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Abstract. This study explores the canonical partition function of both trans-
lational and rotational motion quantum mechanically and in the semi-classical limit 
(high temperature limit) at all conditions, including all temperatures. The treatment 
of physical chemistry textbooks of the translational and rotational partition functions 
is commented on. Exact quantum mechanical closed-form expressions, which are 
not available in any physical chemistry textbook, or the in literature for that matter, 
are reported for both types of partition functions at a wide range of temperatures and 
conditions are derived.
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Introduction
Since concepts and ideas in quantum theory are often quite abstract, especially 

when students of physical chemistry are fi rst exposed to the glorious world of wave-like 
particles, a simple example like a particle-in-a-box model is normally used to facilitate 
introducing the underlying quantum mechanical principles and the related calculations.

The particle-in-a-box model is central to students’ quantum theory concepts grasp-
ing as many ideas, principles, and fundamentals are drawn on it when students learn 
about the quantum mechanics of the microscopic world. Having covered the underlying 
principles that emerge when teaching a particle-in-a-box model (translational motion), 
students are introduced to the concept of partition function which imparts information 
on the number of quantum states accessible to the system at hand. Understanding a key 
quantity such as the canonical translational partition function (TPF)) of a system in 
equilibrium is essential to the understanding of important thermodynamics state func-
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tions for undergraduate physical chemistry students. The system that is typically used 
to model translational motion is particle in a box. 

All authors report the TPF in a closed form after having assumed that the trans-
lational energy levels are continuum, thereby justifying converting the sum over the 
translational states to an integral over these states. This approximation can be problematic 
as it is only valid if the de Broglie wavelength shorter than the container dimensions 
in which the particle is placed. Additionally, de Broglie wavelength must also be much 
smaller than the average separation of the constituent particles of the gas. It is intended 
in this study to fi ll in important physical rationales, along important mathematical steps, 
that are often left out by textbooks, add in important conditions, and supplement physical 
and mathematical corrections. 

The purpose of this work is twofold: presenting the TPF at a moderately simpler 
level and easier terms that suit undergraduate students, thereby precluding the advance 
mathematics published elsewhere (Toutounji, 2011a; 2011b). Second, raising awareness 
among physical chemistry instructors and students that is the widely used TPF in all 
textbooks is only an approximation and can be wrong at times. Finally, the exact quantum 
mechanical expression of the rotational partition function (RTF) for a particle rotating 
in two dimensions that is valid at all temperatures is also derived. 

Translational partition function, TPF (particle-in-a-box model)
Consider an atomic gas made of particles in a box of equal sides of length L. To 

make this report simple, it is assumed to be one-dimensional box (line) of length L. The 
energies of a particle-in-a-box with mass Min a one-dimensional box of length L are
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Note that the translational quantum number n cannot be zero, otherwise the ener-
gies and the wavefunctions will vanish. This is unphysical; that is, the particle has zero 
kinetic energy (zero momentum), and with Ψ0(x) = 0 it means no particle. Additionally, 
setting n = 0 violates Heisenberg uncertainty principle which states that that position 
and momentum cannot simultaneously be determined exactly: the momentum and the 
position here are exactly known if n is set equal to zero. Thus n can never be zero.

 The inaccurate treatment of physical chemistry textbooks
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The correct quantum translational partition function is given by
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 whereb is 1/kT, with k being the Boltzmann constant. Most of the physical 
chemistry textbooks turn the sum in Eq.(3)into an integral
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assuming that the translational energy levels are closely-spaced. (What if the energy 
levels were not closely spaced, as will be elucidated later on?) The subscripts q and c 
are to denote quantum mechanical and classical Z, respectively. Moreover, in order to 
get a closed-form expression for the quantum translational partition function, textbooks 
would replace the integral lower limit 1 in Eq.(4) by 0 without a concrete justifi cation
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Equating the lower limit of the integral to zero instead of unity is like setting n = 
0, whereby students might be misled to believe so. Under the stated conditions therein, 
this is an acceptable mathematical approximation but inaccurate physical gesture as n 
cannot be set to zero, vide supra. The reason we could get away with it mathematically 
at high temperatures is because in
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the second term in Eq.(6) is negligibly small at high temperatures.1)

There are other important conditions which most textbooks fail to point them out 
whereby Eq.(5) and Eq. (6) are inapplicable even at high temperatures: not only is the 
sum in Eq.(5) wrong to turn into an integral, but the integral from 0 to 1 in Eq.(6) is not 
negligible, making the approximation in Eq.(6) very inaccurate even at high tempera-
tures, vide infra.

Exact quantum mechanical treatment of TPF
First, I will look at the correct and exact evaluation of the sum in Eq.(3) which 
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will hold true at all conditions. Second, in case it is allowed to turn the sum into an 
integral, I shall briefl y comment on the exact analytic evaluation of the integral without 
neglecting the integral from 0 to 1 in Eq.(6).Starting with the expression in Eq.(3) and 
using the Poisson-summation formula (Schulman, 1996; Fernandez & Castro, 1996),2) 

one can obtain
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Assuming that energy levels form a near continuum (semi-classical approxima-
tion), the TPF reads by Eq. (6). While the fi rst integral in Eq.(6) gives
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and the second integral yields
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Here erf (.) denotes the error function
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Utilizing Eq.(9) and the defi nition of the complementary error function, erfc (.) -
( ) 1 ( )erfc z erf z= − (11)

gives
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Alternatively, 
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If the translational energy levels form a continuum spectrum (semiclassical ap-
proximation), then one may replace the sum with an integral in Eq.(14)
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One notes that
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in a fully classical environment, and not in a quantum mechanical one. Since this unity 
term is much less than numerous translational states (comparable to Avogadro’s number), 
it may thus be neglected, leading to Eq.(8).

 
Rotational partition functions, RPF (particle-on-a-ring model)
Consider a particle with moment of inertia I rotating in a circular path, the station-

ary energies of the particle read
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The two-dimensional quantum rotational partition function (RPF) is given by
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Where gm stands for the degeneracy of each quantum mechanical state m. Assuming all 
the two-dimensional rotational states are doubly degenerate, except for the ground state 
m = 0, Qrot reads
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 Equivalently, one may write
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The RPF is usually reported in almost all physical chemistry textbooks as semi-classical 
and not quantum mechanical, because the only quantum mechanical form for RPF is 
given in Eq.(20) which is not available for undergraduate students in any physical 
chemistry textbook except in this report. Typically done in textbooks for evaluating the 
two-dimensional RPF is as follows. Assuming closely spaced rotational levels at high 
temperatures, Qrot may be written as 
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Eq.(21) exhibits the RPF in the semi-classical limit. It is noteworthy that particle 
on-a-ring may be viewed as particle-in-a-box (line) bent into a circle by joining its ends. 
We are therefore looking at highly similar systems; that is, both are a free particle (zero 
potential energy) on a line and a free particle on a circle, which comes about by bending 
the line of length L and joining its ends. This “bending” is the reason for the presence of 
“2” out-front in Eq.(20) and Eq. (21) giving rise to a degeneracy of degree two. Upon 
looking more closely, therefore, one observes that the energies (kinetic energies) of both 
systems are essentially the same, except for the presence of the moment of inertia I for 
the rotational motion as opposed to the mass M for the linear translational motion. Fur-
thermore, one can argue the particle-on-a-ring may be envisaged as a particle-on-a-line 
across a mirror, as such the RPF reads almost identical to that of TPF

22. 2 1,rotQ I kT
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which is almost identical to that of TPF in Eq.(15), where 2p is the perimeter of the 
circle (like L in a particle-on-a-line) and the factor “2” at the very out front in Eq.(22) 
is to signify degeneracy, and the inertia moment I in Eq.(22) does the mass M for a 
particle-on-a-line as a linear motion; this correspondence between the rotational and 
translational motions stems from the fact that linear kinetic energy = p2/2M, whereas 
rotational kinetic energy = p2/2I. 

Interestingly, both the particle-on-a-ring and particle-in-a-box models have the 
simplest eigenfunctions and relatively uneasy quantum partition functions. On the 
contrary, quantum harmonic oscillator have relatively more complicated eigenfunc-
tions and straightforward partition function with a simple closed form that is valid at 
all temperatures. 
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NOTES
1. This case is reminiscent of the Morse oscillator in which case while the same mathemati-

cal assumption was illegitimate it was physically plausible (Toutounji, 2011a; 2011c).
2. For mathematical details cf. Toutounji (2011a; 2011c).
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