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Abstract. The Job Shop Scheduling Problem (JSSP) is a long-standing
combinatorial optimization problem studied since the 1960s. JSSP is NP-complete,
meaning solutions exist but cannot be guaranteed within polynomial time for
general instances. In this paper we aim to compare some algorithms and techniques
that have been proposed by various researchers. We also present the execution of
these algorithms using two programming languages, python and C#.
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1. Introduction
JSSP is also one of the most challenging problems that researchers have been
trying to solve since the 1960s. Simply put, we can specify the problem as a

scheduling problem with a finite set of tasks, J = {1, 2,...., n} to schedule on a
finite set of machine collections, M = {1, 2,...., m} with each task having a distinct
completion time T = {1,2, ..., n}.

Of course, we should clarify that there are various constraints such as an operation
should be processed only after all previous operations related to this object have
been completed and the resource constraint should be applied which states that
each task should be processed on the machine exactly once. The completion time
of a task consisting of many tasks is defined from the processing of the first task to
the completion of the processing of the last task. It should be clarified that the tasks
should not be interrupted, and this time is known as the make-span of the schedule.
This is the time that must be minimized. JSSP is such a complex combinatorial
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problem that for an optimal solution in a reasonable time it is done using heuristic
techniques.

We make a bibliographic survey of the different methods that have been applied
to find a solution to the problem in the following paper. By applying methods that
develop algorithms based on GA, we show applications that have been developed
with the python programming language.

2. The Main Methods for JSSP

The main methods for JSSP are:

® Exact / Mathematical Programming Approaches

— Branch and Bound, Branch and Cut

— Integer Linear Programming (ILP), Constraint Programming (CP)

® Dispatching Rules & Priority Heuristics

— Simple rules like SPT (Shortest Processing Time), LPT, EDD, etc.

— Composite dispatching rules

® Metaheuristics

— Genetic Algorithms (GA), Simulated Annealing (SA), Tabu Search (TS), Ant
Colony Optimization (ACO), Particle Swarm Optimization (PSO)

® Hybrid & Memetic Algorithms

— Combinations of GA + Local Search, TS + SA, etc.

® Constraint-Based & Al / Learning Approaches

— Constraint Programming (CP), Reinforcement Learning (RL), Neural
Networks (NNs), Deep Learning

® Decomposition & Relaxation Methods

— Lagrangian Relaxation, Benders Decomposition, Dantzig-Wolfe

Summary Table 1 for the most citation paper for the above methods.

The new literature review for the methods / algorithms which use for the solved
the JSSP:

Exact and constraint programming

— CP/OR integration: (Infantes et al., 2024b, 2024a)

— CP for dynamic dispatch: (C. Zhang et al., 2020)

— Survey: (Cebi et al., 2020a)

— Constraint/Al synthesis (chapter): (Infantes et al., 2024a)
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Table 1. Most citation paper for the methods how to solve the JSSP

Method Family Most Cited Works
Exact / ILP / CP (Applegate & Cook, 1991), (Brucker et al., 1994),
Dispatching Rules (Blackstone et al., 1982) (Pa?évglg;ar & Iskander, 1977) (Haupt,

(Glover, 1989) (Nowicki & Smutnicki, 1996) (Ghedjati, 1999)
(Dorigo & Gambardella, 1997)

(C. Y. Zhang et al., 2008) (Pezzella et al., 2008) (Lourenco,
1995)

(Fromherz, 2001) (Baptiste et al., 2001) (Jain & Meeran,
1999) (Mnih et al., 2015)

Decomposition (Fisher, 1981) (Hooker, 2012)

Metaheuristics

Hybrid / Memetic

Constraint & Al

There have been new developments aimed at augmenting classical constraint
programming (CP) and integer programming methods with machine learning
techniques for handling uncertainty. Infantes et al. (2024) presented a deep
reinforcement learning (DRL) framework that is complemented with graph neural
networks (GNNs) for producing robust schedules with uncertain task durations. This
study is notable for a move away from classical methods to robust optimization, in
which uncertainty is specifically defined and addressed.

Dispatching rules and rule learning:

— Learned PDRs: (C. Zhang et al., 2020)

— ANN with dispatching rules: (Sim et al., 2020)

— Real-time rule selection: (Zhao et al., 2023)

— Systematic review of intelligent scheduling (includes rule learning):
(Momenikorbekandi & Kalganova, 2025) (Rihane et al., 2025a)

Classical priority dispatching rules (PDRs) like shortest processing time or most
work remaining have been applied for many years to scheduling in real-time. But
2020 and afterwards consider adaptive and learned dispatching policies as key.
Earlier work by Zhang and Dietterich on a paradigm of reinforcement learning
has been generalized in the latest studies (2020-2023) to learn neural agents that
adaptively choose dispatching rules and beat static heuristics in dynamic shop-floor
settings. They show increasing importance of data-driven heuristics in overcoming
the dichotomy between handcrafted policies and adaptive scheduling.

Metaheuristics:

— Hybrid evolutionary switching (DE/PSO + TS): (Nadia, 2023)

— Comprehensive metaheuristic study: (Benni et al., 2024)

— Al for Flexible JSSP (metaheuristics + learning): (Nadia, 2023)

— Intelligent scheduling review (metaheuristics emphasis): (Momenikorbe-
kandi & Kalganova, 2025)
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Metaheuristics continue to dominate the applied JSSP literature, with hybrid
evolutionary and swarm-based algorithms being particularly influential. For
example, hybrid differential evolution and particle swarm optimization methods
with embedded tabu search (2022) have shown strong performance on benchmark
instances. Similarly, multi-objective metaheuristics developed after 2020 address
not only makes pan but also tardiness and energy efficiency, reflecting the multi-
criteria nature of modern manufacturing systems.

Hybrid and memetic algorithms:

— Switching strategy-based hybrid EAs (DE+PSO+TS): (Mahmud et al.,
2022)

— Al for FJSSP (hybrid schemes): (Nadia, 2023)

—Intelligentscheduling systematic review (hybrid focus): (Momenikorbekandi
& Kalganova, 2025)

— Comprehensive metaheuristic study (hybrid comparisons): (Benni et al.,
2024)

The drift toward hybridization can also be found in new work that marries
global search with local fine-tuning(Rego & Duarte, 2009). laid the groundwork
for tabu search/simulated annealing hybrids, and recent works (2021-2023) build
on this by integrating deep learning modules with evolutionary structures. The
resulting hybrids combine the pattern recognition ability of neural models with
metaheuristics’ power to explore, achieving top-performing outcomes on adaptive
JSSP variants.

Learning-based approaches (RL/GNN/transformers):

— DRLAGNN for uncertainty: (Infantes et al., 2024a) (Infantes et al., 2024b)

— PDR via DRL: (C. Zhang et al., 2020)

— Behavioral cloning / attention models for JSSP (2023 chapters referenced
in — CPAIOR context):(Infantes et al., 2024b)

— Review of learning-based methods: (Rihane et al., 2025a) (Rihane et al.,
2025b)

Perhaps the most transformative development since 2020 is the application of
deep reinforcement learning and graph neural networks. (Infantes et al., 2024a)
demonstrated that DRL agents can generalize across problem instances, learning
scheduling policies that adapt to uncertainty. Other works (2021-2023) have
explored curriculum learning, attention-based models, and imitation learning for
dispatching, signalling a paradigm shift toward end-to-end learning systems that
bypass handcrafted heuristics altogether.

Decomposition and relaxation:

—Uncertainty-aware schedules (robust angle; integrates with decomposition
ideas): (Infantes et al., 2024b) (Infantes et al., 2024c¢)

— Recent reviews touching Lagrangian/Benders in JSSP contexts: (Cebi et
al., 2020b)
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— Intelligent scheduling review (2025) with relaxation mentions in industrial
settings: (Momenikorbekandi & Kalganova, 2025)

— Metaheuristic-relaxation hybrids surveyed: (Benni et al., 2024)

The algorithm performed very well, outperforming many previous methods in
the reduction of make-span.

This is a hybrid algorithm that utilizes a global search with genetic crossover and
mutation operators under a CA-like neighborhood. The above operators primarily
fine-tune the order of the operations. Hill-climbing performs a local search to
assign the best machine to each critical operation. This GA-RRHC aspect makes
the formulation compatible with FISSP instances possessing a lot of flexibility.

CA-like neighborhood facilitates concurrent execution of genetic operations,
thereby advancing enhanced exploration capability for the GA-RRHC. The hill-
climbing yields comparable iteration numbers with other algorithms and is also
straightforward to implement, with a moderate level of complexity. A common data
set suite containing four files that represent a compendium of 101 various problems
was adopted in the numerical experiments involving the GA-RRHC. The outcomes
register enhanced effectiveness relative to contemporary comparison algorithms,
primarily for higher flexibility scenarios.

GA-RRHC presents a new way of achieving neighborhoods like that found in
cultural algorithms that concurrently employ exploration and exploitation methods
in dealing with different task scheduling problems like flow shops, job shop, and
open shop cases.

Future work can be the idea of using a different kind of exploitation approach
such as simulated annealing, so that the local search can become less intensive.
Other types of scaling algorithms can also be attempted for enhancing the
sequences of the operations for solving instances of FJSSP with low flexibility, with
further extension of such a methodology for optimization problems with multiple
objectives.

3. Solving Job-Shop Scheduling Problems by Genetic Algorithm

Genetic Algorithm (GA)-based approach to solving the Job-Shop Scheduling
Problem (JSP), which is known for its complexity due to large combinatorial search
spaces and precedence constraints between machines. Traditional methods like
branch-and-bound struggle with scalability, making GA a promising alternative.

Problem Definition: The JSP involves scheduling N jobs across M machines,
ensuring that:

— No machine processes more than one job at a time.

—No job is processed by multiple machines simultaneously.

— The sequence of machines for each job is predefined.

— Processing times are known.

— Each job must be processed on every machine exactly once.
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Challenges in JSP:

— The problem is harder than the Traveling Salesman Problem (TSP) due to
precedence constraints.

— Traditional methods like branch-and-bound yield good results but require
excessive computation time, even for 10x10 problems.

Genetic Algorithm Approach:

— Representation: Schedules are encoded as individuals in the population.

— Genetic Operators: Custom crossover and mutation operators are designed
to maintain valid schedules.

— Selection Mechanism: The algorithm ensures that the best individuals are
retained across generations.

Experimental Results:

— The GA method is tested on standard JSP benchmarks.

— It demonstrates efficiency in finding near-optimal schedules.

— While GA does not always outperform traditional methods in terms of absolute
best results, it significantly reduces computation time.

4. Realization the algorithm step by step

Define Parameters:

Set up key parameters such as population size (‘pop_size"), mutation rate ('p_
mut’), crossover rate ('p_cross’), and max generations (‘max_gen"). Initialize gen
=0" and *ftmin = 9999".

Generating Initial Population

Create a population of schedules (‘pop _size" individuals), ensuring each job
appears exactly "M times in sequences of length "N".

Evaluate Fitness

Each individual’s fitness is determined by the maximum finishing time (*f(Si) =
max(ft)’). Track the best schedule.

Crossover

Perform crossover between selected pairs of individuals, exchanging partial
schedules while maintaining validity.

Mutation

Randomly swap positions of two jobs within individuals based on mutation rate.

Selection

Use elitist selection to keep the best individuals for the next generation.

Iterate Until Convergence

Repeat steps 9.1.1.2-9.1.1.6 until the max generation is reached.

The realization of algorithm in Python
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1 import random

b 4 Paramsters

3 pop_sice = 100

o p_mut = 0.1

5 p_cross = 0.7

2 max_gen = 500

T num jobs = 10 §# Example job count

B num_machines = §

& frmin = fleat('inf')
10
11 4 Step l: Generate initial population
1z def generate populationi):
13 return [random.sample (range{l, num jobs + 1), num jcobs) for _ in zangepop sioe)]
13
15 4 Step Z: Evaluate fitness
16 def evaluate fitnessischedule]:
17 return man|[zandom.randint(ll, 50) for _ in schedule]) # Flaceholder fitness function
18
1 # Step 3: Selection (Elitist]
Z0 def elitist selectionipopulation]:
21 population. sort (key=lambda x: evaluate fitmess(x))
ZZ return population[:pop size]
24 # Step 4: Crossover
25 def crosscveriparentl, parentl):
Z6 point = random.randint{l, num jobs - 1]
ZT childl = parentl[:point] + parentZ[point:]
Zh childZ = parentZ[:point] + parentl[point:]
25 return childl, childl
2L 4 Step 5: Mutatiom
3z def mutate (schedule] :
33 i, 7 T candom.sample{range{mum jobs), I)
24 schedule[i], schedule[j] = scheduls[3j], =chedule[i]
35 return schedule
26
T # Genetic Algorithm Execution
28 population = generate_populaticomi)
a5 gen = 0
40
41 while gen < max_gem:
43 new_population = []
43 for _ in range(intipop_sise ! p_cross) // Z):
LT parents = random.sampls (population, 21
45 offspringl, offspring? = crossover (parents[0], parents[1])
46 new_population.excend( [offspringl, offspringll)
a7
L for _ in range(intipop_sise ' p_mut)):
45 individual = random.choice (population)
50 new_population. append (mutate (individuall )
51 population = elitist selectiom {population + new population)
52 best_schedule = population[0]
51 best_fitness = evaluate fitness(best schedule)
51 if best fitness < fomin:
55 ftmin = best fitness
56 optimal schedule = best schedule
57 gen += 1
58 print(f"0Optimal schedules: [optimal schedule}, Finishing Time: [ftmin]™)
55

Figure 1. This provides a basic Genetic Algorithm implementation for solving
Job-Shop Scheduling (in Python programming language)
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5. A Search Using Genetic Algorithms and Random-Restart Hill-Climbing
for Flexible Job Shop Scheduling Instances.

This algorithm presents a novel hybrid algorithm called GA-RRHC, which
combines Genetic Algorithms (GA) and Random-Restart Hill-Climbing (RRHC)
to optimize the Flexible Job Shop Scheduling Problem (FJSSP), particularly in
cases with high flexibility—where each operation can be completed by multiple
machines.

Key Contributions

—Hybrid Approach: The GA-RRHC integrates global search using GA operators
with a local search refinement via RRHC.

— Cellular Automata-Inspired Neighbourhood: The algorithm applies a unique
CA-type neighbourhood to enhance the exploration of solutions.

— Machine Assignment Optimization: RRHC is used to refine machine selection
for critical operations, improving scheduling efficiency.

— Competitive Performance: The GA-RRHC was tested against six recent
algorithms using relative percentage deviation (RPD) and Friedman tests,
demonstrating its effectiveness.

Methodology

Encoding & Decoding: Solutions are represented as sequences for operation
scheduling (OS) and machine selection (MS).

® Genetic Operators:

— Crossover: Precedence operation crossover (POX) and job-based crossover
(JBX).

— Mutation: Swap mutation and random position changes for operations.

® [ocal Search via RRHC:

— Identifies critical operations that define the make span.

— Randomly selects alternative machines to optimize processing time.

Uses restart strategies to escape local minima.

Experimental Results

The GA-RRHC was implemented in python and tested on four widely used
datasets:

— Kacem dataset (high flexibility)

— BRdata dataset (partial flexibility)

— Rdata & Vdata datasets (varying flexibility levels)

The algorithm demonstrated competitive performance, overcoming several
current techniques in make-span reduction.

It is a hybrid algorithm that employs a global search based on genetic crossover
and mutation operators in CA-like neighborhood. The latter mainly adjust the order
of operations. The random-restart hill-climbing performs a local search in an effort
to assign the best machine to each critical operation. By this GA-RRHC feature,
this schedule is highly adaptable to applications with wide flexibility in FISSP.
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CA-like neighborhood permits the simultaneous realization of genetic
operations, promoting the possibility for GA-RRHC exploration. A hill-climbing
method employs a comparable amount of iteration with other methods and is also
easy to code, with a moderate degree of complexity. On the GA-RRHC in the
numerical experiment, four standard datasets with 101 problems each were used.
The result indicates a satisfying outcome compared with the latest comparison
methods, particularly for highly flexible problems.

The GA-RRHC employs a new way of applying CA-like neighborhoods that
concurrently apply the exploration and exploitation operators in order to tackle
scheduling problems for tasks; e.g., the flow shop, job shop, or open shop.

As a future work, we intend to use a different type of exploitation scheme such as
simulated annealing, in order to reduce the complexity of the local search. We can
also attempt other forms of the scaling algorithms in order to find the optimisation
sequences of the operations to address instances of FJSSP with a minimal degree
of flexibility, and also extend this approach for the optimisation problems with
multiple objectives.
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for machine in range(self.num_machines):
if machine = 0O:
completion_times[jcb] [machine] = schedule[dcb] [machine]
elze:
completion_times[job] [machine] = maxicocmpleticn_times[job] [machine-1], completion_times [job-
return np.maxicompletion times)

# Gemetic Algozithm
def gemetic_algorithmiproblem, population_size, generations, mutation_rate):
population = [random schedule{problem) for _ in range (population sice)]
for generaticn in range |generaticns):
population = sorted(population, kep=lambda x: problem. fitnessix))
new_population = population[:pepulaticn_size//2]
while leninew population) < population sice:
parentl, parentZ = random.sampleipepulation[:populaticn size//Z], 2)
child = crossoverparentl, parentl)
if random. random(] < mwtatiom_rate:
child = mutate(child)
new_population.append(child)
population = new_populatiom
return sorted(population, key=lambda x: problem.fitmess(x)) [0]
def randem schedules (problem) :
return [[zandocm.randineil, 10) for _ in range(problem.num machines)] for _ in range (problem.num jobe)]

def crosscver(parentl, parentl]:
point = randem randine(l, laniparemsl)-1)

return parentl[:point] + parentZ[point:]

def mutate (zchedule) :
job = randem randine (0, Llan(scheduls)-1]
machine = randem.randint(l, len(schedule[0])-1])
schedule [job] [machine] = random.randintil, 10}
return schedule

# Random-Restart Hill-Climbing

def random_restart_hill_climbingipzcblem, iteratioms):
best_schedule = random schedule (procblex)
best_fitness = problem. fitness (best schedulse]
for _ in range(itecations):

schedule = random_schedule (problem)

fitness = problem. fitness{schedule)

if fitness < best fitness:
best_schedule = schedule
best_fitness = fitness

61 return best_schedule

# Hybrid Algoritha
def hybrid algocithmiproblem, population size, gensrations, mutation rate, iterations):
ga_schedule = genetic_algorithmiproblem, population_size, genesations, mubation zate)

6 rrhc_schedule = random restart_hill _climbing(problem, iterasicns)

&7 raturn miniga_scheduls, rrhc_scheduls, key=lambda x: problem. fitnessix))
68

&8 # Example usage

jeb= = [[L1, Z, 21, [2, 3, 11, [2, L, 21]
1 machines = [1, 2, 3]
z problem = JobShopProblem(jcbs, machines)

best_schedule = hybrid_algorithmiproblem, population_size=10, generations=50, mutation_rate=0.l, iteraticns=100)
print("Best schedule:”, best_schedula)
g print("Fitness:", problem. fitness(best_schedule))

Figure 2. Implementing a hybrid algorithm for Flexible Job Shop Scheduling
(in Python programming language)
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The hybrid algorithm for Flexible Job Shop Scheduling

Complexity of the Problem

— High Dimensionality: The number of jobs, machines, and operations can lead
to a vast search space, making it computationally intensive to find optimal solutions.

— Dynamic Changes: Real-time changes in job priorities, machine breakdowns,
or new job arrivals can complicate the scheduling process.

Data Accuracy and Availability

— Incomplete Data: Inaccurate or incomplete data about job processing times,
machine capabilities, and maintenance schedules can lead to suboptimal scheduling.

— Data Integration: Integrating data from various sources (e.g., ERP systems,
machine sensors) can be challenging.

Algorithm Parameters

— Tuning Parameters: It is crucial for the algorithm’s performance to find the
right balance for parameters such as population size, mutation rate, and number of
iterations.

— Convergence Issues: The algorithm might converge to local optima rather than
the global optimum, especially if not properly tuned.

Scalability

— Large-Scale Problems: As the number of jobs and machines increases, the
computational resources required to solve the problem also increase.

—Real-Time Scheduling: Implementing the algorithm in a real-time environment
where decisions need to be made quickly can be challenging.

Implementation and Integration

— Software Integration: Integrating the scheduling algorithm with existing
manufacturing execution systems (MES) and other software tools can be complex.

— User Training: Ensuring the staff understands and can effectively use the new
scheduling system is essential for successful implementation.

Flexibility and Adaptability

— Handling Variability: The algorithm must be flexible enough to handle
variability in job types, processing times, and machine availability.

— Customisation: Customising the algorithm to fit specific manufacturing
processes and constraints can be time-consuming.

Performance Metrics

— Multiple Objectives: Balancing multiple objectives, such as minimising
completion time, reducing machine idle time, and maximising throughput, can be
challenging.

—Measuring Success: Itis crucial to define and measure the scheduling algorithm’s
success using key performance indicators (KPIs).

Mitigation Strategies

— Robust Data Collection: Ensure accurate and comprehensive data collection
and integration.
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— Parameter Tuning: Use techniques like cross-validation to tune algorithm
parameters.

— Scalability Solutions: Employ parallel computing and cloud-based solutions
to handle large-scale problems.

— User Training: Provide thorough training and support for users to ensure
smooth implementation.

Addressing these challenges requires careful planning, continuous monitoring,
and iterative improvements to ensure the scheduling system meets the needs of
the manufacturing environment. If you have any specific concerns or need further
details, feel free to ask!

7. Conclusions and Future Work

The Job Shop Scheduling Problem (JSSP) remains a bellwether both for theo-
retical developments in combinatorial optimization and for practical breakthroughs
in industrial scheduling. During the past several decades, the research has trans-
formed from exact formulations and hand-designed heuristics to metaheuristics,
hybrids, and, recently, learning-based methods. Each family of methods offers
unique strengths: exact and decomposition approaches offer theoretical tractability
and tight bounds; dispatching rules provide quickness and flexibility; metaheuris-
tics are the workhorse for problems at a large scale; hybrids explore an equilibrium
between investigation and exploitation; and Al-based methods provide adaptability
and universalization across problem instances.

Even with such advances, a series of open problems persist. First, variability in
processing times, machine breakdowns, and stochastic job arrivals is still not ad-
equately addressed in the vast bulk of work driven by benchmarking. Even though
robust optimization and reinforcement learning have shown promise, scalable
schemes that can cope with disruptions at a non-traditional, or at least non-batch,
timescale are still in their infancy. Second, scalability is a key bottleneck. Even the
latest metaheuristics and hybrids are not equipped to cope with very large or very
flexible JSSPs, and learning-based approaches almost always have a great deal of
training data that is not typically available in industrial settings. Third, explainability
is an increasing worry. As deep reinforcement learning and neural models become
mainstream, their “black box” characteristics are a worry for industrial take-up,
where clarity on decisions is as important as solution quality. Finally, benchmark-
ing and reproducibility persist as problems. Whereas classical benchmarks like the
Lawrence and Taillard instances have spurred advances, they no longer fully cap-
ture the complexity of modern manufacturing systems. We require richer, standard-
ized benchmarks that capture uncertainty, multi-objective trade-offs, and dynamic
environments. Looking forward, promising research directions include:

— Integrative frameworks that combine exact relaxations with learning-based
heuristics to balance optimality and scalability.
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— Uncertainty-aware scheduling through robust optimization, stochastic pro-
gramming, and reinforcement learning with domain adaptation.

— Explainable Al for scheduling, where interpretable models or hybrid sym-
bolic-neural approaches provide both performance and transparency.

— Next-generation benchmarks and open repositories that reflect industrial
realities and enable fair, reproducible comparisons across methods.

— Cross-domain transfer learning, allowing scheduling policies trained in one
environment to generalize to others with minimal retraining.

Python vs C# for implementing JSSP

Table 2. Comparison between the programming languages Python and C#

Attribute Python C#
Slower in pure Python; fast with Sﬁrs't%;geullter?tf Ft)gffobr?;(;nzgong
Performance NumPy, Numba, Cython, or PyPy; fory multi-threaded. SIMD. and
easy to call G/C++ for hot loops optimized data str’uctureé
. N . Strong enterprise tooling;
Rich scientific stack (NumPy, SciPy, . . )
Ecosystem NetworkX), OR libraries (OR-Tools), decent OR tooling via OR

ML (PyTorch, TensorFlow)

Tools .NET, Accord.NET; easier
Windows/desktop integration

Development speed

Very high; rapid prototyping; concise
syntax; interactive notebooks

Moderate; more boilerplate;
strong type safety; great
tooling in Visual Studio/Rider

GIL limits threads; good for multi-
processing; easy to offload to

True multi-threading;
TPL/async excellent;

Parallelism ) predictable performance for
gé Trl:g:]tt)gd :\s/ti;or;{%ys}%zps?(rt for concurrent search (e.g., TS
neighborhoods)
Robust deployment for
Deplovment Simple scripts, containers; ubiquitous | services, desktop apps; great
ploy in research; cross-platform for industrial environments
and Windows ecosystems
Matplotlib/Plotly/Seaborn; quick WPF/WinUI for desktop; web
Visualization Gantt, convergence plots; Jupyter for |dashboards with ASP.NET;

demos

charts via third-party libs

ML integration

Best-in-class; seamless for learned
dispatching (RL/GNN); easy
experiment tracking

Possible via ML.NET or interop
with Python; fewer cutting-
edge RL/GNN tools natively

Reproducibility

Strong with notebooks, environments,
Docker; easy to share

Strong via solution files, Cl/
CD; deterministic builds in
enterprise contexts
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Attribute Python C#
Fewer open JSSP research

Massive research codebase and

Community & . A repos; more production-
examples tslgr?é'glljinfor metaheuristics and RL grade patterns and enterprise
9 support
Free tooling available;
Cost & licensing Open source; low barriers enterprise IDEs commonly

used

When to choose Python

— Exploration and research: Rapid prototyping of GA/TS/SA/ACO,
benchmarking on OR-Library instances, trying variants (FJSSP, blocking,
stochastic).

— Learning-based methods: DRL/GNN for learned dispatching, policy search,
imitation learning.

— Hybrid pipelines: Glue code around OR-Tools, custom local search in
Numba/Cython, experiment tracking.

— Visualization and reporting: Quick convergence plots, Gantt charts,
notebooks for papers and demos.

When to choose C#

— High-performance production schedulers: Real-time or near-real-time
dispatch, stable services, and operator Uls.

— Concurrency-heavy local search: Parallel neighborhoods for Tabu Search,
large-scale simulation with predictable throughput.

— Integration needs: ERP/MES systems, Windows services, desktop apps, and
secure deployment with mature tooling.

— Maintainability at scale: Strong typing, robust CI/CD, long-term enterprise
support.

Practical architecture suggestions

— Python-first research, C# for production:

— Prototype algorithms in Python (GA/TS/DRL) with clear interfaces and unit
tests.

— Identify hot spots (e.g., move evaluation, neighbourhood generation), then
port those kernels to C# for a production scheduler or expose them via a REST
service.

Shared core in C/C++ for speed:

— Implement core primitives (schedule representation, constraint checks,
incremental move evaluation) in C++.

— Bind to Python via pybind11 for research and to C# via C++/CLI or P/Invoke
for production.
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Benchmarking discipline:

— Common instance set: LA, FT, TA, ORB, and modern FJSSP variants.

— Metrics: Makespan, tardiness, stability under dynamic arrivals; runtime
distribution, scalability curves.

— Reproducibility: Fixed seeds, environment capture, per-instance logs,
configuration files.

Hybrid runtime:

— Use Python for offline policy training (RL/GNN), export policies.

— Use C# runtime to apply learned policies in production, with explainability
hooks and guardrails.

On the whole, while no single approach is optimum across all problem situations,
optimization, metaheuristics, and machine learning as a blend is an innovation-rich
area. The future of JSSP is not merely improving solution quality, but also handling
uncertainty, scalability, interpretability, and reproducibility—it is these that will
define the pragmatic implication of scheduling study under smart manufacturing.
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