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Abstract. The Clapeyron equation specifies the variation of the pressure, P, with
respect to the temperature, 7, of a closed two-phase one component system at the phase
boundary under conditions of thermodynamic equilibrium. Even though in the context of
the traditional derivation of this equation (as presented in most books on undergraduate/
postgraduate Physical Chemistry or Thermodynamics), G, , (P T) (where i = 1 and 2)
curves are not presented, the derivation involves the consideration of two points on each
of these curves subject to the condition that the two phases are in equilibrium with each
other. Geometrically, this implies the separate movement from an initial to a final point
(in the neighborhood of the initial point) on the two G, , (P, T) (where i = 1 and 2) curves
which incidentally are congruent at the phase boundary At first glance, however, it is
not trivial to geometrically (graphically) visualize this movement from the equations that
are presented in the tradiational derivation of the Clapeyron equation, thereby, possibly
causing a certain amount of confusion. In the present work, a conceptually simpler and
mathematically rigorous derivation of the Clapeyron Equation is presented where the
quantity of interest that is considered is AG, (PT) = ](PT) G,,(PT). AG (PT) is
equal to zero at the phase boundary and, thereby, dAG (P 7)is also equal to zero at the
phase boundary. This key idea then makes it poss1ble to focus on a single point in the
AG, (P, T) curve that occurs at the phase boundary between the two phases in deriving the
Clapeyron Equation and also to geometrically visualize the phase equilibrium situation.
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The Clapeyron equation

The Clapeyron equation (Atkins & Paula, 2003) shown in Eq. (1) determines the
variation in the pressure, P, with respect to the temperature, 7, of a closed one compo-
nent system that contains two phases, 1 and 2, which are in equilibrium with each other.

dP _AS, (1)
dT AV,
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In Eq. (1), it is important to note that AS, represents the difference in molar entropies
of the two phases namely, phase 1 and phase 2, while AV represents the difference in
molar volumes of these two phases.

Relevant thermodynamic quantities

We now consider thermodynamic quantities that are of relevance in the derivation of
the Clapeyron equation (1) as shown above. G, is the molar Gibbs energy of the substance
in a certain phase which is also equal to the chemical potential i of that substance in
that phase. In a closed one component system both G, and p can be expressed as shown
by Egs. (2) and (3), respectively.

G,=G, (PT) )

m

u=p(PT) 3)

Since the equivalence of both G, and [ has been pointed out above, it suffices that
we can work with either quantity in the following text, and we shall choose to use G, .
From Eq. (2), employing the method of calculus (Barrante, 2004), we get Eq. (4).

dG, = (aGm ] dT+[aG’” j dP 4)
or |, oP |,

From any of the physical chemistry texts, e.g. (Atkins & Paula, 2003; Castellan,
1996; Engel & Reid, 2007), it can be ascertained that Egs. (5) and (6) hold. Here S
and V  are respectively the molar entropy and the molar volume of the system under

consideration.
G
m — _S
( aT l 5 ©)

(6)
G, v
oP |,
Key steps in the traditional derivation of the Clapeyron equation
The derivation of the Clapeyron equation can be found in many physical chemistry

or thermodynamics texts (Atkins & Paula, 2003; Castellan, 1996; Engel & Reid, 2007;
Blundell & Blundell, 2008; Kaufman, 2002).
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The central tenet in these derivations is the recognition of the fact that at equilibrium
Eq. (7) holds.

G m,l =G m,2 (7)
In this equation G, ; (for i = 1 and 2) represents the phase boundary between phases
1 and 2 at each point along the phase boundary. Therefore, it is customary in the deriva-
tion of the Clapeyron equation (1) to consider Eq. (8).

1

Gm,l + dGm, =G + dGm,Z (8)

m,2

It must be noted that in Eq. (8) it is presupposed that (G, , G, ,) represents one particu-
lar point, a, in the phase boundary between phases 1 and 2, while (G, , +dG, .G, , +d
G, ,) represents another point, b, in the phase boundary of these two phases. However,
point b is in the neighborhood of point a. Nonetheless, the left hand side describes the
variation of the molar Gibbs energy on one curve while the right hand side describes
the variation of the molar Gibbs energy on another curve. Incidentally, the two curves
are congruent at the phase boundary for a closed one component system. However,
the two curves are typically described by different equations. When G (P, T) (for i =
1 and 2) curves are plotted against the variables P and 7,we find that ariy point on the
line of intersection of these two curves which occurs at the phase boundary represents
a cross-over.

To the best of my knowledge, I have not seen the above facts explicitly stated in any
of the relevant texts alluded to above. In these texts, Eq. (7) and (8) are used in a math-
ematical sense but the curves representing the molar Gibbs energy curves are ignored.
Not being able to visualize this is a handicap of the derivations that are presented. In
this paper, therefore, I have made an attempt to capture the variation of the difference
in the molar Gibbs energies of the two phases in question in the derivation of the Cla-
peyron equation and to provide a graphical representation of the situation under which
the Clapeyron equation is derived.

It must be noted that from Eq. (7) and (8) we get Eq. (9) that then leads on to the Cla-
peyron equation (which will be derived fully in the next section using the new approach).

dG, ,=dG, , ©)

New approach to the derivation of the Clapeyron equation

As has already been expressed in Eq. (7), we know that for two phases of a closed
one component system to be in equilibrium, the molar Gibbs energy of the two phases
must be equal. Therefore, proceeding from Eq. (7) we get Eq. (10).
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AG,=G, -G, ,=0 (10)

We now focus attention on AG, and note that it is a constant which is equal to 0 in
this particular case. Eq. (11) follows from Eq. (10) because the differential of a constant
is zero. This can be verified by studying a suitable mathematics text (Barrante, 2004).

dAG, = 0 (11)

Fig. 1 is a plot of the variation of AG, with respect to P and T subject to the constraints
imposed by Egs. (10) and (11). What this approach does is that it enables us to recognize
both algebraically and geometrically that the quantities of interestare AG, and dAG, which
act as physical constraints that determine the phase boundary between phases 1 and 2.

There are three key points to note at this stage: (1) The new approach makes it pos-
sible to comprehend both algebraically and geometrically the functional dependence of
the phase boundary on the molar Gibbs energies of the two phases; (2) In this derivation
we focus upon a single point in the phase boundary as represented by Fig. 1 without
resorting to a mathematical excursion on what is the congruent region of two different
curves- a point that may elude certain readers at least at a first reading of the topic, and
(3) Since the co-existence curve of the two phases 1 and 2 lies entirely on the PT plane,
P and T are constrained to vary in such a way so as to ensure the validity of Eq. (11).

AGm

AGm=0; dAGm =0

Al'ﬁﬂ!' Ph2
(0,0,0)

P

Fig. 1. A diagrammatic representation of the locus of points on the AG, (P, T) surface
that corresponds to AG, (P, T) = 0 and by extension to dAG, (P, T) = 0. Ph 1 and Ph
2 represent the regions where phase 1 and phase 2, respectively, are the stable phases
under conditions of equilibrium thermodynamics
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By making use of Egs. (4), (5), (6) and (11), we get Eq. (12) where S, ;and V, .
represent the molar entropies and the molar volumes of the i phase where i = 1 and 2.

-, —=8,)dT+V, =V, )dP=0 (12)

ml

Rearrangement of Eq. (12) yields Eq. (1) which is the Clapeyron equation.
a5,
dT AV, (1
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