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Abstract. The article studies one method of numbers generation. For this new
method we define and study sets of so called m-digitaddition and m-self positive integers.
In addition, we introduce a stationary number term for the mentioned operation and
provide a full description of the set of stationary numbers under some conditions.
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1. Introduction. In his book “Time Travel and Other Mathematical
Bewilderments” (Gardner, 1988) the famous American science writer Martin
Gardner writes about one Indian mathematician D. R. Kaprekar, who has discovered
a remarkable set of so called digitaddition numbers. Let us choose any positive
1nteger n and denote the sum of its digits by S (n) The number K (n) n+S (n)
is called a digitaddition and the chosen number 7 is its generator. For example, if
we choose the number 53, then its digitaddition is 53+5+3=61.

A digitaddition may have more than one generator. The least digitaddition
with two generators is 101, it is generated by 91 and 100. The least digitaddition
with tree generators, 10" +1, is generated by 10",10" —99,10" —108 . The least
digitaddition with four generators discovered by Kaprekar, 10** +102, has 25
digits. He managed to find the least digitadditions with 5 and 6 generators as well.

A positive integer that has no generator is called a self number. An article in the
American journal “The American Mathematical Monthly” of 1974 showed that there
exist infinitely many self numbers, but they are far less frequent than digitadditions.
There are only 13 self numbers in the first hundred: 1, 3, 5,7, 9, 20, 31, 42, 53, 64, 75,
86, 97. A million, i.e. 10°, is a self number and the next power of ten self number is
10'°. There are self numbers like 11 111 111 111 111 111 111 and 3 333 333 333 as
well. Non-recursive formula for self numbers is yet to be discovered.

K (n), basically, is a new number, generated by n with the use of simple and
natural function. This article proposes another natural and rather simple procedure
of generating new numbers. In terms of this new operation classes of m-digitaddi-
tion and m-self numbers are then defined, some facts about those two classes are
found. In addition, a term of stationary number is defined and, with some condi-
tions, the set of such numbers is fully described.
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2. Definitions. Let ;_3 1, 9} be the set of the decimal digits and
let N be the set of the positive integers. If 4eN, then a can be expressed
as a=o, 10" +o, , 107 +...+a, 10+, where o, #0 and o, e/
(i=0, 1,..., k—1). We will denote @ as a=(c, .0, ,.....o, ) and call number k =d (a)
its rank, or simply the number of digits. By definition, 10" <4 <10* —1.

Let S(a)=0,_ +...+0, be the sum of a’s digits. The number

a=(o, ..o, )=0,10"" +0,107 +.. 40,

will be called backward to a. Some of a’s first digits can be zeros, thus ¢(z)< # .
If @ =a,then a is called symmetrical.

Kaprekar was studying the sum of a number and its digits: a + s(a). If we add a
to that expression it becomes symmetrical: a+ s(a)+ a. That expression is greater
than a and always devisable by 3, thus it seems logical to consider only a third part

ofit: |
M(a)zg(a +s(a)+ &) .

We have just built a quite natural and simple procedure for generating new num-
bers: a — M (a). Following the example of Kaprekar, M (a) will be called an m-
digitaddition with an m-generator a . Numbers without m-generators will be called
m-self.

If we denote the set of all m-self numbers by £ and the set of all m-digitadditions
by G, then

N=GUE.

Let’s deduce some properties of the operation ¢ — M (a).

a)If a=(0,_,.0,) and o, =0, then

M (a)=M (&)

6) If d(a)=Fk , then k—1<d (M (a))<k . Because of that all the numbers in a se-
quence a,=a, a,=M(a,),a,=M(a,), ... do not exceed 10*. It implies that an infinite
sequence g, ,a,, ... will start repeating with the period of some length />1.

B) There are different possible relations between , and A7 (a), for example

a, <M (a,)>1f 4, {19,109, 1009, ... },
a, =M (a,),1f a, e {12, 102, 1002, ... },
a, > M (a, ), if a, e {90, 900, 9000, ... }.

3. m-digitadditions. We have already said that digitadditions can be found
more frequently than self numbers. In our case the situation is completely
different. Thus, among the first thousand there are 773 mself numbers and 227 m-
digitadditions. Among the second thousand there are 944 mself numbers and only
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56 mdigitadditions. Using a simple N++ code all the m-digitadditions in range
from 1 to 10° were found. Their number turned out to be 15840.

Let’s denote by g, the least m-digitaddition that has exactly » m-generators.
From the data generated by a computer program we created the three following
tables.

r 1 2 3 4 5 6 7 8 9
1 4 8 16 20 24 28 32 36

g,

We can see thatg,,, — g, for i =5,6,7,8.
r 10 20 30 40 50 60 70 80 90
334 1001 1335 1669 2003 2337 | 2671 | 3005 | 3339

g

In this table ., —g; =334 for j =20, 30, 40, 50, 60, 70, 80.

r| 100 200 300 400 500 600 700 800 900
66670 | 100004 | 133338 | 166672 | 200006 | 233340 | 266674 | 300008 | 333342

g}"

Here we have &,.100 —&, = 33334 for /=100,200,300,400,500,600,700,800 .

The largest 6-digit m-digitaddition is 999973 with 18 m-generators.

8 has the largest amount of 3 m-generators among 1-digit numbers.

36 and 40 have the largest amount of 9 m-generators among 2-digit numbers.

964 has the largest number of m-generators among 3-digit numbers. It has 18
of them.

Among 4-digit numbers 3339 and 3673 have maximum number of m-generators:
90.

96667 and 99637 have 180 m-generators, which is the largest number for
5-digits.

Finally, 6-digit numbers have not more than 900 m-generators. Two numbers
that have exactly that amount are 333342 and 366676.

4. m-self numbers. The following facts were found by studying all the m-self
numbers from 1 to 10°:

a) numbers in the form 10” for p=1, 2, 3, 4, 5, 6 are m-self;

0) numbers written with the same digit, save 5555, are m-self;

in particular, 11, 111, 1111, 11111, 111111, 33, 333, 3333, 33333, 333333, 99,
999, 9999, 99999, 999999 are mself;

B)numbersinforms (c.000), (8 0000), (yooooo) foro., B,y € {2, 3, 4, 5, 6, 7, 8, 9}
are mself.
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The amount of mself numbers among the first million is 984160.

Now, we will add some definitions and notations. For any number o < @, ,...a, ),
o, , =odigits a,_,_, and a, (i =0,1, 2, ) are called symmetrical and a sequence
{a,.,, a; }iscalled a pair of symmetrical digits. When we switch two symmetri-
cal digits with their places it will be called a symmetrical change. Applying sym-
metrical change to all the symmetrical pairs of a we get a set £, of numbers similar
toa.If b € P, then P, = P,. Thus, all k-ranked numbers are sliced into classes of
similar numbers: N, =P, UB, UP.... For symmetrical a WPjZI , for non-symmetri-
cala |Pu | >2 . Additionally, we can notice that every number in P, is an m-generator
of the same number A (a) .

Forevery k€ N we denote by N, G,, E, the set of all the k-digit numbers, the
set of k-digit mdigitadditions and the set of k-digit m-selves, respectively. Clearly
we have N, =G, UE,. For every subset 4 in N |A| denotes the number of the ele-
ments in 4. We know that |Nk| =9.10"".

Theorem 1. The set E of m-self numbers is infinite.

Proof. It is sufficient to show that for every k > 6 J{E,J >0. The fraction of sym-
metrical numbers in y, is quickly diminishing when £ is growing, thus, we won’t
consider them to simplify the proof.

Let 4= {a eN|d(M(a))=k }be the set of all the mgenerators of G, . Obvious-
ly, 4=4,U4,, ,where 4, < N, and 4,,, c N,,,. We can see that |4, |< rNk| =9.10""
Ifbed  and b=B,10" +B, 10" +...+B,, B, =0, then d(M b))=k , and only

A

3 outcomkéé are possible:

{B=2:Bo=0}, {B,=1:8,=01}, 8, =1;B, =1} Thus, |4,.,[<3-10".

Let G, =B,UB,,,, where B = {M(a)| ae 4, } B, =M(@)aec A4, }. As
we noticed above non-symmetrical numbers are sliced into groups of two or more,
S0 |B,|< 2|4, <210 and B, <1|AM| <310,

2 2 2 2

Thus, Gk|S|Bk|+|Bk+l <6:10°, implying |Ek|:|Nk|_|Gk| >3-10°.
Theorem 1 is proved. We can see that final estimation has a big margin for an
error.

5. Stationary numbers. If @ € N and a =M (a) then a is called stationary.
Numbers 1, 2, 3,4,5,6,7, 8,9, 12, 24, 36, 48, 102 happen to be stationary. It is
clear that a stationary number is always m-digitadditon, since its m-generator is
itself. Every stationary number a satisfies the equation

2a =51+s(a) €))

By F,,k =1 we’ll denote a set of k-digid stationary numbers. We will find all the
stationary numbers less than 10°.
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Theorem 2. Let 1<k <6, then
F={1,2,3,4,5,6,7,8,9, F,={12, 24,36,48 }> F, ={102, 204, 306, 408 }-
F, ={1002, 2004, 3006, 4008, 1372, 2374, 3376, 4378, 1743, 2745, 3747, 4749 }
F, ={10002, 20004, 30006, 40008, 17043, 27045, 37045, 47049 }
F, ={100002, 200004, 300006, 400008, 170043, 270045, 370047, 470049 }.

By looking at the sets £, and F, one can deduce an analogy to build some sta-
tionary numbers for k> 7.
Theorem 3. For any k > 4 the following eight numbers are stationary:

Cix = (0

0.0 B), a=i,p=2i,1<i<4, ejyk=[y7 &0 46J,y—j,e—2_/+1, 1<j<4.

k—2 k-2
Proof. Theorem 3 is easily proved by plugging the values into equation (1).
Let H, = {Cl-,k;e,-,k } We have H,= F,, but for k>7 the set £, can hold ad-
ditional numbers, not lying in #,. Denote £, \H, =y, for k=7, then we get
H, UV, =F,.

Let 4 = (@, , ...0, ) o, , =0 - The equation (1) writes as follows:
200,10+ 4 201, -10% + 200, 104+ 200 = 20, 107" + 40, - 10° +0t,, 10+ 201, +5(a)
(2) Wecansee that 1 <o, , <4 and o0, = 20, , Or o, =20, +1. Let
100, _, +ot,_, +s(a)=200, + 20, +A.(3)

Then A=1 o, , +20, , =9 o, —cty + (0, 5 +...+0; ) (4)

The definition of A and equation (2) imply that A=/-10°, where
[=-1, 0, 1, 2,.... After plugging the expression (3) into equation (2) and dividing
(2) by 10* we get

20,100+ 20, , 104 420, 104 4420, = ©O)
=0, 10°7 +o, 10+, - 10°7 + .+, +1

Next we find the variables by pairs: {«,_,, o, } first, then {c,_,, o, } and so on.

Theorem 4. Let k277, A=1-10, where —1 <1 <9 . For the pair {o, ., o, }
we have 19 following possibilities:

N | 1|2 /3/4/5/6|7|8|9|10/|11 /1213|114 |15|16/|17|18]19
Il |-1]-1|0f0|1|/1]2]|2]|3 5

O, | 3]/9|0|6[3/7|4/0]1 8

o, | 6/9]0/3/7/4/8/1|2|5]9/6|3 4|78 5 6|09
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Proof. From the equation (5) we have the following systems of equations that
contain variables o, , and o, :

{20%_3 =a, {20( ,=10+a,

1) 200, =01, 5 +1 5) 20, =0l 5 +/
{20( o, {Zoc ,=10+0,

2) 200, =0, , +/+10 6) 200, =0, , +/+10
{20%_3 +1=0, { s +1=10+0,

3) 200, =01, 5 +1 7) 20, =0, +/
{Zock_1 +1=0, {ZOLk_3 +1=10+a,

2) o, =0, ,+1+10 8) 200, =0, , +/+10

By solving those systems we can get all the aforementioned solutions to.s. 5.
Theorem 4 is proved.

Thus, we found all the pairs {c, 5o, }. Then we will find the pair {r, ,.o; }
and so forth. For every of 19 possibilities for the pair { o,_;, o, } we must solve
4 systems of equations to find {ot,_., o, }. Those 19 possibilities all fall into one of
the following 4 types, such that all the solutions of the same type lead to the same
values of {ot, ,.o, }:

7; = {20, , =, (mod 0 )and o, <4} includes 3, 6, 9, 14 solutions,
7, =420, , =a,(mod0 )and o, > 5 }includes 1,7, 12, 16, 18 solutions,
Iy =120, ;+1=0,(mod 10) and ¢, < 4} includes 4, 8, 13 solutions,
T,=1320, ,+1=0a,(mod 10 anda >5 } includes 2, 5, 10, 11, 15, 17, 19 solutions

In case of 7; we get o, _, =O, o,=0. A pair {0, 0} also falls into 7]
giving the same values o, =0, o, =0 again and so on. Thus, in 7, we have
o, , =0, s=..=0,=0,=0.

Incaseof 7, or 7, wegeto, , =6, a,=3.Apair {6, 3 } fallsinto 7, as well,
giving o,_ = 6, o, =3 again and so forth. This sequence leads to contradiction in
the middle of . Thus, cases 7, and 7; give us no solutions.

Incase 7, wegeto, ,=9,0,=9.Apair {9, 9 } isalsoin 7, .And thus, in 7,
wehave o, , =0, ;=..=0, =0, =9.

Shortly speaking, now we must consider possibilities 3, 6, 9, 14 (type 7; ) and
2,5,10, 11, 15, 17, 19 (type 7, ). Let’s start from possibility number 2.
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4

B=2i 1<i<4}

Theorem 5. Let k=7, A=-100 and ¢ = (%1 % %{‘9 @) Then the set of
stationary numbers is ¥, = {,, =(¢:49999p ), where =i

Proof. From the statement we have

A=-100=11ot, , +201,_, —190, —0t, +9(k —< (6)

Since o, ; =9 >5 we have the following systems of equations to consider.

1 200, , +1=0 2) 200, , +1=0, +10
200, =0, 20, , +1=0,

By plugging equations of the first system into (6) we get 3a, , =k +5. Consid-
ering the fact that £ >7 and o
k=7.Next, a,=20,_,, where 1<o,, <4 and we get the stationary numbers 7,

1<i<4.

., <4 we can find the solution: &, =4, o =7,

In case of the system 2) there are no solutions. Theorem 5 is proved.
Solutions to 10 other possibilities are similar to the considered one, so we will
just provide (without proof) the following three theorems.

Theorem 6. In cases 6, 9, 14 and 10, 15, 17, 19 no solutions can be found.

Theorem 7. Let A =0 . Then the set of stationary numbers for k£ > 7 is identical
to the set 1 i

Theorem 8. Considering cases 5 and 11 we can get the following sets of station-
ary numbers:

K6={d,«,16=(0‘03 9,9 70B), e ot =i, p=2i,1<i<4 },
Zig = {10 =(@04 959 T0B), tne 00 =i, B=2i, 1214},
Zy, =1/is =(014 2:@ 2B), e o =i, p=2i, 1<i<4},
Zy=1fiss=(@24 919 4B) e o =i, p=2i, 1<i<4 },
Vig =145 =(@34 2;9 6B),rne 00 =i, B=2i,1<i<4 1
v, ={fi,e1 =(ou44 2;39 8B), e 0t =i, B=2i,1<i<4 b
1/“3:{12,43:(064 9.9 0B),rme 0t =i, p=2i+1,1<i<4 1,
Vie={/14 =64 9.9 2B) /tae 00 =i, B =2i+1, 1= 1= 4},
Wy ={fo=(@74 929 4B) e 0 =i, B=2i+1, 1=/=4 },
44

)
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W52={ﬁ,52=(0c84 9.9 6B), e 00 =i, B=2i+1,1<i<4},
Wssz{fi,ss =(094 2;7.9 8B), et =1, B=2i+1,1<i<4}.
50

Thus, we found all the stationary numbers, when k>7 and A =1/-10°, where
-1<17<9.

In the case of K >7 and A =10’ stationary can also be found by the same algo-
rithm. We will simply provide the results in theorem 9.

Theorem 9. 1f k > 7 and A =10, then all the stationary numbers can be found
in the following sets:

Vg ={ s =(@003 9.9 700B) , e 0L =i, B=2i, 174},

Vs ={ ;10 =(@103 9579 702B) e a0 =i, B =2, 1<i=4 1},

Vise ={ 110 =(@203 929 704B) e L =i, B =2/, 1<i=4 },

Vi = { 4,107 =(@303 9279 706B), rne 00 =i, B=2i, 1<i=4 },

Viso :{qi,l30 =(01403 9.9 708B),rne 0L =i, p=2i, 1<i<4 3.
2

2
12!

For every ( with a rank d(a)<130 we have A<I1100. Denote
R={7,16,43,46,49,52,55,58,61, 118, 121, 124, 127, 130 }» 0 ={ 49, 52,55 }-

Summing up all the results of statements 3-9 we can formulate the following
theorem.

Theorem 10. Let 7 < k <130, then
a)if keR, then F, =H, UV,,

0)if keQ,then F, =7, Uz UW,,
B)if x ¢ (RUQ),then F, =H, .

Let’s show now how to find stationary numbers is a general case. First con-
sider the case A=/ -10%+1,-10° where /,/, €. First, we should make sys-
tems of equations with { o, ,. o; } to find their values. Next, using the values
{ o, ,, a, }make systems of equations to find values { o . o, }. After that us-
ing the values { o,;. &, }make systems of equations with variables {0 5,0
and { o, ., o, }and then plug these values into (4). If the resulting systems have
solutions we will find the stationary numbers.
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To give an example, when A =1300, stationary numbers, not lying in the set #,,
will have the values 7,5, = (013 9.,.9 720B) , where 00 =i, B =2i, 1<i<4.

143
In every particular case A=/ 10" +7,-10° +...+/,-10"" 'where ; < 7, we’ll

be able to find the values of pairs {ot, ,, ..o, }, {o,,, ..o, }, etc. In those
cases, where there is a solution, we’ll find the values of stationary numbers.
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