглеждаме произволен квадрат 1 2 3 4A A A A′ ′ ′ ′  в равнината на 

1 2 3 4A A A A . От една основна теорема на проективната геометрия (Матеев, 1977) 
следва, че съществува единствена проективност ϕ , която преобразува 1 2 3 4A A A A  
в 1 2 3 4A A A A′ ′ ′ ′ . Проективността ϕ  (според друга теорема от проективната геоме-
трия (Матеев, 1977)) преобразува 1k  в описана за квадрата 1 2 3 4A A A A′ ′ ′ ′  крива 1k′ , а 

2k  – във вписана крива 2k′  на същия квадрат. Тъй като, според теорема 2, всички 
точки от двете криви 1k′  и 2k′  пораждат четириъгълници, вписани в едната и оп-
исани около другата крива, то 1ϕ −  ще преобразува тези точки в точките на 1k  и 

2k  със същите свойства. 
С това теорема 1 е доказана.

Като използваме, че проективността 1ϕ −  запазва всички проективни свойства 
на фигурите, от свойствата, отбелязани за успоредниците, получаваме следното:

Следствие 1. Четириъгълниците, които са едновременно вписани в кри-
ва 1k  и описани около крива 2k , притежават свойствата: 1) диагоналите 
на всички четириъгълници се пресичат в една точка P ; 2) допирните точ-
ки на двойките срещуположни страни на всеки четириъгълник с 2k  опреде-
лят прави, минаващи през P ; 3) двойките срещуположни страни на всеки 
четириъгълник се пресичат върху една постоянна права p ; 4) точката P  и 
правата p  са полюс и поляра едновременно спрямо 1k  и 2k  (Фиг. 2).
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Когато 1k  и 2k  са окръжности, от теорема 1 получаваме:
Следствие 2. Ако две неконцентрични окръжности 1k  и 2k  са разположени 

в равнината по такъв начин, че съществува четириъгълник, който е вписан в 
1k  и описан около 2k , то съществува единствен делтоид, който е вписан в 1k  и 

описан около 2k  (Фиг. 3).
Съществуване. Означаваме с O  и Ω  центровете съответно на 2k  и 1k  (по 

условие те са различни). Нека правата OΩ  пресича 1k  в точка A . Според те-
орема 1, точката A  поражда вписано-описан четириъгълник ABCD  за 1k  и 2k
. Нека 1L  и 2L  са допирните точки на 2k  съответно с правите AB  и AD , а 1M  
и 2M  са средите на страните AB  и AD  (Фиг. 3). Тогава триъгълниците 1M AΩ  
и 2M AΩ  са еднакви, затова AB AD= . Тъй като 1 2AL AL= , оттук получаваме 

1 2BL DL= . Следователно OΩ  е симетрала на диагонала BD . Ако 3L  и 4L  са 
допирните точки съответно на правите CB  и CD  с 2k , т.е. 3 4CL CL= , от пре-
дишното равенство следва, че CB CD=  (Фиг. 3). Оттук получаваме, че C  лежи 
върху симетралата OΩ  на BD . Така получихме делтоид ABCD , диагоналът 
AC  на който е диаметър на описаната му окръжност 1k . Ясно е, че точката C  
поражда същия делтоид ABCD .
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Единственост. От съществуването на делтоид ABCD , вписан в 1k  и описан 
около 2k , следва, че големият му диагонал съдържа центровете O  и Ω . Следователно 
ABCD  е породен от пресечните точки на правата OΩ  с 1k . Но двете пресечни точки 
пораждат един делтоид, затова ABCD  е единствен. 
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PONCELET THEOREM FOR QUADRILATERALS

Abstract. The paper is dedicated to some studies on Poncelet theorem for the generation 
of quadrilaterals that are inscribed in a conic and circumscribed to another conic. 
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