Educational Technologies Образователни технологии

SOME NUMERICAL SEQUENCES CONCERNING SQUARE ROOTS (PART TWO)

Rosen Nikolaev, Tanka Milkova, Yordan Petkov

University of Economics – Varna (Bulgaria)

Abstract. The present article is a continuation of the homonymous publication in the journal "Mathematics and Informatics", issue 5, 2017. The theoretical considerations in it cover all cases when calculating the value of a finite and infinite number of nested square radicals.

Keywords: infinite sequence; nested radical; convergence; mathematical induction

In the first part of this research we examined the convergence of the numerical series $c_n = \sqrt{a + bc_{n-1}}$, $c_1 = \sqrt{a}$, where a > 0 and b > 0. The aim of the second part is to determine conditions for the limit existence including the case 0.

For a starting base and background we will use again some basic skills and knowledge in the field of:

Infinite numerical series;

Convergence of infinite numerical series;

Limits of infinite numerical series.

On this theoretical basis we will apply some specific and non-standard skills for proving scientifically determined dependencies.

Using theorem 1 from Part one (Nikolaev, Milkova & Petkov, 2017) for exam-

ple we can easily find the value of the expression $L = \sqrt{3 + 2\sqrt{3 + 2\sqrt{3 + \dots}}}$.

Concerning this, a question arises – can we solve the next problem in a similar way?

Determine the value of the expression $L = \sqrt{3 - 2\sqrt{3 - 2\sqrt{3 - \dots}}}$.

The answer seems to be positive and the solution is based on the statements mentioned in the present paper.

We know from theorem 1 that if
$$t > b > 0$$
, then $\sqrt{t(t-b) + b\sqrt{t(t-b) + b\sqrt{\dots}}} = t$.

We will formulate and prove the following theorem:

Theorem 2. If
$$b < 0$$
 and $L > \frac{b(1-\sqrt{5})}{2}$, then $\sqrt{L(L-b) + b\sqrt{L(L-b) + b\sqrt{\dots}}} = L$.

It is obvious that L > 0.

We examine the numerical series $c_n = \sqrt{L(L-b) + bc_{n-1}}$, with its first element $c_1 = \sqrt{L(L-b)}$.

This numerical series can be divided into two subseries – the first one consisting of the odd elements $\{c_{2k-1}\}_{k=1}^{\infty}$ and the other one of the even elements, i.e. $\{c_{2k}\}_{k=1}^{\infty}$.

We will formulate and prove two more theorems which will help in proving Theorem 2.

Theorem 3. The subseries $\{c_{2k-1}\}_{k-1}^{\infty}$ converges and when b<0 its limit is equal to $L > \frac{b(1-\sqrt{5})}{2}$.

Theorem 4. The subseries $\{c_{2k}\}_{k=1}^{\infty}$ converges and when b < 0 its limit is equal to $L > \frac{b(1-\sqrt{5})}{2}$.

To prove theorem 3 in an easier way we will formulate three lemmas. Lemma 1. The subseries $\{c_{2k-1}\}_{k=1}^{\infty}$ is limited from below.

Proof: We use the principle of mathematical induction.

1.
$$k = 1$$
, $c_1 = \sqrt{L(L-b)}$.
We will prove that $\sqrt{L(L-b)} > L$.
 $\sqrt{L(L-b)} > L |^2$;
 $L(L-b) > L^2$;

$$-Lb > 0$$
, since $L > 0$, $b < 0$ (by condition)

$$\Rightarrow c_1 > L - \text{ correct } (1)$$

$$c_3 = \sqrt{L(L-b) + bc_2}$$

We will prove that
$$c_3 = \sqrt{L(L-b) + bc_2} > L$$
.
 $\sqrt{L(L-b) + bc_2} > L$ | 2 ;

$$L(L-b)+bc_2>L^2;$$

$$bc_2 > Lb \mid : b < 0;$$

$$c_2 < L;$$

$$c_2 = \sqrt{L(L-b) + bc_1}.$$

Let us check if $c_2 < L$:

$$c_2 = \sqrt{L(L-b) + bc_1} < L \Leftrightarrow L(L-b) + bc_1 < L^2 \Leftrightarrow bc_1 < Lb.$$
 Since $b < 0$, then $c_1 > L$ - correct, concluded from (1).

2. Let us assume that for each $k = 1, 2 \dots n$ it is true that $c_{2k-1} > L$.

3. We will prove that
$$k = \dot{u}n + c_{2(n-1)-1} = c_{2n-1} > L$$

If
$$c_{2n+1} = \sqrt{L(L-b) + bc_{2n}} > L$$
,

$$c_{2n+1} = \sqrt{L(L-b) + bc_{2n}} > L \mid^2 \Leftrightarrow L^2 - Lb + bc_{2n} > L^2 \Leftrightarrow bc_{2n} > Lb \mid : b < 0 \Leftrightarrow c_{2n} < L;$$

$$c_{2n} = \sqrt{L(L-b) + bc_{2n-1}} < L \mid^2 \Leftrightarrow L^2 - Lb + bc_{2n-1} < L^2 \Leftrightarrow bc_{2n-1} < Lb \mid : b < 0 \Leftrightarrow c_{2n-1} > L,$$
which is correct according to the assumption in point 2

which is correct according to the assumption in point 2.

In such a way we proved that the subseries $\{c_{2k-1}\}_{k=1}^{\infty}$ is limited from below, i.e. $c_{2k-1} > L$.

Lemma 2. The subseries $\{c_{2k-1}\}_{k=1}^{\infty}$ is decreasing monotonously. *Proof:* Once again we will use the principle of mathematical induction.

1. k = 1.

We will check whether $c_1 > c_3$.

$$\sqrt{L(L-b)} > \sqrt{L(L-b) + bc_2} \Leftrightarrow L(L-b) > L(L-b) + bc_2 \Leftrightarrow 0 > bc_2$$
. Since $b < 0$, then c_2 must be positive.

 $c_2 = \sqrt{L(L-b) + bc_1}$, and for the value under the radical to be defined we need $L(l-b) + b\sqrt{L(L-b)} > 0$.

$$L(l-b) > -b\sqrt{L(L-b)}|^2 - b > 0, L(L-b) > 0;$$

$$[L(L-b)]^2 > b^2L(L-b) |: L(L-b) > 0;$$

$$L(L-b) > b^2$$
;

$$L^2 - Lb - b^2 > 0 \quad \Leftrightarrow \quad L \in \left(-\infty; L_1\right) \cup \left(L_2; +\infty\right),$$

where L_1 and L_2 are the roots of the equation $L^2 - Lb - b^2 = 0$: $L_{1,2} = \frac{b \pm \sqrt{b^2 + 4b^2}}{2} = \frac{b(1 \pm \sqrt{5})}{2};$

$$L_{1,2} = \frac{b \pm \sqrt{b^2 + 4b^2}}{2} = \frac{b(1 \pm \sqrt{5})}{2};$$

$$L_1 = \frac{b(1+\sqrt{5})}{2} < 0; \quad L_2 = \frac{b(1-\sqrt{5})}{2} > 0$$

$$\Rightarrow L \in \left(-\infty; \frac{b\left(1+\sqrt{5}\right)}{2}\right) \cup \left(\frac{b\left(1-\sqrt{5}\right)}{2}; +\infty\right).$$

In theorem 2 we stated that $L > \frac{b(1-\sqrt{5})}{2}$, and in such a way we can make the conclusion that $c_1 > c_3$.

2. We assume that $c_{2k-1} > c_{2k+1}$, for each $k = 1, 2 \dots n$.

3. We will prove that this is satisfied also for
$$k = 2n + 1$$
: $c_{2n+1} > c_{2n+1}$

$$c_{2n+3} = \sqrt{L(L-b) + bc_{2n+2}} < c_{2n+1} \Leftrightarrow L(L-b) + bc_{2n+2} < c_{2n+1}^2 \Leftrightarrow$$

$$\Leftrightarrow L(L-b) + b\sqrt{L(L-b) + bc_{2n+1}} < L(L-b) + bc_n \mid b < 0$$

$$\Leftrightarrow \sqrt{L(L-b) + bc_{2n+1}} > c_n = \sqrt{L(L-b) + bc_{2n-1}}$$

$$\Leftrightarrow bc_{2n+1} > bc_{2n-1} \mid : b < 0$$

$$\Leftrightarrow c_{2n+1} < c_{2n-1},$$

which is correct according to the assumption of the induction.

This way we proved that the subseries $\{c_{2k-1}\}_{k-1}^{\infty}$ is decreasing monotonously.

Lemma 3. The limit of the series $\{c_{2k-1}\}_{k=1}^{\infty}$ is equal to L.

Proof: From Lemma 1 and Lemma 2 we can conclude that $\{c_{2k-1}\}_{k=1}^{\infty}$ has a limit denoting it by l. Then:

 $\lim_{k \to \infty} c_{2k-1} = l$ and $\lim_{k \to \infty} c_{2k+1} = l$.

From the recurrence

From the recurrence $c_{2k+1} = \sqrt{L(L-b) + bc_{2k}} = \sqrt{L(L-b) + b\sqrt{L(L-b) + bc_{2k-1}}}$, after a limit transition, we receive an irrational equation for l:

If we consider from Theorem 2 that
$$L > \frac{l^2 - L(L-b) = b\sqrt{L(L-b) + bl}}{l} \Leftrightarrow \frac{l^2 - L(L-b)}{l} = \frac{l^2 - L(L-b)}{l} = \frac{l^2 - L(L-b) + bl}{l}$$

If we consider from Theorem 2 that $L > \frac{b(1 - \sqrt{5})}{2} > 0$ together with Lemma 1

then the limit l will be positive. After some transformation, the last system turns to be equivalent to:

$$\begin{vmatrix} l \in (0; \sqrt{L(L-b)}] \\ l^4 - 2(L^2 - Lb)l^2 - b^3l + (L^2 - Lb)(L^2 - Lb - b^2) = 0 \end{vmatrix}$$

Then we obtain immediately that $l_1 = L$ and $l_2 = b - L$ are roots of the above mentioned equation. After factorising its left hand side we get the equivalent form:

$$(l-L)(l-b+L)(l^2+bl+Lb-L^2+b^2)=0\,,$$
 and consequently $l_3=\frac{-b-\sqrt{4L^2-3b^2-4Lb}}{2}$ and $l_4=\frac{-b+\sqrt{4L^2-3b^2-4Lb}}{2}$ But from $b<0$ and $L>\frac{b\left(1-\sqrt{5}\right)}{2}>0\,,$ we have
$$l_1=L\in\left(0;\sqrt{L(L-b)}\right],\ l_2=b-L<0\,,\ l_3=\frac{-b-\sqrt{4L^2-3b^2-4Lb}}{2}<0$$
 and $l_4=\frac{-b+\sqrt{4L^2-3b^2-4Lb}}{2}>\sqrt{L(L-b)}\,.$ Hence $l=L$.

So, from the proved Lemma 1, Lemma 2 and Lemma 3 in advance we conclude that thr assertion in Theorem 3 is true.

For proving Theorem 4 we will formulate three more lemmas.

Lemma 4. The subseries $\{c_{2k}\}_{k=1}^{\infty}$ is limited from above. *Proof:* We will use again the principle of mathematical induction.

1.
$$k = 1$$
, $c_2 = \sqrt{L(L-b) + bc_1}$.
We will prove that $c_2 = \sqrt{L(L-b) + bc_1} < L$.
 $\sqrt{L(L-b) + bc_1} < L.$ | 2 ;
 $L^2 - Lb + bc_1 < L^2$;
 $Lb > bc_1$, since $L > 0$, $b < 0$ (by condition)
 $\Rightarrow c_1 > L$ - true to Lemma 1.
If $k = 2$, $c_4 = \sqrt{L(L-b) + bc_3}$.
We will prove that $c_4 = \sqrt{L(L-b) + bc_3} < L$
 $\sqrt{L(L-b) + bc_3} < L$ | 2
 $L^2 - Lb + bc_3 < L^2$
 $bc_3 < Lb$ |: $b < 0$
 $c_3 > L$ - true to Lemma 1.

- 2. We assume that for each k = 1, 2 ... n it is true that $c_{2k} < L$.
- 3. We will prove that if k = n + 1 $c_{2(n+1)} = c_{2n+2} < L$.

And if
$$c_{2n+2} = \sqrt{L(L-b) + bc_{2n+1}} < L$$
,

 $c_{2n+2} = \sqrt{L(L-b) + bc_{2n+1}} < L \mid^2 \iff L^2 - Lb + bc_{2n+1} < L^2 \iff bc_{2n+1} < Lb \mid b < 0 \iff c_{2n+1} > L,$ which can be concluded by Lemma 1.

So we proved that the subseries $\{c_{2k}\}_{k=1}^{\infty}$ is limited from above by the constant L, i.e. $c_{\gamma_k} < L$.

Lemma 5. The subseries $\{c_{2k}\}_{k=1}^{\infty}$ is increasing monotonously. *Proof:* We will use once again the principle of mathematical induction.

1. k = 1.

We will check whether $c_4 > c_2$.

$$\sqrt{L(L-b)+bc_3} > \sqrt{L(L-b)+bc_1} \Leftrightarrow L(L-b)+bc_3 > L(L-b)+bc_1 \Leftrightarrow bc_3 > bc_1$$
. Because of $b < 0$, we have $c_3 < c_1$, which can be concluded by Lemma 2.

- 2. We assume that $c_{ijk} > 2_{k-}$, for each k = 1, 2...n.
- 3. We will prove that this is also correct for k = n + 1: $c_{2n+2} > c_{2n}$.

$$c_{2n+2} = \sqrt{L(L-b) + bc_{2n+1}} > c_{2n} \Leftrightarrow L(L-b) + bc_{2n+1} > c_{\frac{2}{2n}}^2 = L(L-b) + bc_{2n-1}$$

$$\Leftrightarrow bc_{2n+1} > bc_{2n-1} \mid : b < 0$$

$$\Leftrightarrow c_{2n+1} < c_{2n-1},$$

which is a consequence of Lemma 2.

Hence, Lemma 5 is proved.

Lemma 6. The limit of the series $\{c_{2k}\}_{k=1}^{\infty}$ is equal to L.

Proof: From Lemma 4 and Lemma 5 we can make the conclusion that the subseries $\{c_{2k}\}_{k=1}^{\infty}$ has a limit and denote it by *l*. Then:

$$\lim_{k\to\infty}c_{2k}=l.$$

From the recurrence

 $c_{2k} = \sqrt{L(L-b) + bc_{2k-1}}$, after a limit transition and applying Theorem 3, we can conclude that

Thus,
$$l=\lim_{k\to\infty}c_{2k}=\lim_{k\to\infty}\sqrt{L(L-b)+bc_{2k-1}}=\lim_{k\to\infty}\sqrt{L(L-b)+bL}=L.$$

Theorem 4 follows by Lemma 4, Lemma 5 and Lemma 6.

Coombining Theorem 3 and Theorem 4 we receive the statement of Theorem 2.

Following the definition of the square root, the following conclusions could be made from Theorem 2:

expression

Conclusion 1: If L(L-b) < 0, then the expression $\sqrt{L(L-b) + b\sqrt{L(L-b)} + b\sqrt{\dots}}$ is not defined in the set of the real numbers.

Proof: $c_1 = \sqrt{L(L-b)}$ does not exist because L(L-b) < 0.

The following conclusion is also obvious.

Conclusion 2: If b < 0 and L(L-b) < 0, then the expression

$$\frac{\sqrt{L(L-b) + b\sqrt{L(L-b) + b\sqrt{\dots}}}}{\sqrt{L(L-b) + b\sqrt{\dots}}}$$

is not defined in the set of the real numbers.

Conclusion 3: If b < 0 and $L < \frac{b(1-\sqrt{5})}{2}$, then the expression $\sqrt{L(L-b) + b\sqrt{L(L-b) + b\sqrt{L}}}$

$$\sqrt{L(L-b)+b\sqrt{L(L-b)+b\sqrt{\dots}}}$$

is not defined in the set of the real numbers.

Proof: The elements of the subseries $\{c_{2k}\}_{k=1}^{\infty}$ have negative values under the square root.

Theorem 5. Let
$$b < 0$$
 and $L = \frac{b(1-\sqrt{5})}{2}$. Then

 $\sqrt{L(L-b) + b\sqrt{L(L-b) + b\sqrt{\dots}}} = \begin{cases} -b, & \text{if the number of roots is a finite odd number,} \\ 0, & \text{if the number of roots is a finite even number,} \end{cases}$ indefinite, if the number of roots is infinite.

Proof: We will use again the principle of mathematical induction.

1. n = 1.

$$c_{1} = \sqrt{L(L-b)} = \sqrt{\frac{b(1-\sqrt{5})}{2}} \left(\frac{b(1-\sqrt{5})}{2} - b\right) = \sqrt{\frac{b(1-\sqrt{5})}{2}} \left(\frac{b(-1-\sqrt{5})}{2}\right) = \sqrt{b^{2}} = |b|;$$

$$b < 0 \Rightarrow c_1 = -b$$
.

$$c_2 = \sqrt{L(L-b) + bc_1} = \sqrt{L(L-b) + b(-b)} = \sqrt{L(L-b) - b^2} = \sqrt{b^2 - b^2} = 0.$$

- 2. Let us assume that $c_{2n-1} = -b$ and $c_{2n} = 0$ for each $n = 1, 2 \dots k$.
- 3. We will prove that for n = k + 1 it is true that $c_{2k+1} = -b$ and $c_{2k+2} = 0$.

$$\begin{split} c_{2k+1} &= \sqrt{L(L-b) + bc_{2k}} = \sqrt{b^2 + b.0} = \sqrt{b^2} = \left| b \right| = -b. \\ c_{2k+2} &= \sqrt{L(L-b) + bc_{2k+1}} = \sqrt{b^2 - b^2} = 0. \end{split}$$

If the number of the roots is infinite, then the value of the expression $\sqrt{L(L-b)+b\sqrt{L(L-b)+b\sqrt{...}}}$ cannot be determined.

The proved statements complete the possibilities to calculate expressions of the type $\sqrt{a + b\sqrt{a + b\sqrt{\dots}}}$.

Applying the proved statements, we will examine three problems.

Problem 1. Determine the value of the expression $L = \sqrt{3 - 2\sqrt{3 - 2\sqrt{3 - \dots}}}$. *Solution:*

$$b = -2$$
, $a = L(L - b) = L(L + 2) = 3$;

$$L^2 + 2L - 3 = 0$$
;

$$L_1 = -3, L_2 = 1;$$

$$L = \frac{b(1-\sqrt{5})}{2} = \frac{-\cancel{2}(1-\sqrt{5})}{\cancel{2}} = \sqrt{5}-1.$$

We compare $L_1 = -3$ and $L_2 = 1$ with $\sqrt{5} - 1$.

Since b < 0, $L < \frac{b(1-\sqrt{5})}{2}$ and the number of roots is infinite, by Conclusion

3 we get that the value of the expression does not exist.

Problem 2. Determine the value of the expression $\sqrt{4-2\sqrt{4-2\sqrt{4-2\sqrt{...}}}}$, if:

- a) the number of the roots is 2017;
- b) the number of the roots is 2018.

Solution:

$$b = -2$$
, $a = 4 = L(L - b)$;

$$L^2 + 2L - 4 = 0;$$

$$L_1 = -1 - \sqrt{5}$$
, $L_2 = -1 + \sqrt{5}$.

By Theorem 5 we deduce that $c_{2k-1} = -b = 2$ and $c_{2k} = 0$.

a)
$$c_{2017} = c_{2k-1} = 2;$$

b)
$$c_{2018} = c_{2k} = 0$$
.

Problem 3. Determine the value of the expression

$$\sqrt{2017-17\sqrt{2017-17\sqrt{2017-17\sqrt{\dots}}}}$$

Solution:

$$b = -17$$
, $L(L - b) = L(L + 17) = 2017$;

$$L^2 + 17L - 2017 = 0;$$

$$L_{1,2} = \frac{-17 \pm \sqrt{8357}}{2}.$$

From
$$L > 0 \Rightarrow L = \frac{\sqrt{8357} - 17}{2}$$
.

We compare
$$\frac{\sqrt{8357} - 17}{2}$$
 with $\frac{-17(1 - \sqrt{5})}{2} = \frac{17\sqrt{5} - 17}{2} = \frac{\sqrt{1445} - 17}{2}$
 $\Rightarrow \frac{\sqrt{8357} - 17}{2} > \frac{\sqrt{1445} - 17}{2}$.

From Theorem 2
$$\Rightarrow L = \frac{\sqrt{8357 - 17}}{2}$$
, i.e.

$$\sqrt{2017 - 17\sqrt{2017 - 17\sqrt{2017 - 17\sqrt{\dots}}}} = \frac{\sqrt{8357 - 17}}{2}.$$

REFERENCES

Berndt, B. C. (1994). *Ramanujan 's Notebooks*, Part IV. New York: Springer-Verlag, p. 14 – 20.

Herschfeld, A. (1935). "On Infinite Radicals". *Amer. Math. Monthly*, 42, 419 – 429.

Ilin, V., V. Sadovnichi & B. Sendov (1984). *Matematicheski analiz – parva chast*, Sofia: Nauka i izkustvo. (In Bulgarian).

Grozdev, S. (2007). For High Achievements in Mathematics. The Bulgarian Experience (Theory and Practice). Sofia: ADE, 295 pages (ISBN 978-954-92139-1-1).

Grozdev, S., Ts. Bajcheva, P. Piperkov, K. & Kirilova-Lupanova (2008). *School-leaving examination in Mathematics*, V. Tirnovo: Abagar, 108 pages (ISBN 978-954-427-782-6). (In Bulgarian).

Grozdev, S. & Ts. Bajcheva (2016). University entering exams in Mathematics. Sofia: *Mathematics Plus*, 72 pages (ISSN 0861-8321). (In Bulgarian).

Nikolaev, R., T. Milkova & J. Petkov (2017). Some numerical sequences concerning square roots (part one). *Mathematics and Informatics*, 60 (5), p. 474 –480.

Ramanujan, S. (2000). *Collected Papers of Srinivasa Ramanujan* (Ed.G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer.Math. Soc., p. 327.

ЧИСЛОВИ РЕДИЦИ, СВЪРЗАНИ С КВАДРАТНИ КОРЕНИ (ВТОРА ЧАСТ)

Резюме. Статията е продължение на едноименната публикация в сп. "Математика и информатика", бр. 5, 2017 г. Теоретичните разглеждания в нея обхващат всички случаи при пресмятане стойностите на краен и безкраен брой вложени квадратни радикали.

Dr. Rosen Nikolaev, Assoc. Prof.

Dr. Tanka Milkova, Assoc. Prof.

Dr. Jordan Petkov, Assist. Prof.
University of Economics – Varna
77, Kniaz Boris I Blvd.
9002 Varna, Bulgaria
E-mail: 1) nikolaev rosen@ue-varna.bg,
2) tankamilkova@ue-varna.bg,
3) jr_petkov@ue-varna.bg