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Софийска математическа гимназия "Паисий Хилендарски" – София

Резюме. Статията съдържа обзор на състезателните теми по математика от 
двата дни на 17-тата Международна Жаутиковска олимпиада с виртуален 
домакин Казахстан и българското участие в нея. Включени са условията 
на задачите и решенията на първите трима автори на статията, в някои 
случаи с повече от един подход за дадена задача.

Ключови думи: Математически състезания за гимназисти; ученически 
решения

От 7 до 12 януари 2021 г. се състоя дистанционното издание на 17. 
международна Жаутиковска  олимпиада с виртуален домакин Казахстан. 
Олимпиадата  се провежда  всяка година от 2005 г. насам и е едно от най-
престижните състезания, които съчетават трите области – математика, 
информатика и физика. Поради онлайн изданието на събитието тази го-
дина в него имаше рекорден брой участници (близо 1000), почти двойно 
по-голям от миналогодишния. Четиристотин и двадесет от тях се сърев-
новаваха в областта на математиката. България бе представена  от общо 
36 ученици от 8 гимназии. Нашите математици завоюваха 13 медала  – 6 
златни, 2 сребърни и 5 бронзови, сред които 5 златни и 1 сребърен за 
шестимата ученици от Софийската математическа гимназия. Форматът 
на олимпиадата  е същият като този на Международната олимпиада по 
математика,  тоест два дена, в които участниците разполагат с по четири 
часа и половина за три задачи. Предлагаме на вниманието на читателите 
условията на задачите и нашите решения. Авторовите решения могат да 
бъдат намерени на официалния сайт на състезанието izho.kz
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Първи ден
Задача  1. Да се  докаже, че съществува  естествено число n, за което оста-

тъкът от делението на 3n с 2n е по-голям от 102021.
Задача 2. Даден е изпъкнал вписан шестоъгълник ABC DEF , в който BC = 

EF  и C D = AF . Диагоналите AC и BF  се пресичат  в точка Q, a диагоналите 
EC и DF  – в точка P . Върху отсечките DF  и BF  са взети съответно точки R 
и S така, че F R = P D и BQ = F S. Отсечките RQ и P S се пресичат  в точка T . 
Да се докаже, че правата T C разполовява диагонала BD.

Задача 3. Дадено е естествено  число n ≥ 2. Елвин има таблица n × n, по-
пълнена с реални числа (всяка клетка от таблицата съдържа точно едно чис-
ло). Ще наричаме топ множество  множество от n клетки на таблицата, раз-
положени както в n различни реда, така и в n различни стълба. Нека за всяко 
топ множество сумата от n-те числа, записани в клетките, които образуват 
множеството, е неотрицателна.

На всеки ход Елвин избира ред, стълб и реално число a, след което към 
всяко число от избрания ред прибавя a, а от всяко число в избрания стълб 
изважда a (по този начин числото в пресечната  клетка на избраните ред и 
стълб не се променя). Да се докаже, че Елвин може  да направи последо-
вателност от ходове така, че всички числа в таблицата да станат неотри-
цателни.

Втори ден
Задача 4. В триъгълник ABC e вписана  окръжност с радиус r. Окръж- 

ности с радиуси r1, r2, r3  (където r1, r2, r3  < r) са вписани съответно в ъглите 
A, B, C така, че всяка от тях се допира външно до вписаната в триъгълника 
окръжност. Да се докаже, че r1 + r2 + r3 ≥ r.

Задача 5. На парти с 99 гости домакините Ан и Боб играят следната игра 
(домакините не влизат в броя на гостите). В кръг са разположени 99 стола 
и първоначално всички гости обикалят около столовете.  Домакините пра-
вят ходове последователно, като се редуват. На един ход домакинът, който 
е наред,  заповядва  на някого от правостоящите гости да седне на незает 
стол c; ако някой от столовете, съседни на c, е вече зает, то същият домакин 
заповядва гостът, седящ на съседния на c стол, да стане (ако и двата стола, 
съседни на c, са вече заети, домакинът избира единия от двамата и му на-
режда да стане). Всички нареждания се изпълняват незабавно. Ан започва  
първа;  нейната цел е след краен брой ходове да бъдат заети поне k стола. 
Определете най-голямото  k, за което Ан може да постигне целта си, незави-
симо от играта на Боб.
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Задача 6. Нека P (x)  е неконстантен  полином от степен n с рационални 
коефициенти,  който не може да бъде представен  като произведение на два 
неконстантни полинома с рационални коефициенти. Докажете, че броят на 
полиномите Q(x) от степен по-малка от n с рационални коефициенти, такива 
че P (x) дели P (Q(x)):

а) е краен
б) не надвишава n.

Решения
Задача 1. Ще разгледаме два подхода за решаване на задачата, с приложе-

ние съответно на теорията на числата и алгебрата.

Ан може да постигне целта си, независимо от играта на Боб.

Задача 6. Нека P (x) е неконстантен полином от степен n с рационал-
ни коефициенти, който не може да бъде представен като произведение
на два неконстантни полинома с рационални коефициенти. Докажете, че
броят на полиномите Q(x) от степен по-малка от n с рационални коефи-
циенти, такива че P (x) дели P (Q(x)):
а) е краен
б) не надвишава n.

Решения
Задача 1. Ще разгледаме два подхода за решаване на задачата, с при-
ложение съответно на теорията на числата и алгебрата.

Първо решение (теория на числата): нека с ν2(x) означаваме сте-
пента на 2 в каноничното разлагане на x. Ще докажем по индукция, че
ν2(3

2m − 1) = m + 2 за всяко m ∈ N. Базата на индукцията при m = 1

e ясна. Нека за m = k имаме, че ν2(3
2k − 1) = k + 2. Като използва-

ме, че 32
k+1 − 1 = (32

k − 1)(32
k
+ 1) и 32

k
+ 1 ≡ 2 (mod 4), получаваме

ν2(3
2k+1 − 1) = ν2(3

2k − 1) + ν2(3
2k + 1) = k + 3, с което индукцията е

завършена.
Да вземем n от вида 2m за някое m ∈ N: 2m+2 > 102021, и нека 32

m
=

q22
m
+ r, където q, r ∈ N и r е остатъкът. Ще разгледаме уравнението

по mod 2m+2. Вече доказахме, че 32
m ≡ 1 (mod 2m+2), а 2m+2 дели 22

m

от m + 2 < 2m, откъдето следва r ≡ 1 (mod 2m+2). Ако допуснем, че
r = 1 ⇒ 32

m ≡ 1 (mod 22
m
), което е противоречие с ν2(3

2m − 1) = m+ 2.
Следователно r ≥ 2m+2 + 1 и от избора на m (2m+2 > 102021) сме готови.

Второ решение (алгебра): Нека 3n = an2
n + bn за всяко n ∈ N и

an, bn ∈ N. Да допуснем, че редицата от остатъци {bn} е ограничена отго-
ре от някое M ∈ N, т.е. bn ≤ M за всяко n. Избираме n: 2n > 3M . Имаме,
че

3n+1 = 3 · 2nan+3bn = 2n+1 · 3an
2

+3bn = 2n+1 ·
⌊
3an
2

⌋
+3bn+2n+1 · {3an

2
}

Остатъкът 3bn+2n+1 ·{3an
2

} е по-малък от 2n+1, защото 3bn ≤ 3M < 2n от

избора на n и 2n+1 · {3an
2

} ≤ 2n+1 · 1
2
= 2n Оттук следва, че този остатък

е всъщност bn+1 ⇒ bn+1 = 3bn + 2n+1 · {3an
2

} ≥ 3bn. Като приложим

полученото k пъти, достигаме до bn+k ≥ 3kbn. Достатъчно е да изберем k:
3k > M и ще достигнeм до противоречие от M ≥ bn+k, т.е. допускането,
че редицата от остатъци е ограничена, е грешно и задачата е решена.

Задача 2.
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Първо да отбележим, че от AF = CD и BC = EF ⇒ AC‖DF и BF‖CE,
тъй като ABCDEF е вписан шестоъгълник. Оттук достигаме до FQCP
– успоредник. Като използваме условията FS = BQ и FR = DP , полу-
чаваме и че SBCP и RQCD са успоредници. Сега нека изберем точка
M такава, че BMDC да бъде успоредник. Мотивацията за този избор е,
че MC разполовява BD, и следователно е достатъчно само да докажем
T ∈ MC.
Имаме RQCD и MBCD – успоредници ⇒ RQBM също е успоредник.
Значи FS‖RM , но FS = BQ = RM , т.е. и FSMR е успоредник. Оттук
най-лесният начин да покажем, че T ∈ MC, е чрез теоремата на Мене-
лай, затова построяваме L = MS∩PC. От обратната теорема на Менелай

за �PSL и правата TC е достатъчно да докажем
PC

CL
· LM
MS

· ST
TP

= 1.

Като вземем предвид, че FSMR и FQCP са успоредници, имаме
PC

CL
=
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Друг начин да се довърши задачата е да използваме теоремата на Дезарг
за �QSM и �RPC. T = QR ∩ SP ⇒ T ∈ MC е еквивалентно на QS ∩
RP = F , SM ∩ PC = L и QM ∩ RC да лежат на една права, т.е. искаме
QM , RC и FL да се пресичат в една точка. Нека K = QM ∩ FL и ще
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От условието имаме a+ d ≥ 0 и b+ c ≥ 0.
Като прибавим c към горния ред и извадим от лявата колона, на място-
то на b и c получаваме съответно неотрицателното b+ c и 0. Аналогично
прибавяме d към горния ред и вадим от дясната колона, с което четирите
числа на таблицата стават неотрицателни.
2) n = k
Да допуснем, че за всяка таблица k × k, изпълняваща условието, същес-
твува поредица от ходове, с която можем да направим всички числа в
таблицата неотрицателни.
3) n = k + 1
Разгеждаме топ множество с най-малък сбор (нека той е S) на числата
в него измежду тези на таблицата (k + 1) × (k + 1). Можем да изберем
една клетка от това множество и да направим числото вътре равно на S.
Това се постига, като за всяка от другите клетки в топ множеството
изваждаме числото в нея от нейната колона и го прибавяме в реда, в
който се съдържа избраната клетка. Тъй като можем да разместваме ко-
лоните и редовете, без ограничение на общността считаме, че избраната
клетка е в долния десен ъгъл на таблицата.
Сега да разгледаме k × k таблицата, която не включва най-долния ред и
най-дясната колона. Всяко от топ множествата в нея образува заедно
с долния десен ъгъл топ множество в голямата таблица (k+1)× (k+1)
⇒ сборовете на числата във всяко топ множество на k×k таблицата са
неотрицателен (и поне един от тях е равен на 0), в противен случай същес-
твува топ множество със сбор по-малък от S в таблицата (k+1)×(k+1),
което е противоречие с минималността на S. Следователно можем да из-
ползваме индукционното предположение за k×k таблицата и да направим
всички числа в нея неотрицателни (това не променя най-дясната долна
клетка от голямата таблица). Имаме топ множество със сбор на числа-
та 0 в k×k таблицата ⇒ всички числа в него трябва да станат равни на 0.
Отново с разместване на редовете и колоните можем да позиционираме
тези нули по главния диагонал, спускащ се от горе ляво до долу дясно.
Нека сега числата на най-долния ред на (k+1)× (k+1) таблицата да са
съответно a1, a2, ..., ak, S отляво надясно. Таблицата изглежда по следния
начин (с + бележим неотрицателно число):
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От условието имаме a+ d ≥ 0 и b+ c ≥ 0.
Като прибавим c към горния ред и извадим от лявата колона, на място-
то на b и c получаваме съответно неотрицателното b+ c и 0. Аналогично
прибавяме d към горния ред и вадим от дясната колона, с което четирите
числа на таблицата стават неотрицателни.
2) n = k
Да допуснем, че за всяка таблица k × k, изпълняваща условието, същес-
твува поредица от ходове, с която можем да направим всички числа в
таблицата неотрицателни.
3) n = k + 1
Разгеждаме топ множество с най-малък сбор (нека той е S) на числата
в него измежду тези на таблицата (k + 1) × (k + 1). Можем да изберем
една клетка от това множество и да направим числото вътре равно на S.
Това се постига, като за всяка от другите клетки в топ множеството
изваждаме числото в нея от нейната колона и го прибавяме в реда, в
който се съдържа избраната клетка. Тъй като можем да разместваме ко-
лоните и редовете, без ограничение на общността считаме, че избраната
клетка е в долния десен ъгъл на таблицата.
Сега да разгледаме k × k таблицата, която не включва най-долния ред и
най-дясната колона. Всяко от топ множествата в нея образува заедно
с долния десен ъгъл топ множество в голямата таблица (k+1)× (k+1)
⇒ сборовете на числата във всяко топ множество на k×k таблицата са
неотрицателен (и поне един от тях е равен на 0), в противен случай същес-
твува топ множество със сбор по-малък от S в таблицата (k+1)×(k+1),
което е противоречие с минималността на S. Следователно можем да из-
ползваме индукционното предположение за k×k таблицата и да направим
всички числа в нея неотрицателни (това не променя най-дясната долна
клетка от голямата таблица). Имаме топ множество със сбор на числа-
та 0 в k×k таблицата ⇒ всички числа в него трябва да станат равни на 0.
Отново с разместване на редовете и колоните можем да позиционираме
тези нули по главния диагонал, спускащ се от горе ляво до долу дясно.
Нека сега числата на най-долния ред на (k+1)× (k+1) таблицата да са
съответно a1, a2, ..., ak, S отляво надясно. Таблицата изглежда по следния
начин (с + бележим неотрицателно число):

0 + ... +
+ 0 ... +

...
...

...
...

+ + ... 0
a1 a2 ... ak S

Сега за всяко i ∈ 1, 2, ..., k правим следната последователност от опера-
ции:
Намаляваме числата от последния ред с bi и увеличаваме тези от i-тата
колона отляво надясно. После изваждаме от i-тата колона bi и прибавя-
ме в най-горния ред съответно. Накрая намаляваме най-горния ред с bi
и увеличаваме най-дясната колона.
Вследствие на тези операции числата в k × k таблицата и това в долния
десен ъгъл на основната се запазват, а всички числа от a1, a2, ..., ak освен
ai намаляват с bi. Остава да подберем b1, b2, ..., bk така, че a1, a2, ..., ak да
станат нули. За целта трябва за всяко i да е изпълнено:

ai =

k∑
j=1

bj − bi

⇒
k∑

j=1

aj = (k − 1)

k∑
j=1

bj

⇒ bi =

∑k
j=1 aj

k − 1
− ai

При такъв избор на bi ai стават нули. Сега остава да забележим, че мо-
жем да образуваме следното топ множество с всяко едно число от най-
дясната колона: взимаме него, симетричното му спрямо главния диагонал
от най-долния ред (което ще е нула) и k− 1 нули от диагонала (без тази,
която е на реда на избраната клетка и на колоната на срещуположната
?). Понеже сборът на числата в това топ множество е неотрицателен, а
всички освен избраното са нули, то числата в дясната колона трябва да
са неотрицателни и индукцията е завършена.

Задача 4. Ще изразим отношенията
ri
r

, i = 1, 2, 3, и ще докажем, че су-
мата им е поне 1. Ще покажем две решения на задачата, като използваме
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0 + ... +
+ 0 ... +

...
...

...
...

+ + ... 0
a1 a2 ... ak S

Сега за всяко i ∈ 1, 2, ..., k правим следната последователност от опера-
ции:
Намаляваме числата от последния ред с bi и увеличаваме тези от i-тата
колона отляво надясно. После изваждаме от i-тата колона bi и прибавя-
ме в най-горния ред съответно. Накрая намаляваме най-горния ред с bi
и увеличаваме най-дясната колона.
Вследствие на тези операции числата в k × k таблицата и това в долния
десен ъгъл на основната се запазват, а всички числа от a1, a2, ..., ak освен
ai намаляват с bi. Остава да подберем b1, b2, ..., bk така, че a1, a2, ..., ak да
станат нули. За целта трябва за всяко i да е изпълнено:

ai =

k∑
j=1

bj − bi

⇒
k∑

j=1

aj = (k − 1)

k∑
j=1

bj

⇒ bi =

∑k
j=1 aj

k − 1
− ai

При такъв избор на bi ai стават нули. Сега остава да забележим, че мо-
жем да образуваме следното топ множество с всяко едно число от най-
дясната колона: взимаме него, симетричното му спрямо главния диагонал
от най-долния ред (което ще е нула) и k− 1 нули от диагонала (без тази,
която е на реда на избраната клетка и на колоната на срещуположната
?). Понеже сборът на числата в това топ множество е неотрицателен, а
всички освен избраното са нули, то числата в дясната колона трябва да
са неотрицателни и индукцията е завършена.

Задача 4. Ще изразим отношенията
ri
r

, i = 1, 2, 3, и ще докажем, че су-
мата им е поне 1. Ще покажем две решения на задачата, като използваме

означенията от чертежите.
Първо решение

Нека S e допирната точка на двете окръжности и SK е общата им вът-
решна допирателна (K ∈ AB). KF и KS са допирателни към вписаната
в �ABC окръжност, значи KF = KS. Аналогично и KS = KT ⇒ K е
среда на FT . Нека ∠ABC = β. Сега имаме

∠TKI2 =
∠TKS

2
=

90◦ − β
2

2
= 45◦ − β

4

∠FIK =
∠FIS

2
=

90◦ − β
2

2
= 45◦ − β

4

Оттук следва, че �FIK ∼ TKI2, и от подобието получаваме r · r2 =
FK ·KT = FK2. Намираме отношенито между радиусите:

r2
r

=
FK2

r

r
= (

FK

r
)2 = tan2∠FIK = tan2 (45◦ − β

4
)

Аналогично извеждаме отношенията
r1
r

и
r3
r

, откъдето е достатъчно да
докажем, че

tan2 (45◦ − α

4
) + tan2 (45◦ − β

4
) + tan2 (45◦ − γ

4
) ≥ 1

Имаме
d2

dx2
tan2 x =

2(1 + 2 sin2 x)

cos4 x
> 0 за x ∈ (0,

π

4
), т.е. tan2 x е изпък-

нала функция в дадения интервал. Като имаме предвид това, можем да
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означенията от чертежите.
Първо решение

Нека S e допирната точка на двете окръжности и SK е общата им вът-
решна допирателна (K ∈ AB). KF и KS са допирателни към вписаната
в �ABC окръжност, значи KF = KS. Аналогично и KS = KT ⇒ K е
среда на FT . Нека ∠ABC = β. Сега имаме

∠TKI2 =
∠TKS

2
=

90◦ − β
2

2
= 45◦ − β

4

∠FIK =
∠FIS

2
=

90◦ − β
2

2
= 45◦ − β

4

Оттук следва, че �FIK ∼ TKI2, и от подобието получаваме r · r2 =
FK ·KT = FK2. Намираме отношенито между радиусите:

r2
r

=
FK2

r

r
= (

FK

r
)2 = tan2∠FIK = tan2 (45◦ − β

4
)

Аналогично извеждаме отношенията
r1
r

и
r3
r

, откъдето е достатъчно да
докажем, че

tan2 (45◦ − α

4
) + tan2 (45◦ − β

4
) + tan2 (45◦ − γ

4
) ≥ 1

Имаме
d2

dx2
tan2 x =

2(1 + 2 sin2 x)

cos4 x
> 0 за x ∈ (0,

π

4
), т.е. tan2 x е изпък-

нала функция в дадения интервал. Като имаме предвид това, можем да
приложим неравенството на Йенсен:

1

3
· tan2 (45◦ − α

4
) +

1

3
· tan2 (45◦ − β

4
) +

1

3
· tan2 (45◦ − γ

4
)

Й
≥

Й
≥ tan2(

1

3
· (45◦ − α

4
+ 45◦ − β

4
+ 45◦ − γ

4
)) = tan2 30◦ = (

√
3

3
)2 =

1

3

Като умножим по 3 двете страни, достигаме до търсеното неравенство, с
което доказателството е завършено.
Второ решение

От I1L‖IK имаме
AI1
AI

=
I1L

IK
(Талес). Като заместим с r и r1 получаваме

AI1
AI1 + r + r1

=
r1
r

, откъдето намираме AI1 = r1 · r + r1
r − r1

. Сега sin
α

2
=

I1L

AI1
=

r − r1
r + r1

(след като съкратим на r1) и ако означим
r1
r

с a1, достигаме

до sin
α

2
=

1− a1
1 + a1

. Последното е еквивалентно на sin
α

2
· (1 + a1) = 2 −

(1 + a1), или 1 + a1 =
2

1 + sin α
2

. По същия начин разсъждаваме за a2 и

a3. Искаме да докажем, че a1 + a2 + a3 ≥ 1; като заместим с полученото
за ai и разделим на 2, неравенството става еквивалентно на:

1

1 + sin α
2

+
1

1 + sin β
2

+
1

1 + sin γ
2

≥ 2
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приложим неравенството на Йенсен:

1

3
· tan2 (45◦ − α

4
) +

1

3
· tan2 (45◦ − β

4
) +

1

3
· tan2 (45◦ − γ

4
)

Й
≥

Й
≥ tan2(

1

3
· (45◦ − α

4
+ 45◦ − β

4
+ 45◦ − γ

4
)) = tan2 30◦ = (

√
3

3
)2 =

1

3

Като умножим по 3 двете страни, достигаме до търсеното неравенство, с
което доказателството е завършено.
Второ решение

От I1L‖IK имаме
AI1
AI

=
I1L

IK
(Талес). Като заместим с r и r1 получаваме

AI1
AI1 + r + r1

=
r1
r

, откъдето намираме AI1 = r1 · r + r1
r − r1

. Сега sin
α

2
=

I1L

AI1
=

r − r1
r + r1

(след като съкратим на r1) и ако означим
r1
r

с a1, достигаме

до sin
α

2
=

1− a1
1 + a1

. Последното е еквивалентно на sin
α

2
· (1 + a1) = 2 −

(1 + a1), или 1 + a1 =
2

1 + sin α
2

. По същия начин разсъждаваме за a2 и

a3. Искаме да докажем, че a1 + a2 + a3 ≥ 1; като заместим с полученото
за ai и разделим на 2, неравенството става еквивалентно на:

1

1 + sin α
2

+
1

1 + sin β
2

+
1

1 + sin γ
2

≥ 2

Прилагаме неравенството на Коши-Шварц:

1

1 + sin α
2

+
1

1 + sin β
2

+
1

1 + sin γ
2

≥ 9

3 + sin α
2 + sin β

2 + sin γ
2

⇒ Достатъчно е да докажем, че sin
α

2
+ sin

β

2
+ sin

γ

2
≤ 3

2

(sin
α

2
+ sin

β

2
) + sin

γ

2
= 2 sin

α+ β

4
cos

α− β

4
+ cos

α+ β

2
≤

≤ 2 sin
α+ β

4
+ 1− 2 sin2

α+ β

4

Като положим sin
α+ β

4
= x, лесно се вижда, че 2x+1−2x2 ≤ 3

2
, защото

последното е еквивалентно на (2x− 1)2 ≥ 0.
Задача 5. Отговор: 34
Ще наричаме преместване хода, при който един от играчите поставя ня-
кой от гостите на стол c и кара някой от седналите на c − 1 или c + 1
(приемаме, че такъв има) да стане. Да отбележим, че ако Ан направи
преместване, то Боб може да направи обратното преместване и да вър-
не играта в същата позиция.
Нека Боб е разделил столовете в началото на 33 групи по 3 последова-
телни стола. Стратегията му е следната: ако Ан направи преместване,
Боб връща позицията; ако Ан добави гост (без да кара друг да става) в
крайното поле на някоя група, Боб прави преместване така, че да бъде
зает столът в средата на групата; ако Ан добави гост в средата на ня-
коя група, Боб добавя друг в средата на някоя незаета група (ако такава
има). Така Боб гарантира, че седналите са в центъра на групите.
Да разгледаме момента, в който са заети средите на всичките 33 групи.
Ако Ан е на ход, тя може да направи единствено преместване, при което
Боб връща позицията ⇒ броят седнали хора ще е 33. Ако Боб е на ход,
той трябва да направи преместване в някоя от групите, при което Ан
може да сложи 34-ти човек в другия край на групата. Сега Боб прави об-
ратното преместване на миналия си ход и от тази позиция Ан вече може
да прави само премествания, които Боб връща. С това Боб ограничава
броя на седналите до 34.
Ще докажем, че Ан може да постави 34 гости. Ако вземем разделянето
на 33 групи от по 3 стола на Боб, Ан може да гарантира, че във всяка
група има седнал човек, като поставя гост в центъра на незаетите групи,
с което може да си осигури поне 33 седнали. Да забележим, че броят на

Задача 5. Отговор: 34
Ще наричаме преместване хода, при който един от играчите поставя ня- 
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то Боб може да направи обратното преместване и да вър- не играта в същата 
позиция.

Нека Боб е разделил  столовете  в началото на 33 групи по 3 последова- 
телни стола. Стратегията му е следната:   ако Ан направи преместване, Боб 
връща позицията; ако Ан добави гост (без да кара друг да става) в крайното 
поле на някоя група, Боб прави преместване така, че да бъде зает столът в 
средата на групата; ако Ан добави гост в средата на някоя група, Боб добавя 
друг в средата на някоя незаета група (ако такава има). Така Боб гарантира, че 
седналите са в центъра на групите.
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Да разгледаме момента, в който са заети средите на всичките 33 групи. 
Ако Ан е на ход, тя може да направи единствено преместване, при което 
Боб връща позицията и броят седнали хора ще е 33. Ако Боб е на ход, той 
трябва да направи преместване  в някоя от групите, при което Ан може да 
сложи 34-ти човек в другия край на групата. Сега Боб прави обратното 
преместване на миналия си ход и от тази позиция Ан вече може да прави 
само премествания, които Боб връща. С това Боб ограничава броя на сед-
налите до 34.

Ще докажем, че Ан може да постави 34 гости. Ако вземем разделянето 
на 33 групи от по 3 стола на Боб, Ан може да гарантира, че във всяка група 
има седнал човек, като поставя гост в центъра на незаетите групи, с което 
може да си осигури поне 33 седнали. Да забележим, че броят на седналите 
гости на всеки ход или остава същият, или се увеличава  с 1. Нека сега раз-
гледаме момента, в който Ан не може да добави повече хора. Ако на кръга 
вече има 34 човека, сме готови. Да допуснем, че седналите са 33 и няма 
последователност от три незаети стола (иначе Ан поставя 34-тия човек в 
средата на тази последователност). ⇒ Седналите гости ще са разположени 
през две празни места. Считаме, че те се намират  в центровете на 33-те 
групи от по 3 стола и ще наричаме тази позиция лоша. Ще видим как тряб-
ва да играе Ан, за да избегне лоша позиция. Имаме два варианта за хода на 
Боб, след който Ан може да попадне в нея. 

Вариант  1 Боб е добавил  33-тия човек в средата на оставащата група, 
тоест на предния си ход Ан е поставила  човек в средата на някоя от дру-
гите групи. Нека вместо това тя го постави в единия край на групата (X1). 
Получава  се следната конфигурация:

седналите гости на всеки ход или остава същият, или се увеличава с 1.
Нека сега разгледаме момента, в който Ан не може да добави повече хора.
Ако на кръга вече има 34 човека, сме готови. Да допуснем, че седналите
са 33 и няма последователност от три незаети стола (иначе Ан поставя
34-тия човек в средата на тази последователност). ⇒ Седналите гости ще
са разположени през две празни места. Считаме, че те се намират в цен-
тровете на 33-те групи от по 3 стола и ще наричаме тази позиция лоша.
Ще видим как трябва да играе Ан, за да избегне лоша позиция. Имаме
два варианта за хода на Боб, след който Ан може да попадне в нея:
Вариант 1 Боб е добавил 33-тия човек в средата на оставащата група,
тоест на предния си ход Ан е поставила човек в средата на някоя от дру-
гите групи. Нека вместо това тя го постави в единия край на групата
(X1). Получава се следната конфигурация:

X X X1 X2 X

Да отбележим, че има незаета последователност от 5 стола (петорка).
Ако Боб добави нов човек, Ан няма да се окаже в лоша позиция. Ако
Боб направи преместване, така че зает да стане столът отдясно на X1,
Ан поставя човек в средата на петорката, с което Боб попада в лоша
позиция и след хода му Ан може да разполжи 34-тия човек. Ако Боб
направи преместване на X2 в лявото поле, се освобождава друга после-
дователност от 3 незаети стола, в чиято среда Ан слага 33-тия човек, и
тъй като има петорка, Боб не може да докара Ан до лоша позиция. В
случай че Боб не премести X1 или X2, Ан слага на хода си в средата на
тройката незаети между X1 и X2 и има последователност от поне 4 не-
заети стола от петорката преди следващия ход на Боб, поради което тя
няма да се озове в лоша позиция след хода му. Оставяме на читателите
да разгледат случая, в който, преди Ан да сложи 32-рия човек, гостите
седят през две и има поредица от 8 незаети стола. Случаят се решава
аналогично.
Вариант 2 Боб е направил преместване, с което Ан е попаднала в лоша
позиция. Тогава след предходния ход на Ан позицията трябва да е била
като по-горе, само че без петорка (c O не бележим седнал човек):

X X2 X1 O X X

Ако на хода си Ан е поставила човек на X1, нека вместо това го постави
на дясното поле, при което Боб ще е в лоша позиция. Ако Ан е играла
на X2, нека вместо на това място постави човек на O. Ако пък е играла,
слагайки някой от другите гости, нека вместо това постави госта така,

Да отбележим, че има незаета последователност  от 5 стола (петорка). 
Ако Боб добави нов човек, Ан няма да се окаже  в лоша позиция. Ако Боб 
направи преместване, така че зает да стане столът отдясно на X1, Ан поста-
вя човек в средата на петорката, с което Боб попада в лоша позиция и след 
хода му Ан може  да разполжи 34-тия човек. Ако  Боб направи преместване 
на X2  в лявото  поле, се освобождава  друга последователност от 3 незаети 
стола, в чиято среда Ан слага 33-тия човек, и тъй като има петорка, Боб не 
може да докара Ан до лоша позиция. В случай че Боб не премести X1  или 
X2, Ан слага на хода си в средата на тройката незаети между X1  и X2  и има 
последователност от поне 4 незаети стола от петорката преди следващия ход 
на Боб, поради което тя няма да се озове в лоша позиция след хода му. Оста-
вяме на читателите да разгледат случая, в който, преди Ан да сложи 32-рия 
човек, гостите седят през две и има поредица от 8 незаети стола. Случаят се 
решава аналогично.
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Вариант 2 Боб е направил  преместване,  с което Ан е попаднала  в лоша 
позиция. Тогава след предходния  ход на Ан позицията трябва да е била като 
по-горе, само че без петорка  (c O не бележим седнал човек):

седналите гости на всеки ход или остава същият, или се увеличава с 1.
Нека сега разгледаме момента, в който Ан не може да добави повече хора.
Ако на кръга вече има 34 човека, сме готови. Да допуснем, че седналите
са 33 и няма последователност от три незаети стола (иначе Ан поставя
34-тия човек в средата на тази последователност). ⇒ Седналите гости ще
са разположени през две празни места. Считаме, че те се намират в цен-
тровете на 33-те групи от по 3 стола и ще наричаме тази позиция лоша.
Ще видим как трябва да играе Ан, за да избегне лоша позиция. Имаме
два варианта за хода на Боб, след който Ан може да попадне в нея:
Вариант 1 Боб е добавил 33-тия човек в средата на оставащата група,
тоест на предния си ход Ан е поставила човек в средата на някоя от дру-
гите групи. Нека вместо това тя го постави в единия край на групата
(X1). Получава се следната конфигурация:

X X X1 X2 X

Да отбележим, че има незаета последователност от 5 стола (петорка).
Ако Боб добави нов човек, Ан няма да се окаже в лоша позиция. Ако
Боб направи преместване, така че зает да стане столът отдясно на X1,
Ан поставя човек в средата на петорката, с което Боб попада в лоша
позиция и след хода му Ан може да разполжи 34-тия човек. Ако Боб
направи преместване на X2 в лявото поле, се освобождава друга после-
дователност от 3 незаети стола, в чиято среда Ан слага 33-тия човек, и
тъй като има петорка, Боб не може да докара Ан до лоша позиция. В
случай че Боб не премести X1 или X2, Ан слага на хода си в средата на
тройката незаети между X1 и X2 и има последователност от поне 4 не-
заети стола от петорката преди следващия ход на Боб, поради което тя
няма да се озове в лоша позиция след хода му. Оставяме на читателите
да разгледат случая, в който, преди Ан да сложи 32-рия човек, гостите
седят през две и има поредица от 8 незаети стола. Случаят се решава
аналогично.
Вариант 2 Боб е направил преместване, с което Ан е попаднала в лоша
позиция. Тогава след предходния ход на Ан позицията трябва да е била
като по-горе, само че без петорка (c O не бележим седнал човек):

X X2 X1 O X X

Ако на хода си Ан е поставила човек на X1, нека вместо това го постави
на дясното поле, при което Боб ще е в лоша позиция. Ако Ан е играла
на X2, нека вместо на това място постави човек на O. Ако пък е играла,
слагайки някой от другите гости, нека вместо това постави госта така,

Ако на хода си Ан е поставила  човек на X1, нека вместо това го поста-
ви на дясното поле, при което Боб ще е в лоша позиция. Ако Ан е играла 
на X2, нека вместо на това място постави човек на O. Ако пък е играла, 
слагайки някой от другите гости, нека вместо това постави госта така, че 
да седи през едно, а не през две места от съседния седящ човек. И в двата 
случая има две двойки хора, седящи през едно, тоест с хода си Боб не може 
да вкара Ан в лоша позиция. Така Ан си гарантира 34 седящи.

Задача 6. Нека α1, α2, ..., αn  са комплексните корени на полинома P (x). 
Първо ще докажем следното твърдение: ако P (x) не може да се представи 
като произведение на два полинома с рационални коефициенти,  той е ми-
нимален полином за всеки от корените си. Да допуснем противното, т.е. 
за някой корен αj  минималният му полином  е P1. Като заместим x с αj  в  
P (x) = P1(x)•R(x)+T (x), получаваме T (αj ) = 0, и тъй като степента на T е по-
ниска от тази на P1, а P1 е минимален  за αj, то T (x) трябва да е равен  на 0. 
Последното обаче няма как да бъде изпълнено, тъй като P е неразложим,  и 
допускането ни е грешно. Вследствие заключаваме и че всички корени на 
P са различни (ако има кратен корен, той трябва да е корен и на производ-
ната на P , което е в противоречие с твъдението).

а) Ако P (x) дели P (Q(x)), трябва Q(αk ) също да е корен на P (x) за всяко 
k = 1, 2, ...n (от P (αk ) = 0 ⇒ P (Q(αk )) = 0). Оттук следва, че стойностите 
на Q в α1, α2, ..., αn  образуват редица αi1 , αi2 , ..., αin, всеки член на която е 
корен на P (не задължително различни). Броят на тeзи редици е n и всяка 
от тях определя единствен полином Q (иначе от α1, α2, ..., αn – различни ⇒ 
съществуват два различни полинома със степен по-малка от n, които мина-
ват през n фиксирани точки,  а това е  невъзможно). Следователно броят на 
възможните полиноми Q(x) не надвишава nn.

б) Както  отбелязахме в предната подточка, за всеки полином Q, който 
изпълнява условието, Q(α1) трябва да е равно на αi за някое i. Същестува 
обаче най-много един полином Q със степен, по-малка от n и рационални 
коефициенти,  такъв че Q(α1)  = αj . В противен случай, ако Q1(α1)  = Q2(α1)  
= αj , α1  ще е корен на ненулевия полином Q1 − Q2, който е с рационални 
коефициенти и степен, по-малка от n, а това е в противоречие с твърдение-
то, че P  е минимален за α1. С това броят на възможните полиноми Q(x) не 
надвишава n.
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