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Abstract. We present a system for technical diagnostics (TD) that can recognize
the actual state of marine equipment. A Bayesian classifier is trained to identify
the different classes of a piece of equipment, monitored through multiple pseudo-
discrete features. Data learning samples can be acquired with direct experiments
for each class. The system is capable of merging subjective expert knowledge
and data learning samples using pseudo-Bayesian estimates when the parameters
of the conditional likelihood for the classes are identified. In the training process,
correction is applied to solve numerical problems arising from zero probabilities.
The pseudo-discrete features have hybrid nature and combine probabilistic and
fuzzy approaches. They combine the ease of extracting subjective expert knowledge
typical for the discrete features with the high precision of using the measured
data during recognition typical for the continuous features. The domain of each
pseudo discrete feature is divided into several main categories of non-overlapping
intervals which are described as words by the expert. If a measured feature falls
between two consecutive categories it is treated as a linear combination of those
categories. The resubstitution performance of the classifier is assessed using an
error matrix. A numerical example of a marine diesel generator demonstrates the
proposed algorithm in a classification problem with nine different state classes
of the generator, monitored through 23 pseudo-discrete features. Data learning
samples are acquired with direct experiments for each class. The created TD system
has potential applications in other complex engineering systems and may support
improvements in marine engineering education and training.

Keywords: fuzzy-probabilistic merging; pseudo-bayesian parameter estimation;
learning information, pattern recognition

Introduction

The technical diagnostics (TD) process has been a topic rising in popularity, as
industry continues to seek ways to lower spendings on maintenance and minimize system
downtime losses. With the aid of reliability engineering, the process of recognizing the
working status of any machine or complex system into classes (Koc et al. 2012) has
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been simplified immensely. However, with a complex system or complex piece of
machinery, the diagnostic process remains tedious for maintenance personnel. More
and more unexperienced personnel, or staff unfamiliar with the workings/operations
of such systems become in charge of maintenance and monitoring. Without a good
knowledge of the proper workings of such systems, diagnosis of potential faults
becomes problematic, since they often face large amount of monitored data without
knowing the meaning behind it, or what it indicates.

In this paper, we introduce a TD system using a multi-class classifier, based on
pseudo-discrete features (see (Duda et al. 2001) and (Nikolova et al. 2019) for further
discussion on pseudo-discrete features). We shall demonstrate the application of the
system to recognize the actual state of a hypothetical marine diesel generator in a
numerical example. We shall train a Bayesian classifier to identify nine different state
classes of the equipment, monitored through 23 pseudo-discrete features. For the
learning process, we shall combine subjective expert knowledge and data learning
samples using pseudo-Bayesian estimates (Skaggs et al. 1989) when the parameters of
the conditional likelihood for the classes are identified. We shall apply epsilon correction
in the training process to solve numerical problems arising from zero probabilities.

In what follows, we first present the structure of the technical diagnostics
system, as well as the structure of the information we shall utilize for the training
of the classifier and the epsilon corrections we shall apply. Then we present the
application of the Bayesian classifier to a numerical example for the hypothetical
MTU 8V396 marine diesel generator. The last section concludes the paper.

System Description

Let us analyse a complex system or a system component with several working
statuses, categorized into classes. To monitor the system’s working status (or
class), a vector X is introduced as a d-dimensional measurement of properties
(e.g. temperature, pressure, flowrate, displacement, etc.), where each measured
property is a pseudo-discrete feature, represented with x; i=1,2,3...d , as follows:
— T b
Xz(xl,xz,...,xd)

Therefore, at a given measured property of the component, the posterior

probability of the component being in a given class/status can be written with the
aid of Bayesian theorem (Ebeling 2010):

. P(o)P(X|e)

P | X)= P(7) (1)
where
P()?)zéP(mk)P()?|wk) )
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The probabilities of each class P(a)k) are known as priors, P ()? | a)k) are the
conditional likelihoods, and P()? )is the unconditional likelihood. The working

status of the machine/system could be assessed by collecting data from various
pseudo-discrete features x; . The assessment process would be simple provided that
a sufficient, if not abundant, amount of data is available. In practice, however, not
every personnel running such complex machineries could make a judgement on the
working status based on recorded data.

Take an air compressor as an example. For simplicity, we can define three
possible classes for the compressor: normal operation, air leak, and overheating.

(@, @, and @y ) To monitor these classes, we measure four pseudo-discrete features:
. . : . .5 T
air pressure, air flowrate, oil pressure and oil flowrate, i.e. X = (xl,x2,x3,x4) .

Measurements from each pseudo-discrete feature are recorded. An operator
may have to make a judgement based on the information presented in Table 1. By
looking at the numbers presented in Table 1, it is exceedingly difficult for anyone
to decide as of which class the compressor is working under. However, the decision
making would be much easier if the person is presented with system information
as in Table 2.

Table 1. Numerical Data Presentation

Air Pressure X, 200 kPa

Air Flowrate  x, 1.5 kgls

Oil Pressure  x, 50 kPa

Qil Temperature x, 40 degrees Celsius

By looking at the numbers presented in Table 1, it is exceedingly difficult for
anyone to decide as of which class the compressor is working under. However,
the decision making would be much easier if the person is presented with system
information as in Table 2.

Table 2. Pseudo-Discrete Presentation

Air Pressure X, Normal
Air Flowrate  x, Normal
Oil Pressure  x, High

Qil Temperature x, Critical

Table 2 presents a much clearer picture of the system’s working status. Even
a person not familiar with the compressor’s normal working condition could tell
that the compressor is likely overheating. Therefore, we aim to build a technical
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diagnostic system, using simple pseudo-discrete features that are easy to understand,
with the aid of some expert knowledge and learning sample.

Expert Knowledge

To build a diagnostic system based on Table 2, each pseudo- discrete feature x;
is categorlzed further into pseudo-discretes 4, ; (meaning the J' pseudo discrete
of the i' pseudo discrete feature), descrlbmg the measurement in “levels” such
as “too high”, “high”, “normal”, “low” and “too low”. The pseudo-discretes are
divided using expert knowledge.

Using the same air compressor example, the pseudo-discrete feature oil
temperature could be divided into four levels: low, normal, high and critical, with
corresponding temperature ranges assigned as shown in Table 3 and Figure 1.

Table 3. Division of pseudo-discretes
for pseudo-discrete feature Oil Temperature

Low Below 30 °C
Normal 40-60 °C
High 70-90 °C
Critical Above 100 °C

The expert knowledge provides the level ranges for each pseudo-discrete feature.
Such levels are a lot easier to assess than an unexplained/uncategorized data.

Note that the conditional probability of each pseudo-discrete feature can then be
represented with /; typical non-overlapping intervals [Dj,U_ ]-] , which according
to (Tenekedjiev et al. 2006) are:

k(x
Plue[pyuJlo)=a" @
For example, the conditional probability of the air compressor being in third

class (overheating), with the fourth pseudo-discrete feature (oil temperature) being
in the second pseudo-discrete 4, (normal), is:

P(x, €[40°C,60°C]| a3 )= 3.4
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Figure 1. Fuzzy membership Function for Pseudo-discrete feature
oil temperature with four pseudo-discretes

After consulting with an expert, the term qf(?) is gained as the reference

Sl
probability of the i pseudo-discrete feature to be in the /M pseudo-discrete while
the system is working under class k. We can then build an expert knowledge vector
for the i pseudo-discrete feature as:

£ =g, @)

A confidence factor L];(e) is applied to the expert knowledge. Such factor is a
measurement of the expert’s accuracy or confidence when assigning probabilities
to each pseudo-discrete with a given class. Applying the confidence factor to (4)
gives the expert knowledge vector:

E, :(E{‘ MO B MO B —LZ(e)) )

With each measured property now divided into pseudo-discretes for easier
recognition, it is necessary to give the machine a learning sample to study and
recognize the class of a system.

Learning Sample

For each pseudo-discrete feature, nk observations are given to the program for
learning and recognition. A vector X} / c0n51st1ng results of all pseudo-discrete
features from the /" observation in class £, is then given as:

XlkZ(Xl]fl’Xl]fZ’Xl]B"'!Xl]fd) (6)

For example, in the air compressor case, the vector X35 will be: X35 =(101 kPa,
1.5 kg/s, 200 kPa, 88 °C) and represents readings from all four pseudo-discrete
feature of the 25" observation, when the compressor is overheating. The air pressure
reads 101 kPa, air flow rate reads 1.5 kg/s, oil pressure reads 200 kPa, and the oil
pressure reads 88 Ce.
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The term qf(x) from (3) is calculated using the frequentist definition of

probability (Tenekedjiev et al. 2002)
qk(x) _ Z7£ILI;ﬂj,i (Xllfi)
Jid lrfl L];

(7

with a goodness-of-fit factor I¥ . The factor shows how well each observation
truly represents the corresponding faults or class of a machine (Hald 2007).

Pseudo-discretes

There is a potential numerical problem with the conditional likelihood term
P ()? | a)k) in (1). This term is often a small value, and when it is smaller than the
machine epsilon &, it is treated as 0 in any machine language. To solve the stated
numerical problem, P(a)k | X ) is split into two terms by taking its logarithm:

nP(o| X)=4(X)+B(X) (8)

The B ()? ) part does not depend from the class k, whereas the part A, ()? )
is different for each class. It is called the discriminant function for class k. That
name originates from the fact that we can easily identify the class with the greatest
posterior probability as the class with the greatest discriminant function (i.e. we can
classify the observation X using the maximum posterior probability method based
only the discriminant functions): x € @, if 4, ()?) 24 ()?) fori=1,2,3,...,c

Using the discriminant functions allows us to avoid any numerical problems.
Although we will never calculate the part B ()? ) , it is trivial to derive an expression
for the posterior probabilities depending only on the discriminant functions:

# 1
Plog| X )= s A A ©)

1€

Taking the logarithm of P (a)k | X ) in equation (1) we have:

inP(a | X)=In P(wk;?gmk) =inP(a)+InP(X | )~InP(X) (10)

Independent of the class number £, it is then recognized that the term —/n P()? )
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is to be the term B()?), and the two terms lnP(wk)+lnP()?|wk) are to be the
term A(X) in (8).

Assuming the measured pseudo-discrete features x; are all independent from
each other, then:

P()?|a)k)=1ﬁP(x,»|a)k)=P(x1|a)k)P(x2|a)k)P(x3|a)k)...P(xd|a)k) (11)

The term P(x,- | a)k) is of interest. If the measured feature X, is assumed to be
a pseudo-discrete feature with %, pseudo-discretes, then it is possible to represent
the theoretical justification of the fuzzy measurements, which leads us back to

the setup of pseudo-discrete features and the introduction of expert knowledge
section.

Pseudo-Bayesian Estimation Ke)

Combining the learning sample ¢;; ", and the expert knowledge qf(e) , the final

probability qj?,,» can then be estimated using the frequentist definition of probability
with Pseudo-Bayesian Estimation, developed from (7):

nk rk Kk(x) k(e) k(e)
ql? o mlig;’ +50L, g5 )
' ok + 504

The expert knowledge terms in (12) are applied with an accuracy factor that is
subject to change. Here, 50 represents 1/50=2% accuracy factor (Skaggs 1989).

Epsilon Correction

It is possible that a certain observation would contain no data in certain pseudo-
discretes, a.k.a. qf,,» =0. In this case, the zero probability is substituted with the
machine epsilon &, while the probabilities from other pseudo-discretes are
multiplied by 1—¢&, so that the sum of probabilities form pseudo-discretes in the
same observation still equal to one.

Using the compressor example again, in an observation from the 4" class
“Overheating” (k=4), the 4" pseudo-discrete feature “Oil Temperature” (i=4) has 4
pseudo-discretes (low, normal, high, critical j=4). However, no data falls under the
“critical” level. In this case, epsilon correction is performed as shown in Table 4.

230



Technical Diagnostics of Marine Equipment With...

Table 4. Epsilon Correction for ‘I;A

Pseudo-Disrete Original Observation gr;ssig:\r’:gg;rected
al, 02 02(1-¢)

a5 03 03(1-¢)

9, 05 0.5(1-¢)

CI:A 0 €

Sum 1 1

Application on Marine Diesel Generator

With the established theoretical background, we apply the Bayesian classifier
within a numerical example of a hypothetical MTU 8V396 marine diesel generator.
The data for our numerical example is obtained from an expert. A total of 9 classes
are established, monitored through 23 pseudo-discrete features, i.e., k=9, and i=23.
The classes and features are listed in Table 5 and Table 6.

Table 5. List of Classes for the Marine Diesel Generator Example

Metal Fatigue

Lost of DC Voltage
Insufficient Output Frequency
Single Phase Voltage Drop
Misalignment

Faulty Knock in Bore
Incorrect Air/Fuel Ratio
Cooler Overheating

Normal Operation

N

Lo

I

)

)

N
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glelElElE|ELEE|E

to

After consulting with an expert, the pseudo-discrete features are classified into 3
to 5 different pseudo- dlscretes with ranges [ LU j] given to each pseudo-discrete,
and expert knowledge q ;i given to every pseudo-discrete of every pseudo-
discrete feature under every class. A learning sample, containing 10 observations
in each class are given to the Bayesian classifier for learning and recognition. The
confidence factor applied to the expert knowledge is set at 100% for this analysis.

To demonstrate the parameter estimation methods and to test the performance of
the classified the expert also provided 10 pseudo-observations to each class. Some
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of the observations are purposely put out of [Dj,U j] for some pseudo-discrete
features to see if the classifier would recognize them as being in a different class.
After recognition, the Bayesian classifier produces an error matrix that can be
summarized as follows:
o,: 8 observations recognized correctly;
2 observations recognized in class 9;
o,: 8 observations recognized correctly;
1 observation recognized in class §;
1 observation recognized in class 9;
,: 5 observations recognized correctly;
3 observations recognized in class 4;
2 observations recognized in class 9;
: All observations recognized correctly;
: 9 observations recognized correcly;
1 observation recognized in class 9;
o _: § observations recognized correctly;
1 observation recognized in class 5;
1 observation recognized in class 9;
_: 9 observations recognized correctly;
1 observation recognized in class 9;
: All observations recognized correctly;
: 9 observations recognized correctly;
1 observation recognized in class 8.

Table 6. List of Pseudo-Discrete Features
for the Marine Diesel Generator Example

X, DC Voltage (V)

X, Oil Pressure (psi)

X, Oil Flowrate (L/min)

X, Oil Temperature (K)

X Water Temperature (K)

X, Water Flowrate (L/min)

X, Boost Pressure (bar)

X, Boost Temperature 1 (K)

X, Boost Temperature 2 (K)

X, |Speed (rpm)

x,, | Drive-end tri-axel Accelerometer x (mm/s)
X, Drive-end tri-axel Accelerometer y (mm/s)
X, | Drive-end tri-axel Accelerometer z (mm/s)
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x,, | Non-drive-end tri-axel Accelerometer x (mm/s)
X,. | Non-drive-end tri-axel Accelerometer y (mm/s)
X, | Non-drive-end tri-axel Accelerometer z (mm/s)
X, | Output Frequency (Hz)

X, | Bank A Knock Censor (mm/s)

X,, | Bank B Knock Censor (mm/s)

X,, | U Single-Phase AC Voltage (V)

x,, |V Single-Phase AC Voltage (V)

X,, | W Single-Phase AC Voltage (V)

X,, | Fule Flowrate (L/hr)

Conclusion

The process of applying pseudo-discrete features to complex systems could
drastically simplify the technical diagnostics process. Our Bayesian classifier was
able to recognize the state of the hypothetical generator with few errors on the
120 pseudo-observations provided by the expert. If the given machine is working
under a certain class, with sufficient and accurate/confident expert knowledge, the
classifier is able to accurately recognized the pattern within the measured pseudo-
discrete features.

The use of pseudo-discrete features improves the quality of education in marine
engineering, where students need pattern classification in technical diagnostics of
marine equipment. These features are easy to use and comprehend. The pattern
classification process is more transparent in that way because students can track
the diagnostics decisions to their knowledge on how the marine equipment
operates.

Future tests of the system should include actual recorded data from running the
generator under different conditions, and a few expert knowledge should be made
unavailable. The classifier would have to learn from two different scenarios: only
learning sample data available with no expert knowledge; only expert knowledge
available with no learning sample. In these cases, there is the ability to recognized
a pattern by combining known and unknown information and then predict the
working class of generator/system using test run data.
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