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Аннотация. В статье дано новое анимационно-геометрическое 
представление полиномов на комплексной плоскости при условии, что 
модуль комплексной переменной равен 1, в виде спутниковых систем. 
Аналогичное представление в виде пространственных спутниковых систем 
дано для полиномов от комплексной переменной z , 1|| =z , коэффициенты 
которых являются векторными кватернионами (их скалярная часть равна 
нулю). Представлена эффективность и целесообразность использования 
анимационных рисунков как средства визуализации математических знаний в 
современной дидактике обучения математике.

Ключевые слова: анимационные рисунки; GeoGebra; спутниковая система; 
комплексные числа; кватернионы; многочлены

Введение
Материал статьи имеет два аспекта: чисто математический и методиче-

ский. С математической точки зрения представлен новый анимационно-ге-
ометрический взгляд на многочлены от комплексной переменной z  при ус-
ловии 1|| =z  как на спутниковые системы на плоскости и в пространстве. 
Этот материал в школе и в педагогическом вузе можно использовать как 
основу для организации учебно-исследовательской деятельности, расши-
ряющей и углубляющей обязательные знания по комплексным числам. С 
методической точки зрения в статье демонстрируется роль и значение ани-
мационных рисунков, выполненных в компьютерной среде GeoGebra. Они 
не только позволяют визуализировать математические понятия, но и делать 
математические утверждения очевидными в буквальном смысле этого слова 
(их «очи видят»). Кроме того, они приобщают обучаемого к технологиям 
для будущего, формируя личность, которая призвана раскрыть свой творче-
ский потенциал в условиях цифровой экономики. Анимационные рисунки 
позволяют экспериментировать, поддерживая исследовательский стиль об-
учения математике, и представляют собой элементы цифровизации образо-
вания.
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Выбор программы GeoGebra обусловлен тем, что она свободно распростра-
няется, содержит достаточно широкий инструментарий и проста в освоении. 
Интернет-ресурс Geogebra.org1) содержит большой объем демонстрационно-
го учебно-исследовательского материала, который непрерывно пополняется. 
С работами автора в этом направлении можно познакомиться по публикаци-
ям, перечисленным в списке литературы.

1. Спутниковая система порядка n и ее определяющий многочлен
Представим следующую картину. На координатной плоскости начало 

координат назовем звездой. Вокруг звезды по круговым орбитам враща-
ются точки – спутники звезды. Вокруг некоторых из них по круговым 
орбитам вращаются точки – спутники спутников, и так далее. Как алге-
браически описать такую спутниковую систему? Прежде, чем перейти к 
решению этой задачи, дадим конструктивное определение спутниковой 
системы порядка n, а для этого предварительно введем вспомогательное 
понятие.

Определение 1. Набором числовых параметров спутниковой системы по-
рядка n  назовем запись вида 1 1 1(( , , ),...,( , , ))n n nS r p k r p k , где 1,..., nr r  – 
положительные действительные числа, называемые радиусами орбит спут-
ников системы, npp ,...,1  – целые неотрицательные числа, называемые 
показателями вращения спутников, nkk ,...,1  – комплексные числа, модуль 
которых равен 1, которые будем называть угловыми коэффициентами спут-
ников.

Сформулируем конструктивное определение спутниковой системы поряд-
ка n , описывая ее построение. Анимационный рисунок 1 демонстрирует это 
построение для 3=n . 

Определение 2. Спутниковой системой порядка n , заданной набором 
числовых параметров 1 1 1(( , , ),...,( , , ))n n nS r p k r p k , называется последова-
тельность точек 0 1, ,..., nO O O , которая строится следующим образом.

1. Построение исходных данных. Начало координат обозначим 0O  и на-
зовем звездой. Строим единичную окружность и отмечаем на ней точку, изо-
бражающую комплексную переменную z , которую будем называть незави-
симой планетой. На единичной окружности строим точки, изображающие 
угловые коэффициенты nkk ,...,1 . Вводим углы )arg(z=ϕ , )arg( 11 k=α , 
…, )arg( nn k=α . Ползунками вводим радиусы орбит 1,..., nr r  и показатели 
вращений npp ,...,1 .
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Рис. 1. Стоп-кадр анимационного 
изображения спутниковой системы 

Рис. 1. Стоп-кадр анимационного изображения  
спутниковой системы

2. Начало построения спутниковой системы (построение первого спутни-
ка 1O ). Строим окружность с центром в точке 0O  и радиусом 1r , получаем 
орбиту первого спутника. Строим луч zO 0  и отмечаем точку 1A  пересече-
ния луча и построенной орбиты. Поворачиваем точку 1A  вокруг точки  0O  
на угол ϕα 11 p+  и получаем точку, которая является первым спутником 1O  
(спутником звезды 0O ). Если 1n = , то построение закончено. В противном 
случае продолжаем построения.

3. Шаг построения (построение следующего спутника). Пусть уже по-
строена круговая орбита и на ней спутник jO  для 1−jO . Строим орбиту сле-
дующего спутника 1+jO  в виде окружности с центром в точке jO  и радиу-
сом 1jr + . Строим луч 1j jO O−  и выделяем из него луч с началом в точке jO , 
не содержащий точки 1jO − . Отмечаем точку 1jA +  пересечения этого луча с 
построенной орбитой. Поворачиваем точку 1jA +  вокруг точки jO  на угол 

1 1j jpα ϕ+ ++  и получаем 1j + -й спутник 1jO + . Если 1j n+ = , то постро-
ение закончено. Иначе выполняем очередной шаг построения.  Построенная 
спутниковая система порядка n  приходит в движение при анимации незави-
симой планеты z  по единичной окружности. 

Геометрический смысл показателя вращения jp  спутника jO  просматри-
вается в повороте точки jA  на угол ϕα ii p+ , приводящего к построению 
спутника jO  число jp  показывает количество оборотов спутника, совме-
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щающих его с точкой jA , за время одного оборота независимой планеты z  
по своей орбите. Глядя на анимационный рисунок, можно подсчитать коли-
чество оборотов спутника jO  вокруг 1−jO  за это же время и убедиться, что 
оно равно jpp +++ ...1 1  – факт, который будет доказан ниже. В этом еще 
одно проявление геометрического смысла показателей вращения.

Для алгебраического описания спутниковой системы порядка n  всякую  
точку ( , )a b  координатной плоскости будем трактовать как комплексное чис-
ло a bi+  и координатную плоскость называть комплексной плоскостью. Сле-
дующая теорема показывает вид алгебраической зависимости спутников как 
комплексных чисел от независимой планеты z  (независимой переменной).

Теорема 1. Пусть дана спутниковая система порядка n  набором число-
вых параметров 1 1 1(( , , ),...,( , , ))n n nS r p k r p k  и изображениями на плоско-
сти звезды – точки 0O  в начале координат, планеты z  – точки на еди-
ничной окружности и спутников 1,..., nO O , построенных в соответствии с 
определением 2. Тогда для любого 1,...,j n=

11 1 2 1 ...1 1
1 1 2 1 2 1... ... jp pp p p

j j jO rk z r k k z r k k z + + ++ + += + + + ,
причем когда планета z  совершает один оборот вокруг звезды 0O , спутник 

jO  делает 11 ...j jq p p= + + +  оборотов вокруг 1jO − .
Доказательство. 1) На рисунке 1 видим, что 1 1| |O r=  и по построению 

1 1 1argO pϕ α ϕ= + + . Следовательно, 11
1 1 1

pO rk z += . Отсюда следует, 
что за один оборот точки z  по единичной окружности точка 1O  совершает 
вокруг начала координат 1 11q p= +  оборотов.

2) Рассматривая на рисунке 1 параллелограмм 0 1 2 2O O O C  и его верши-
ны как комплексные числа, получаем 2 1 2O O C= + ,  2 2| |C r= . При па-
раллельных 21OO  и 20CO  и секущей 20 AO  отметим равенство углов 

212201 OOACOO ∠=∠ , откуда 
 201102arg COOOEOC  

ϕααϕαϕαϕϕα )1(arg 21212211221 pppppO ++++=++++=++= . 
Следовательно, 211

2122
ppzkkrC ++=   и 1 1 21 1

2 1 1 2 1 2
p p pO rk z r k k z+ + += + .

3) Пусть для 2j ≥  доказано, что 
11 1 2 1 ...1 1

1 1 2 1 2 1... ... jp pp p p
j j jO rk z r k k z r k k z + + ++ + += + + +  и в парал-

лелограмме  0 1j j jO O O C−  вершина jC  как комплексное число вы-
ражается через z  равенством 11 ...

1... jp p
j j jC r k k z + + += . Рассмотрим 

параллелограмм 0 1 1j j jO O O C+ + . По построению, 1 1| |j jC r+ +=  и 
1 1 1arg argj j j jC С p       . Следовательно, 

1 1 1 1 1arg ... (1 ... )j j j j jC p p pα α ϕ α ϕ+ + += + + + + + + + =
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1 1 1 1... (1 ... )j j j jp p pα α α ϕ+ += + + + + + + + +
.

 Отсюда 1 1... 1
1 1 1 1... jp p

j j jC r k k z + + + +
+ + += . Остается заметить, что 

1 1j j jO O C+ += + . 
Из доказанной формулы для jO , рассматривая параллелограмм 

0 1j j jO O O C− , видим, что точка jO  совершает вокруг точки 1jO −  столько 
же оборотов, сколько совершает точка jC  вокруг начала координат. Из фор-
мулы для jC  вытекает, что это число равно 11 ...j jq p p= + + + . Теорема 
доказана.

Например, на рисунке 1, рассматривая параллелограмм 0 2 3 3O O O C , 
видим, что по построению, 3 3| |C r=  и 3 2 3 3arg argC С p     . 
Следовательно, 3 1 2 1 2 3 3arg (1 )C p p pα α ϕ α ϕ= + + + + + + =

1 2 3 1 2 3(1 )p p pα α α ϕ+ + + + + + , откуда 1 2 31
3 3 1 2 3

p p pC r k k k z + + +=  и  
1 2 31 1 2 11 1

3 2 3 1 1 2 1 2 3 1 2 3
p p pp p pO O C rk z r k k z r k k k z + + ++ + += + = + + .

На рисунке 1 одновременно представлен определяющий полином спутни-
ковой системы в смысле следующего определения.

Определение 3. Пусть спутниковая система порядка n  дана набором ее 
числовых параметров 1 1 1(( , , ),...,( , , ))n n nS r p k r p k . Полином 

11 2 1 ... 11 1
1 1 2 1 2 1( ) ... ... np pp p p

n ns z r k z r k k z r k k z + + ++ + += + + +
назовем определяющим полиномом данной спутниковой системы. 

На анимационном рисунке 1 видим, что последний спутник 3O  совпадает 
с точкой ( )S s z=  при | | 1z = , что подтверждает теорему 1.

Непосредственно из определения 3 вытекает, что последний спутник спутни-
ковой системы порядка n , оставляя след, вычерчивает кривую, которая является 
образом единичной окружности при действии на комплексной плоскости опреде-
ляющего многочлена. Обращаясь к статьям (Larin & Mayer, 2018), (Larin, 2019), 
можно установить, что эта кривая является улиткой Паскаля порядка n .

2. Построение спутниковой системы порядка n по полиному
Докажем теорему, которая высвечивает путь построения спутниковой си-

стемы порядка n  по данному полиному. 
Теорема 2. Пусть дан полином с ненулевыми комплексными коэф-

фициентами от комплексной переменной nq
n

q zazazs ++= ...)( 1
1 , 

где  10 ... nq q< < < , | | 1z = . Построим единичную окружность и точ-
ку z  на ней. Построим точки 0 0S = , 1

1 ... jqq
j jS a z a z= + +  для 

1,...,j n= . Тогда последовательность точек nSSS ,...,, 10  является 
спутниковой системой порядка n , заданной набором числовых параметров 

1 1 1(( , , ),...,( , , ))n n nS r p k r p k , где | |j jr a= , 0 1q = , 1j j jp q q −= − , 

1

1

| |
| |

j j
j

j j

a a
k

a a
−

−

= , причем данный полином является для нее определяющим. 
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Доказательство. Рассматривая равенство полиномов 1
1( ) ... nqq

ns z a z a z= + +
11 1 2 1 ...1 1

1 1 2 1 2 1... ... np pp p p
n nr k z r k k z r k k z + + ++ + += + + + , получаем формулы, 

указанные в формулировке теоремы. Строим по найденному набору число-
вых параметров спутниковую систему в соответствии с определением 2 и 
убеждаемся, что в соответствии с определением 3 данный полином является 
определяющим для построенной спутниковой системы. Теорема доказана.
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Теоремы 1 и 2 говорят о том, что спутниковые системы являются анима-
ционно-геометрическими моделями полиномов при условии, что модуль пе-
ременной равен 1. 

Приведем простой и естественный способ построения спутниковой системы 
по полиному: строим каждый его одночлен и получаем совокупность точек на 
концентрических окружностях. Затем последовательно складываем эти точки 
по правилу параллелограмма (рис. 3).
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При анимации точки z  спутниковая система приходит в движение. 
3. Спутниковая система в пространстве 
Для алгебраического описания спутниковых систем в пространстве нам 

понадобятся кватернионы и связанные с ними понятия векторного умножения и 
скалярного умножения векторов.  

Всякий кватернион (Математическая Энциклопедия, 1977, т. 2, с. 838) 
записывается в виде  dckbjai  , где dcba ,,,  – действительные числа, 

kji ,,  называются мнимыми единицами и по определению удовлетворяют 
условию 1)( 2222  ijkkji . Число d  называется скалярной (или 
действительной) частью, а ckbjai   векторной (или мнимой) частью 
кватерниона. Если 0d , то кватернион будем называть векторным (или 
вектором) и обозначать без стрелки. Кватернионы ввел английский математик 
Гамильтон (W.R. Hamilton, 1806 – 1868) в работе 1843 г. (Hamilton, 1853), 
(Hance, 1867).  

В соответствии с (Математическая Энциклопедия, 1977, т. 1, с. 634 – 635), 
векторное произведение векторов a  и b  обозначается  ],[ ba  или ba , а 
скалярное произведение ),( ba . Поскольку векторные кватернионы договариваемя 

Рис. 4. Стоп-кадр анимационного изображения 
объединения двух спутниковых систем 

Рис. 4. Стоп-кадр анимационного изображения объединения двух  
спутниковых систем
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),(],[)()()( 111111111111 hhhhccbbaakbaabjaccaicbbchh  . Видим, 
что произведение векторных кватернионов есть снова векторный кватернион 
тогда и только тогда, когда их скалярное произведение равно нулю, то есть 
перемножаемые векторы перпендикулярны. Сами понятия векторное 
произведение и скалярное произведение векторов вошли в математику именно 
из теории кватернионов.  

С этим багажом знаний перейдем к построению спутниковой системы в 
пространстве и ее алгебраическому описанию. Как и в случае спутниковой 
системы на плоскости, опишем построение спутниковой системы порядка n в 
пространстве и описание построения примем за конструктивное определение. 
На рисунке 5 изображено построение лишь одного спутника. Этого достаточно, 
чтобы построить любое количество спутников самостоятельно. 

Построение спутниковой системы порядка n в пространстве.  
Пусть даны ненулевые векторные кватерниононы }...,,{ 1 naa  (аналоги 

коэффициентов многочлена, задающего спутниковую систему на плоскости) и 
даны натуральные числа }...,,{ 1 nqq  (показатели степеней комплекснной 
переменной).  

1. Построение исходных данных. Строим данную систему векторных 
кватернионов }...,,{ 1 naa  в виде точек пространства (по их координатам) и 
ползунками вводим показатели степеней переменной }...,,{ 1 nqq . На рисунке 5 
данный кватернион изображен точкой A , показатель степени q введен 
ползунком.   
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2. Строим единичную сферу и единичные векторы осей координат kji ,,  
(на рисунке 5 сфера сделана невидимой, чтобы не заслонять главного). 

Для каждого nt ,...,1=  выполняем следующие построения.
3. Координатную плоскость ji,  будем рассматривать как комплексную 

плоскость с действительной осью абсцисс, содержашей вектор i , и мнимой 
осью ординат, содержащей вектор j . На этой плоскости строим единичную 
окружность и точку zT =  на ней (на рисунке 5 слева). Рассматривая z  как ком-
плексную переменную, находим угол )arg(z=ϕ  и строим точку tqzT ='  с 
аргументом   ϕα tt q= . При анимации точки z  за время ее полного оборота по 
единичной окружности в координатной плоскости ji,  точка tqzT ='  совер-
шит по ней tq  оборотов. 

4. Если jiat ,∈ , то обозначим  ],|[| t
tt zkau = . Если же 

jiaA t ,∉=  (рис. 5), то строим плоскость tq
tt za ,=π  по точкам O , 

ta , tqz , прямую l , проходящую через точку O  перпендикулярно плоскости 
tπ , и сферу с центром в точке O , проходящую через точку taA = . Из двух 

точек пересечения прямой l  со сферой выбираем точку tu  так, чтобы обход 
точек ta , tqz , tu  в указанном порядке был таким же, как обход по единич-
ным точкам kji ,,  (против часовой стрелки). Вектор  tu  является нормаль-
ным вектором плоскости tπ . 

Для алгебраического осмысления вектора tu  переводим по-
строения на алгебраический язык. Записываем уравнение плоско-
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сти tπ  по точкам )0,0,0(=O , )0),sin(),(cos('  tt
q qqzT t   , 

),,( cbaaA t ==  (на рисунке 5 )4,3,2( −== taA ). Уравнение имеет вид 
0))cos()sin(()cos()sin( =⋅−+⋅+⋅− zqbqayqcxqc tttt ϕϕϕϕ . 

Следовательно, нормальный вектор плоскости tπ  равен 
],[))cos()sin(),cos(),sin(( tq

tttttt zaqbqaqcqcu    .  
Для проверки на рисунке 5 строим точку 

))cos()sin(),cos(),sin((  tttt qbqaqcqcS    и убеждаемся, что она 
совпадает с точкой tu , построенной выше. 

Обозначая значком ×  операцию нахождения векторного произ-
ведения двух векторных кватернионов, в первом случае получаем 

tt q
t

q
tt zkazkau  ||],||[  , а во втором tt q

t
q

tt zazau ×== ],[ . 
В общем случае tq

tt zbu ×= , где












.,,

,,,||

jiaеслиa

jiесли aka
b

tt

tt
t  

5. Строим последовательно точки OS =0 , 11 uS = , 212 uSS += , …, 
nnn uSS += −1  и получаем искомую пространственную систему спутников  

}...,,{ 1 nSS  со звездой O . При анимации точки zT =  за время ее полного 
оборота по единичной окружности в соответствующей координатной плоско-
сти точка tS  совершит tq  оборотов по круговой орбите радиуса || ta  вокруг 

1−tS .  
Алгебраически выражение tq

t
q

t zbzbS ×++×= ...1
1  имеет вид полино-

ма от комплексной переменной z  при условии 1|| =z  с коэффициентами, ко-
торые представляют собой векторные кватернионы. Вместе с тем, спутниковые 
системы в пространстве можно рассматривать как анимационно-геометриче-
ские модели указанных полиномов.

Заключение. В чисто математическом отношении представленный ма-
териал является началом исследований спутниковых систем как анимаци-
онно-геометрических моделей полиномов, открывающий новые проблемы 
и перспективы, и следующая подготовленная к печати статья автора по-
священа вопросам анимационно-геометрического моделирования полино-
мов в области кватернионов в виде спутниковых систем в пространстве. 
С методической точки зрения представленная в статье целесообразность 
использования анимационных рисунков в обучении математике как техно-
логическая часть цифровизации образования демонстрируется в подготов-
ленном автором к печати учебном пособии по тригонометрии 10 класса. 
Основное понятие тригонометрии – числовая окружность демонстриру-
ется на анимационном рисунке в виде наматывания числовой прямой на 
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окружность. Анимационно-геометрическая модель этого процесса ложит-
ся в основу анимационного вычерчивания графиков тригонометрических 
функций. Анимационными рисунками сопровождается изложение всего 
учебного материала по тригономерти. Альбом анимационных рисунков 
к учебному пособию размещен по указанному ниже адресу1). Автор уве-
рен, что в недалеком будущем анимационные рисунки войдут в арсенал 
средств обучения так же естественно, как ныне используются мел и шари-
ковая ручка.

ПРИМЕЧАНИЯ
1. https://www.geogebra.org/m/nsn4h2sx
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SATELLITE SYSTEMS AS ANIMATION-GEOMETRIC 
POLYNOMIAL MODELS

Abstract. The article gives an animation-geometric representation of 
polynomials on the complex plane, provided that the module of the complex 
variable is 1, in the form of satellite systems. A similar representation in the form 
of spatial satellite systems is given for polynomials in a complex variable, whose 
coefficients are vector quaternions (their scalar part is zero). The effectiveness and 
feasibility of using animated drawings as a means of modern didactics in teaching 
mathematics is presented.
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