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Abstract. The Clapeyron equation specifi es the variation of the pressure, P, with 
respect to the temperature, T, of a closed two-phase one component system at the phase 
boundary under conditions of thermodynamic equilibrium.  Even though in the context of 
the traditional derivation of this equation (as presented in most books on undergraduate/
postgraduate Physical Chemistry or Thermodynamics), Gm,i (P, T) (where i = 1 and 2) 
curves are not presented, the derivation involves the consideration of two points on each 
of these curves subject to the condition that the two phases are in equilibrium with each 
other.  Geometrically, this implies the separate movement from an initial to a fi nal point 
(in the neighborhood of the initial point) on the two Gm,i (P, T) (where i = 1 and 2) curves 
which incidentally are congruent at the phase boundary.  At fi rst glance, however, it is 
not trivial to geometrically (graphically) visualize this movement from the equations that 
are presented in the tradiational derivation of the Clapeyron equation, thereby, possibly 
causing a certain amount of confusion.  In the present work, a conceptually simpler and 
mathematically rigorous derivation of the Clapeyron Equation is presented where the 
quantity of interest that is considered is ∆Gm(P,T) = Gm,1(P,T) - Gm,2(P,T). ∆Gm(P,T) is 
equal to zero at the phase boundary and, thereby, d∆Gm(P,T) is also equal to zero at the 
phase boundary.  This key idea then makes it possible to focus on a single point in the 
∆Gm(P, T) curve that occurs at the phase boundary between the two phases in deriving the 
Clapeyron Equation and also to geometrically visualize the phase equilibrium situation. 
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The Clapeyron equation
The Clapeyron equation (Atkins & Paula, 2003) shown in Eq. (1) determines the 

variation in the pressure, P, with respect to the temperature, T, of a closed one compo-
nent system that contains two phases, 1 and 2, which are in equilibrium with each other.

(1)
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In Eq. (1), it is important to note that Sm represents the difference in molar entropies 
of the two phases namely, phase 1 and phase 2, while Vm represents the difference in 
molar volumes of these two phases. 

Relevant thermodynamic quantities
We now consider thermodynamic quantities that are of relevance in the derivation of 

the Clapeyron equation (1) as shown above. Gm is the molar Gibbs energy of the substance 
in a certain phase which is also equal to the chemical potential  of that substance in 
that phase. In a closed one component system both Gm and  can be expressed as shown 
by Eqs. (2) and (3), respectively.

Gm  = Gm  ( P,T ) (2)

 =   ( P,T ) (3)

Since the equivalence of both Gm and    has been pointed out above, it suffi ces that 
we can work with either quantity in the following text, and we shall choose to use Gm.  
From Eq. (2), employing the method of calculus (Barrante, 2004), we get Eq. (4).

(4)

From any of the physical chemistry texts, e.g. (Atkins & Paula, 2003; Castellan, 
1996; Engel & Reid, 2007), it can be ascertained that Eqs. (5) and (6) hold.  Here Sm 
and Vm are respectively the molar entropy and the molar volume of the system under 
consideration.

(5)

(6)

Key steps in the traditional derivation of the Clapeyron equation
The derivation of the Clapeyron equation can be found in many physical chemistry 

or thermodynamics texts (Atkins & Paula, 2003; Castellan, 1996; Engel & Reid, 2007; 
Blundell & Blundell, 2008; Kaufman, 2002). 
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The central tenet in these derivations is the recognition of the fact that at equilibrium 
Eq. (7) holds.

G m,1 = G m,2 (7)
   
In this equation Gm,i  (for i = 1 and 2) represents the phase boundary between phases 

1 and 2 at each point along the phase boundary.  Therefore, it is customary in the deriva-
tion of the Clapeyron equation (1) to consider Eq. (8).

Gm,1 + dGm,1 = G m,2 + dGm,2 (8)
   
It must be noted that in Eq. (8) it is presupposed that (Gm1,Gm,2 ) represents one particu-

lar point, a,  in the phase boundary between phases 1 and 2, while (Gm1 + dGm1,Gm,2  + d 
Gm2)   represents another point, b, in the phase boundary of these two phases.  However, 
point b is in the neighborhood of point a.  Nonetheless, the left hand side describes the 
variation of the molar Gibbs energy on one curve while the right hand side describes 
the variation of the molar Gibbs energy on another curve.  Incidentally, the two curves 
are congruent at the phase boundary for a closed one component system.  However, 
the two curves are typically described by different equations.  When Gm,i (P, T) (for i = 
1 and 2) curves are plotted against the variables P and T,we fi nd that any point on the 
line of intersection of these two curves which occurs at the phase boundary represents 
a cross-over. 

To the best of my knowledge, I have not seen the above facts explicitly stated in any 
of the relevant texts alluded to above. In these texts, Eq. (7) and (8) are used in a math-
ematical sense but the curves representing the molar Gibbs energy curves are ignored.  
Not being able to visualize this is a handicap of the derivations that are presented.  In 
this paper, therefore, I have made an attempt to capture the variation of the difference 
in the molar Gibbs energies of the two phases in question in the derivation of the Cla-
peyron equation and to provide a graphical representation of the situation under which 
the Clapeyron equation is derived.

It must be noted that from Eq. (7) and (8) we get Eq. (9) that then leads on to the Cla-
peyron equation (which will be derived fully in the next section using the new approach).

dGm,2 = dGm,2 (9)

New approach to the derivation of the Clapeyron equation
As has already been expressed in Eq. (7), we know that for two phases of a closed 

one component system to be in equilibrium, the molar Gibbs energy of the two phases 
must be equal.  Therefore, proceeding from Eq. (7) we get Eq. (10).
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Gm = Gm,1 Gm,2 = 0 (10)
  
We now focus attention on Gm and note that it is a constant which is equal to 0 in 

this particular case.  Eq. (11) follows from Eq. (10) because the differential of a constant 
is zero.  This can be verifi ed by studying a suitable mathematics text (Barrante, 2004).

dGm =  0 (11)

Fig. 1 is a plot of the variation of Gm with respect to P and T subject to the constraints 
imposed by Eqs. (10) and (11).  What this approach does is that it enables us to recognize 
both algebraically and geometrically that the quantities of interest are Gm and dGm which 
act as physical constraints that determine the phase boundary between phases 1 and 2.  

There are three key points to note at this stage: (1) The new approach makes it pos-
sible to comprehend both algebraically and geometrically the functional dependence of 
the phase boundary on the molar Gibbs energies of the two phases; (2) In this derivation 
we focus upon a single point in the phase boundary as represented by Fig. 1 without 
resorting to a mathematical excursion on what is the congruent region of two different 
curves- a point that may elude certain readers at least at a fi rst reading of the topic, and 
(3) Since the co-existence curve of the two phases 1 and 2 lies entirely on the PT plane, 
P and T are constrained to vary in such a way so as to ensure the validity of Eq. (11).

Fig. 1.  A diagrammatic representation of the locus of points on the ∆Gm (P, T) surface 
that corresponds to ∆Gm (P, T) = 0 and by extension to d∆Gm (P, T) = 0. Ph 1 and Ph 
2 represent the regions where phase 1 and phase 2, respectively, are the stable phases 
under conditions of equilibrium thermodynamics
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By making use of Eqs. (4), (5), (6) and (11), we get Eq. (12) where Sm,i and Vm,i 
represent the molar entropies and the molar volumes of the ith phase where i = 1 and 2.

 (Sm,1  Sm,2) dT + (Vm,1  Vm,2) dP = 0 (12)

Rearrangement of Eq. (12) yields Eq. (1) which is the Clapeyron equation.

(1)
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