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РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 1/2016

Задача 1. Целочислените редици { } 1n n
x ∞

=
 и { } 1n n

y ∞

=
 са дефинирани чрез 

равенствата 1 1x a= − , 1 1y a= + , 1. 1n nx a x a−= + − , 1. 1n ny a y a−= − + , при 
2n ≥ .

а) Да се докаже, че за всяко цяло число a  точно едно от числата nx , ny  и 

( )1
2 n nx y+  се дели на 3.

б) Да се определят целите числа a , за които nx  и ny  са взаимно прости 
числа за всяко естествено число n .

Христо Лесов – Казанлък

Решение: дадените рекурентни равенства представяме по следния на-
чин: ( )11 1n nx a x −+ = +  и ( )11 1n ny a y −− = − . От тях получаваме последо-
вателно ( )1 21 1n nx a x− −+ = +  и ( )1 21 1n ny a y− −− = − , …, ( )2 11 1x a x+ = +  
и ( )2 11 1y a y− = − . След почленно умножаване на съответните равен-
ства за отделните редици намираме равенствата: ( )1

11 1n
nx a x−+ = +  и 

( )1
11 1n

ny a y−− = − . Оттук следва, че 1n
nx a= −  и 1n

ny a= + . Нека a  е 
цяло число. Тъй като nx , ( )1

2 n nx y+  и ny  са три последователни числа, точ-

но едно от тях се дели на 3 . С това твърдение а) е доказано. По-нататък от 
получените за nx  и ny  равенства следва, че ако a  е нечетно число, то nx  и 

ny  са четни за всяко естествено число n . Ако a  е четно, то nx  и ny  са не-
четни и е изпълнено равенството 2n nx y− = . Оттук следва, че най-големият 
общ делител на nx  и ny  е делител на 2 . Тъй като тези числа са нечетни, то 
най-големият им общ делител е 1. Затова при всяко естествено число n  и 
всяко четно число a  числата nx  и ny  са взаимно прости. С това задачата е 
решена.

Задача 2. Един изпъкнал четириъгълник се нарича хармоничен, ако е впи-
сан в окръжност и произведенията на срещуположните му страни са равни 
помежду си. Нека ABCDEF  е изпъкнал шестоъгълник, в който четириъгъл-
ниците ABDF  и ACDE  са хармонични. Да се докаже, че средите M , N , 
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P  съответно на диагоналите AD , BE , CF  и пресечната точка Q  на BE  и 
CF  лежат на една окръжност.

Хаим Хаимов – Варна

Решение: в решението на задачата ще използваме следната
Лема. Ако ABCD  е хармоничен четириъгълник и U  е средата на ди-

агонала AC , то са изпълнени равенствата: 1) AUB AUD=  ; 2) 
21. .

4
BU DU AC= .

Доказателство. От теоремата на Птолемей . . .AB CD BC DA AC BD+ =  
за вписан четириъгълник и равенството . .AB CD BC DA=  от определе-

нието следва 2. . .AB CD AC BD= , което е еквивалентно с 
AB BD
AU CD

= . Ос-

вен това BAU BDC=   (вписани ъгли). Следователно ~ABU DBC∆ ∆ . 

Оттук AUB DCB=   и 
AU CD
BU BC

= . Аналогично се получава, че 

~UAD CBD∆ ∆ , откъдето AUD DCB=   и 
AU BC
DU CD

= . От равенствата 

между ъглите следва AUB AUD=  , а от равенствата на отношенията се 

получава 2 21. .
4

BM DM AM AC= = . С това лемата е доказана.

Преминаваме към решение на задачата. Прилагаме 1) от лемата към хар-
моничните четириъгълници ABDF  и ACDE  и получаваме съответно ра-
венствата AMB AMF=   и CMD EMD=  . След почленно събиране на 
тези равенства следва, че AMB CMD AMF EMD+ = +    .

Оттук BMC FME=  . Използвайки това равенство, получа-
ваме BME BMF FME BMF BMC FME= + = + =      , т.е. 

BME FME=  . Сега прилагаме 2) от лемата към ABDF  и ACDE  и по-

лучаваме съответно 21.
4

BM FM AD=  и 21.
4

EM CM AD= . Следователно 
BM EM
CM FM

= . От това равенство и последното равенство между ъгли следва, 

че ~BME CMF∆ ∆ . Тъй като MN  и MP  са съответни медиани в двата по-
добни триъгълника, то MNE MPF=  , т.е. MNE MPQ=  . Оттук след-
ва, че 180MNQ MPQ+ = °  . Последното равенство означава, че точките 
M , N , P  и Q  лежат на една окръжност.
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Задача 3. Да се намери множеството от точки M , двете допирателни през 
които към дадена елипса са перпендикулярни.

Милен Найденов – Варна

Решение: спрямо каноничната си координатна система Oxy елипсата има 

уравнение 
2 2

2 2 1x y
a b

+ = . Нека точката ( ),M ξ η  е от търсеното геометрично 

място и лежи върху допирателна l  с уравнение y kx n= + . От двете уравне-
ния следва квадратното уравнение ( ) ( )2 2 2 2 2 2 2 22 0a k b x a knx a n b+ + + − = . 
Правата l  е допирателна тогава и само тогава, когато дискриминантата 
на последното уравнение е нула. Следователно е изпълнено равенството 

2 2 2 2n a k b= + . Тъй като M l∈ , то k nη ξ= + . Затова 2 2 2k a k bη ξ− = ± + . 
След повдигане в квадрат на двете страни на последното равенство стигаме 
до квадратното спрямо k  уравнение ( )2 2 2 2 22 0a k k bξ ξη η− + + − = .

Ако 1k  и 2k  са корените на това уравнение, от формулите на Виет след-

ва, че 
2 2

1 2 2 2
bk k
a

η
ξ

−
=

−
. Тъй като 1k  и 2k  са ъгловите коефициенти на двете 

допирателни през M  и тези допирателни трябва да са перпендикулярни, то 
1 2 1k k = − . Оттук следва, координатите на M  удовлетворяват равенството 
2 2 2 2a bξ η+ = + . Последното е уравнение на окръжност с център O  и ра-

диус 2 2a b+ . Следователно търсеното геометрично място е окръжността, 
описана около правоъгълника, определен от върховите допирателни на елип-
сата.
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