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Резюме. Разгледани са и подробно анализирани случаи на частица в 
едномерна правоъгълна яма – безкрайно дълбока и с крайна дълбочина. Като 
пример е анализирана адсорбция на водороден атом върху метална повърхност 
чрез качествено и точно решение на задачата.
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Въведение
Движението на частица в потенциално поле, формирано от участъци с по-

стоянна потенциална енергия, дава възможност да се изучат трите характерни 
задачи – за свързани състояния (дискретен спектър), за разсейване (непре-
къснат спектър) и т.н. квазистационарни състояния. На прости примери ще 
разгледаме всяка от изброените задачи, като ще направим необходимите об-
общения. Те могат да бъдат полезни при разглеждането на задачи с плавно 
променяща се потенциална енергия на частицата.

Фигура 1
На фиг. 1 е показана потенциална яма от твърде общ вид. Както знаем от 

част I, вълновата функция на частицата има специфичен вид в зависимост от 
енергията на частицата (Avramov & Marvakov 2020, 85 – 96). Тя е осцилираща 
функция в класически разрешената област и експоненциално затихва в класи-
чески забранената област. По този начин вероятността частицата да се окаже 
извън ямата при 10 E U< < , бързо клони към нула. Така тя се оказва лока-
лизирана основно в ямата. Такова състояние се нарича свързано състояние. 
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Безкрайно дълбока правоъгълна потенциална яма
Като най-прост пример ще разгледаме т.нар. безкрайно дълбока право-

ъгълна потенциална яма [2,3,4]. Тя се получава от ямата на фиг. 1, когато 
1 2,U U → ∞ . Аналитично такава яма се описва с израза

, 0 ,
( ) 0, 0 ,

, .

x
U x x a

x a

∞ <
= < <
 ∞ >

а графично е показана на фиг. 2.

		           I област	  III област
			      	      II област  

Фигура 2

Както се вижда, дъното на ямата е избрано да съответства на енергия 
0E = . Вълновата функция на частицата (само пространствената част, тъй 

като времевата част е еднаква и се определя от множителя exp( / )iEt−  , е

			 
I

II

III

ψ ( ), 0,
ψ( ) ψ ( ), 0 ,

ψ ( ), ,

x x
x x x a

x x a


  
 

 

като I IIIψ ( ) 0, ψ ( ) 0x x   . В областта II вълновата функция представлява су-
перпозиция на две вълни на Дьо Бройл с импулс 2p mE= , разпространя-
ващи се съответно по оста x  и в противоположна  на x  посока, т. е. 

			 
/ /

IIψ ( ) ipx ipxx Ae Be   .

Вълновата функция ψ(x) трябва да удовлетворява стандартните ус-
ловия – за еднозначност, за ограниченост и за непрекъснатост, кои-



166

Михаил Аврамов, Димитър Мърваков

то са нарушени при x = 0 и x = a. Удовлетворяването им се свежда до 
I II II IIIψ (0) ψ (0), ψ ( ) ψ ( )a a   , които са еквивалентни на
			   / /0, 0ipa ipaA B Ae Be−+ = + =  .
От първото условие следва B A= − , а второто се преписва във вида

2 sin 0.paiA =


Коефициентът А не може да бъде равен на нула, тъй като това би означава-
ло ψ(x) ≡ 0, т.е. отсъствие на частица в ямата. Затова трябва sin( / ) 0pa = , 
което е изпълнено при

(1)	
π , 1, 2, 3, ...np n n
a

   .

Стойността 0n =  е недопустима, тъй като води до ø ( ) 0x ≡ . Тогава за 
енергията на частицата намираме

(2)	
2 2

2
2

π , 1, 2, 3, ...
2nE n n

ma
   .

Пространствената част на вълновата функция в разглежданата задача има 
вида

0,
ψ ( ) 2 sin[(π / ) ],

0,
n nx iA n a x


 



 

като коефициентът А се определя от условието за нормировка на вълновата 
функция

2 2 22

0

ψ( ) 4 sin [(π / ) ] 2 1
a

n nx dx A n a x dx A a




     .

Следователно 
1

2nA
a

= , а фазовият множител остава неопределен. То-

гава можем да изберем π/2i
n n nA e A i A    , при което

(3)			 

0,

2ψ ( ) sin[(π / ) ],

0.

n x n a x
a



 


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Важна особеност на намерените възможни стойности на енергията (2) на 
частицата, образуващи нейния енергетичен спектър, е неговата дискретност 
(фиг. 3). Енергията се определя от стойностите на цялото число 1, 2, 3, ...n = , 
наречено квантово число, а процедурата за получаване на дискретния енерге-
тичен спектър – квантуване. 

Фигура 3

Ще отбележим, че в разгледаната задача квантуването възниква като резул-
тат от налагането на условията за непрекъснатост на вълновата функция на гра-
ниците на потенциалната яма. Съществува обща теорема за това, че енергията 
на частица винаги се квантува, когато частицата не може да се отдалечи в без-
крайност (частицата извършва финитно движение), т.е. вероятността частицата 
да се окаже на безкрайност, е нула. По такъв начин възникването на квантуване 
в микросвета е свързано с наличието на вълнови свойства на частиците, когато 
те се намират в ограничена област от пространството. Когато частицата може 
да се отдалечи на безкрайност, т.е. движението є е инфинитно, енергията на 
частицата не се квантува (Avramov & Marvakov 2020, 85 – 96).

На фиг. 3 схематично са показани няколко от най-ниско разположените 
енергетични нива (стойности на енергиите на частицата). Състоянието на 
частицата с вълнова функция ψ1(x,t), в което тя има най-ниската възможна 
енергия (в този случай 1n = ) се нарича основно състояние. Всички останали 
състояния с вълнови функции съответно 2 3 4ψ ( , ), ψ ( , ), ψ ( , ), ...x t x t x t   се на-
ричат възбудени: стойността 2n =  съответства на първото възбудено състоя-
ние, стойността 3n = – на второто възбудено състояние и т.н. 

Най-ниското енергетично ниво е с енергия 1 0E ≠ . В класическия случай 
минималната енергия на частицата е равна на нула и тя се намира неподвиж-
на на дъното на ямата. Такова състояние на покой в квантовия случай не съ-
ществува – частицата е в постоянно движение, проявявайки своите вълнови 
свойства. 
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Ще разгледаме по-подробно структурата на дискретния енергетичен спек-
тър на частицата в ямата. Разликата nE∆  между енергията на ( 1)n + -то и 
енергията на n -то енергетично ниво е

(4)			 
2 2

1 2

π (2 1)
2n n nE E E n

ma      .

Както се вижда от получения резултат, разстоянието между две съседни 
нива нараства с увеличаване на квантовото число n . Да сравним възможните 
стойности на nE∆  за електрон ( 319,1.10 kgm −= ) в два конкретни случая. 
Когато свободен електрон се намира в яма с широчина 0,01 ma = , напр. в 
парче метал, 153,7.10 (2 1) eVnE n−∆ ≈ + . В случай че широчината на ямата е 

101.10 ma −= , напр. електрон в атом, 37(2 1) eVnE n∆ ≈ + .  От друга страна, 
относителното разстояние между нивата е

2

2 1n

n

E n
E n

∆ +
= .

При увеличаване на квантовото число n  това отношение намалява и 

(5)			       	       
2n

n

E
E n

∆
≈

т.е. с нарастването на n  дискретността на енергетичния спектър играе все 
по-малка роля. Този резултат е проява на важния физически принцип, наречен 
принцип на съответствието, според който при големи стойности на квантово-
то число n , т. е. при n → ∞ , квантовата механика преминава в класическата 
механика. 

Ще разгледаме следния прост пример. Частица, намираща се в потенциал-
на яма с непроницаеми стени, излъчва фотон, като преминава от ниво с номер 
( 1)n +  на ниво с номер n . Да се намери връзката между честотата на фотона 
и класическата честота на трептене на частицата с енергия nE . При указания 
в условието преход се излъчва фотон с честота 

(1*)	 (1*)   
2

1, 2

πω (2 1)
2

n
n n

E n
ma


   , 

където е използвана формула (4). Класическа частица трепти в ямата с честота  

(2*)   
2πω
T

 ,        2 2
υ 2 n

a mT a
E

  . 

Като заместим енергията с израза (2) намираме 

(3*)   
2

2

πω n
ma

 . 

Нека да сравним 1,ωn n  с ω , като образуваме отношението им 

(4*)   1,ω 11 1
ω 2
n n

n
       при   n . 

Виждаме, че класическият случай се получава след граничен преход n  в 
квантовомеханичното решение на задачата. 
 Нека анализираме свойствата на вълновата функция (3) на частицата в 
безкрайно дълбоката правоъгълна потенциална яма. На фиг. 4 са показани графиките 
на функцията с различни стойности на n  само в ямата, тъй като извън нея тя е нула.  

   Фиг. 4 Фиг. 5 
Както се вижда, общото за вълновите функции е, че за всяка една от тях върху широчината 
на ямата се налагат цяло число полувълни на Дьо Бройл. Наистина, от условието за квантуване 
на импулса (1) и формулата на дьо Бройл / λp h  имаме  

   
π λ, 1, 2, 3, ...

λ 2n
hp n n a n

a
      , 

т.е.  възникват стоящи вълни аналогично на трептене на струна със закрепени краища.   
Вълновите функции с различни стойности на n  се различават съществено една от 
друга. Тези с нечетни номера имат стойност, различна от нула в средата на ямата, 
докато функциите с четни номера имат стойност, равна на нула в тази точка. Това 
означава, че тези с нечетни номера спрямо средата на ямата са симетрични функции 
на координатата, а функциите с четни номера са асиметрични функции на 
координатата.   
Съществува свойство на вълновите функции с определена енергия nE  на частицата, 

наричащо се осцилационна теорема, чиято същност се състои в следното. Вълновата 
функция, съответстваща на пореден номер n , се анулира в точките на интервала 

,
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.
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Нека да сравним ψn+1,n  с ψ, като образуваме отношението им

(4*)	

(1*)   
2

1, 2

πω (2 1)
2

n
n n
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Виждаме, че класическият случай се получава след граничен преход n  в 
квантовомеханичното решение на задачата. 
 Нека анализираме свойствата на вълновата функция (3) на частицата в 
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т.е.  възникват стоящи вълни аналогично на трептене на струна със закрепени 
краища.  

Вълновите функции с различни стойности на n  се различават съществе-
но една от друга. Тези с нечетни номера имат стойност, различна от нула в 
средата на ямата, докато функциите с четни номера имат стойност, равна на 
нула в тази точка. Това означава, че тези с нечетни номера спрямо средата на 
ямата са симетрични функции на координатата, а функциите с четни номера 
са асиметрични функции на координатата.  
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следното. Вълновата функция, съответстваща на пореден номер n , се анули-
ра в точките на интервала 0 x a< <  точно 1n −  пъти. Граничните точки не 
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влизат в тази съвкупност. На минималната енергия E1 съответства вълнова 
функция ψ1(x), която не се анулира нито веднъж в интервала 0 x a< <  (фиг. 
4). Това свойство се наблюдава във всички случаи, когато енергетичният спек-
тър на частицата е дискретен { }1 2 3, , ,...E E E  и има всеобщ характер. 

Ще намерим вероятността частицата да се намира в различни точки от 
ямата, тъй като извън ямата вероятността е нула. Като отчетем (3), имаме

2 2 π( ) ψ ( ) 2sinn n n
nx dxdW w x dx x dx
a a

     
 

 .

На фиг. 5 е показано разпределението на плътността на вероятността, т. е. 
2ψ ( )n x   за първите четири стойности на n . Както се вижда, плътността на 

вероятността се оказва съществено различна за различните стойности на n . 
Така в основното състояние, т.е. при 1n = , частицата с най-голяма вероятност 
се намира в средата на ямата, а в първото възбудено състояние, т.е. при 2n =
, вероятността частицата да се намира в средата на ямата, е равна на нула, но 
тя с равна вероятност може да се окаже или в лявата, или в дясната половина 
на ямата. Размерът на всяка област x∆ , в която вероятността за присъствие 
на частицата е отлична от нула, зависи от квантовото число n  и е равна на

(6)	
ax
n

∆ = .

От друга страна, импулсът p  на частицата няма определена стойност. За да 
получим разпределението на различните стойности на импулса на частицата 
в ямата, ще използваме принципа на суперпозицията (Karlov & Kirichenko 
2004). Ще представим вълновата функция на частицата чрез функциите с 
определена стойност на импулса, т.е. чрез вълните на дьо Бройл, което означава 
разлагане на вълновата функция (3) в интеграл на Фурие. Резултатът от това 
пресмятане е показан графически на фиг. 6, където е представена плътността 
на вероятността pw  за различните стойности на импулса p  в безкрайно

	

Фигура 6

дълбока правоъгълна потенциална яма при стойности на квантовото число  
1n = , 2n =  и 5n = . Както се вижда от фигурата, разпределението съдържа 
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безкраен брой възможни импулси. За всички състояния, освен това с мини-
мална енергия, плътността на вероятността има максимуми при np p= −  и  

np p= + , като π /np n a  . За състоянието с минимална енергия 1n =  стой-
ността на 1 π /p a   определя широчината на единствения максимум. Като 
груба оценка на характерния интервал от възможни стойности на импулса на 
частицата можем да приемем 

(7)	 ( ) 2n n np p p p∆ = − − = . 
Тогава можем да запишем  

2πa nx p h
n a

       .

Полученото съотношение 

(8) 	 ~x p∆ ∆   

изразява количествено съотношението за неопределеност на Хайзенберг. 
То показва, че координатата и импулсът на частицата не могат да имат ед-
новременно определени стойности. Освен това, ако ограничаваме по-силно 
областта на движение на частицата, т. е. намаляваме размерът x∆  на областта 
на възможното є местоположение, нараства неопределеността p∆  на стой-
ностите на импулса и обратно, ако увеличаваме размера x∆  на областта на 
възможното местоположение на частицата, намалява неопределеността p∆  
на стойностите на импулса, като тяхното произведение трябва да бъде от по-
рядъка на  .

	 Изводите, които бяха направени при анализа на тази частна задача, за 
квантуване на енергията на частица в безкрайно дълбока правоъгълна потен-
циална яма и свойствата на вълновата функция са твърде общи по характер и 
приложими в случаи, когато потенциалната енергия на частицата има ямопо-
добен характер.

Пример. Адсорбция на атомарен водород от метална повърхност 
(SZOKF. 2001)

Процесът на адсорбция на атомарен водород от повърхността на метал 
може да бъде описан като захващане на водороден атом от потенциална яма 

)(xU , която се задава с израза

ax
ax

x
UxU

≥
<<

≤








−
∞

= 0
0

,
,0

,
)( 0

и графически има вида (вж. фиг. 7).
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Фигура 7 

Оста 0x  е перпендикулярна на повърхността на метала, която се намира 
при 0=x , а обемът му – при 0<x . Широчината на ямата е 



A8=a .  
Ще оценим дълбочината 0U  на ямата, ако от експеримента се знае, че 

енергията на десорбция на водородния атом meV086,0=D . Тя се определя 
като разлика между минималната енергия на атома, когато е свободен, и ми-
нималната му енергия, когато е прилепнал към повърхността на метала, т.е. е 
захванат от ямата. 

Захващането на водородния атом от ямата е квантов ефект. Първоначално 
ще оценим енергията на водородния атом в ямата		

0

2

2
U

M
pE −= ,

вълна, както в случая на безкрайно дълбока правоъгълна потенциална яма. 
Тогава, като отчетем вълновите свойства на атома и приемем, че в ямата се 
формира стояща вълна, възможните стойности на импулса са

a
npn
π

= .           max1, 2, . . .,n n= .

За минималната енергия на водородния атом в ямата ( 1=n ) имаме

02

22

min 2
U

Ma
E 


 ,

откъдето следва
min0 ED −= ,

(9)			   meV4,0
2 2

22

0  D
Ma

U 
 ,

като е отчетено, че масата на водородния атом е kg10.66,1 27M  .
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Получената оценка е приближена, защото не отчита, че в областта x a>  
вълновата функция е различна от нула, като експоненциално затихва при 

отдалечаване от ямата. Сега ще направим точно решение на задачата с по-
мощта на предложения в (Avramov & Marvakov 2020) метод. Атомът може 
да бъде локализиран в ямата, ако енергията му E  удовлетворява условието 

0 0U E− < < . В този случай вълновата функцията има вида			 

I

II

III

ψ ( ), 0,
ψ( ) ψ ( ), 0 ,

ψ ( ), .

x x
x x x a

x x a


  
 

 

Функцията Iψ ( ) 0x   , тъй като при 0x <  потенциалната енергия 
( )U x = +∞ . В областта 0 x a< <  импулсът е

(10)	 0 02 ( ( )) 2 ( )p m E U m U E= − − = − ,

при което вълновата функция (с отчитане на принципа на суперпозицията) 
има вида

(11)	 / /
IIψ ( ) ipx ipxx Ae Be   .

Тъй като за x a>  и 0E >  функцията / /
IIIψ ( ) ip x ip xx Ce De     (според 

принципа на суперпозицията и 2p mE′ = ), при преминаване към енергия 

от интервала 0 0U E− < <  имаме 2p i m E iq′ = =  и вълновата функция е

(12)	 / /
IIIψ ( ) qx qxx Ce De   .

Вълновата функция ψø ( )x  трябва да удовлетворява стандартните условия 
за еднозначност, ограниченост и непрекъснатост. Тъй като  функцията ψIIIø ( )x  
при x → ∞  неограничено нараства, за да осигурим ограниченост на функци-
ята, е достатъчно да положим коефициента 0D = . Непрекъснатостта и ед-
нозначността на ψø ( )x  при 0x =  изисква налагането на условието

I IIψ (0) ψ (0) 0 A B     , 

при което функцията ψ IIø ( )x  може да се запише във вида

(13)	 ψ / /
IIø ( ) ( ) 2 sin sinipx ipx px pxx A e e iA A−    ′= − = =   

   
 

 

.

Условията за непрекъснатост на вълновите функции и техните производни 
при x a=  водят до следната система уравнения:
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/
II IIIψ ( ) ψ ( ) sin qapaa a A Ce    

 
 

/
II IIIψ ( ) ψ ( ) cos qapaa a pA qCe       

 
 

Като разделим второто уравнение на първото, получаваме равенството

(14)	 ( )ctg /p pa q= − ,

което е уравнение за определяне на енергетичния спектър на частицата в яма-
та при указани нейните параметри – 0,a U . 

Уравнението (14) е трансцендентно и енергията E  на частицата не може 
да бъде намерена в явен вид. Ще покажем, че енергетичният спектър на час-
тицата е дискретен, т.е. енергията на частицата в ямата се квантува. За тази 
цел ще препишем (14) в нови променливи:

ξ , ηpa qa
   .

Тогава уравнението (14) придобива вида

(15)	

Тъй като за x a  и 0E   функцията / /
IIIψ ( ) ip x ip xx Ce De    (според принципа на 

суперпозицията и 2p mE  ), при преминаване към енергия от интервала 

0 0U E    имаме 2p i m E iq    и вълновата функция е 

(12)   / /
IIIψ ( ) qx qxx Ce De  . 

Вълновата функция ψ( )x  трябва да удовлетворява стандартните условия за 

еднозначност, ограниченост и непрекъснатост. Тъй като  функцията IIIψ ( )x  при x  

неограничено нараства, за да осигурим ограниченост на функцията, е достатъчно да 
положим коефициента 0D  . Непрекъснатостта и еднозначността на ψ( )x  при 0x   

изисква налагането на условието 
   I IIψ (0) ψ (0) 0 A B    ,  

при което функцията IIψ ( )x  може да се запише във вида 

(13)   / /
IIψ ( ) ( ) 2 sin sinipx ipx px pxx A e e iA A          

   
. 

Условията за непрекъснатост на вълновите функции и техните производни при x a  
водят до следната система уравнения: 

   /
II IIIψ ( ) ψ ( ) sin qapaa a A Ce    

 
, 

   /
II IIIψ ( ) ψ ( ) cos qapaa a pA qCe       

 
. 

Като разделим второто уравнение на първото, получаваме равенството 
(14)    ctg /p pa q  , 

което е уравнение за определяне на енергетичния спектър на частицата в ямата при 
указани нейните параметри – 0,a U .  

 Уравнението (14) е трансцендентно и енергията E  на частицата не може да 
бъде намерена в явен вид. Ще покажем, че енергетичният спектър на частицата е 
дискретен, т.е. енергията на частицата в ямата се квантува. За тази цел ще препишем 
(14) в нови променливи: 

   ξ , ηpa qa
  . 

Тогава уравнението (14) придобива вида 

(15)   η ξctgξ  ,  като    
2

2 2 2.0
2

2ξ η .MU a R    

Тъй като ξ > 0, η > 0 , съществен за анализа на решенията на (15) е първи квадрант на 
координатната система ξ , η . Функцията η ξctgξ   има клонове в първи квадрант 
съответно в интервалите 

   
π 3π 5πξ < π, ξ < 2π, ξ < 3π
2 2 2
    и т. н. 

Тъй като ξ > 0, η > 0  , съществен за анализа на решенията на (15) е първи 
квадрант на координатната система ξ,η. Функцията η ξctgξ    има клонове 
в първи квадрант съответно в интервалите

Тъй като за x a  и 0E   функцията / /
IIIψ ( ) ip x ip xx Ce De    (според принципа на 

суперпозицията и 2p mE  ), при преминаване към енергия от интервала 

0 0U E    имаме 2p i m E iq    и вълновата функция е 

(12)   / /
IIIψ ( ) qx qxx Ce De  . 

Вълновата функция ψ( )x  трябва да удовлетворява стандартните условия за 

еднозначност, ограниченост и непрекъснатост. Тъй като  функцията IIIψ ( )x  при x  

неограничено нараства, за да осигурим ограниченост на функцията, е достатъчно да 
положим коефициента 0D  . Непрекъснатостта и еднозначността на ψ( )x  при 0x   

изисква налагането на условието 
   I IIψ (0) ψ (0) 0 A B    ,  

при което функцията IIψ ( )x  може да се запише във вида 

(13)   / /
IIψ ( ) ( ) 2 sin sinipx ipx px pxx A e e iA A          

   
. 

Условията за непрекъснатост на вълновите функции и техните производни при x a  
водят до следната система уравнения: 

   /
II IIIψ ( ) ψ ( ) sin qapaa a A Ce    

 
, 

   /
II IIIψ ( ) ψ ( ) cos qapaa a pA qCe       

 
. 

Като разделим второто уравнение на първото, получаваме равенството 
(14)    ctg /p pa q  , 

което е уравнение за определяне на енергетичния спектър на частицата в ямата при 
указани нейните параметри – 0,a U .  

 Уравнението (14) е трансцендентно и енергията E  на частицата не може да 
бъде намерена в явен вид. Ще покажем, че енергетичният спектър на частицата е 
дискретен, т.е. енергията на частицата в ямата се квантува. За тази цел ще препишем 
(14) в нови променливи: 

   ξ , ηpa qa
  . 

Тогава уравнението (14) придобива вида 

(15)   η ξctgξ  ,  като    
2

2 2 2.0
2

2ξ η .MU a R    

Тъй като ξ > 0, η > 0 , съществен за анализа на решенията на (15) е първи квадрант на 
координатната система ξ , η . Функцията η ξctgξ   има клонове в първи квадрант 
съответно в интервалите 

   
π 3π 5πξ < π, ξ < 2π, ξ < 3π
2 2 2
    и т. н.  и т. н.

Същевременно координатите ξ,η трябва да определят положението на 
точки, лежащи също в първи квадрант върху част от окръжността с ради-
ус R . Пресечните точки на двете криви задават решението на (15), като с 

1 2 3ξ , ξ , ξ ,..., ξN   са означени стойностите на ξ-координатите на пресечните 
точки. Тогава може да запишем (1 n N≤ ≤ )

ξ
2

02

2î ( ),n
n n n n

p a Ma U E E E= = − = −
 

,

откъдето намираме възможните N  на брой стойности на енергията на час-
тицата

			 
2

2
02 ξ2n nE U

Ma
   .
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Когато е изпълнено условието
2 2 2

20
02

2 π π
2 8

MU aR U a
M

     ,

отсъства пресечна точка на графиките на окръжността с радиус R  и функци-
ята η ξctgξ   . Това означава отсъствие на енергетично ниво на частицата, 
т.е. тя не може да бъде локализирана в ямата. Комбинацията от параметрите 
на ямата 2

0U a  се нарича мощност на потенциалната яма. Ще отбележим, че 
частицата се намира в свързано състояние, когато мощността на ямата удо-
влетворява условието

2 2
2

0
π
8

U a
M

  .

Нека сега приложим общите положения към конкретната задача, която раз-
глеждаме. Като отчетем, че min 1D E E= − = − , търсената величина

(16)	
2

2
0 12 î

2
U D

Ma
= +



.

Тъй като 1
π ξ π
2
   , ще въведем нова променлива 1

πξ
2

z    , конкретната 

стойност на
η

2

1 2

2ç 1,6285MDa
= ≈



, 

както и съотношението 

1
πctgξ ctg + z tg
2

z    
 

 , 

при което уравнението (15) добива вида
π tg 1,6285
2

z z   
 

 ,

или

(17)			
1,6285arctg π
2

z
z




 .

Намирането на z  ще направим чрез числено решаване на уравнение-
то (17) с точност до третия знак след десетичната запетая, като използва-
ме следния алгоритъм. Тъй като търсената стойност на z  е от интервала 
(0,π/2)  , предполагаме че 1 π / 4 0,7954z    . С тази стойност по формула 
(17) намираме
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2

1

1,6285arctg 0,6048π
2

z
z

 


 

, 
след това със z2 намираме z3 ≈ 0,6426. Като действаме по тази схема, последо-
вателно пресмятаме 4 0,6343z ≈ , 5 0,6361z ≈ , 6 0,6357z ≈ . Както се вижда 
от получените резултати, процедурата е сходяща и с точност до третия знак 

5 6 0,636z z= ≈ . Тази стойност ще приемем за решение на уравнението (17). 
Тогава имаме 

1
πξ 2,207
2

z    

и след заместване в (16) намираме търсената стойност на дълбочината на ямата
0 0,24 meVU = .

Както се вижда, получената стойност при точното решение е с 40% по-малка от 
грубата качествена оценка (9). Тази разлика се дължи на по-силната локализация 
на частицата (вълновата функция е различна от нула само в рамките на ямата) при 

Фигура 8

използването на стоящи вълни в сравнение с точното решение, при което въл-
новата функция е различна от нула и извън ямата (фиг. 8), а това, от своя стра-
на, означава по-слаба локализация. 						    

Симетрична правоъгълна потенциална яма с крайна дълбочина 
(Karlov & Kirichenko 2004; Griffiths 1995; Martinson & Smirnov 2004).

Нека разгледаме поведението на частица в областта на симетрична право-
ъгълна потенциална яма с крайна дълбочина
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0

0

,
( ) 0 ,

,

U x a
U x a x a

U x a

< −
= − < <
 > .

Като нулево ниво по енергията е избрано положението на дъното на потен-
циалната яма. Следва да се отбележи, че предложената моделна яма качестве-
но описва движението на електрон в близост до атом и се прилага в атомната 
физика и физиката на твърдото тяло. 

Съществуват два режима на движение на частицата в областта на ямата: 
1. 00 E U< < , при което частицата се намира в свързано състояние;
2. 0E U> , при което се наблюдава неограничено движение.
 В първия случай (фиг. 9) вълновата функция включва три участъка:

Фигура 9

I

II

III

ψ ( ), ,
ψ( ) ψ ( ), ,

ψ ( ), .

x x a
x x a x a

x x a

 
   
 

 

Вътре в ямата (класически разрешената област) импулсът на частицата е 

2p mE=  и вълновата функция

(19)	 / /
IIψ ( ) ipx ipxx Ae Be   .

Като използваме правилото за съответствие (част I, 14), можем да запишем

(20а)			 
1 1

I ( )
q x qx

x Ce Ce
−

ψ = =   ,    

(20b)			    
1 1

III ( )
q x qx

x De De
− −

ψ = =  ,

където параметърът q  се дава с израза 02 ( )q m U E= − . 
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Преди да наложим стандартните условия, ще отчетем свойствата на симе-
трия на вълновата функция. Както знаем от задачата за движение на частица в 
безкрайно дълбока потенциална яма, вълновата функция е симетрична спря-
мо средата на ямата, така както и потенциалната енергия. Тъй като ямата с 
крайна дълбочина притежава същите свойства, ще направим предварително 
разделяне на функциите на симетрични по отношение на средата на ямата и 
на асиметрични. Симетричните функции трябва да удовлетворяват условието

(21)	 ψ(–x) = ψ (x),

което означава, че функцията е четна. Условието (21), приложено за функция-
та ψ IIø ( )x , дава	

 / / / /ipx ipx ipx ipxAe Be Ae Be− −+ = +    ,
откъдето следва 

/ /( ) ( ) 2 ( )sin( / ) 0ipx ipxA B e B A e i A B px−− + − = − = 

 .

За да бъде изпълнено това условие за всяко x , е достатъчно A B= , при 
което функцията

ψ
II

/ /ø ( ) ( ) 2 cos( / ) cos( / )s ipx ipxx A e e A px A px− ′= + = = 

  .

Аналогично като използваме (20) при x a>  имаме I IIIψ ( ) ψ ( )x x   , т. е.

			   / /qx qxCe De− −=  ,
откъдето следва C D= . Следователно вълновата функция, симетрична спря-
мо средата на ямата, има вида

ψ

/

/

, ,
ø ( ) cos( / ), ,

, .

qx

s
qx

Ce x a
x A px a x a

Ce x a−

 < −
 ′= − < <
 >







Аналогично асиметричните функции удовлетворяват условието
(22)	    ψ ψx x    ,

което означава че функцията е нечетна. Тогава намираме
			   B A= − ,        D C= − .
Следователно вълновата функция, асиметрична спрямо средата на ямата, 

има вида

			   ψ

/

/

, ,
ø ( ) cos( / ), ,

, .

qx

a
qx

Ce x a
x A px a x a

Ce x a−

 < −
 ′= − < <
 − >





 	
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На функциите трябва да бъдат наложени условия за непрекъснатост и гла-
дък преход в точките x a= ± . Тъй като възможните вълнови функции са или 
четни, или нечетни, достатъчно е да наложим условията само при x a= . Така 
за симетричната функция имаме

II III

/ψ ( ) ψ ( ) cos( / )s s qaa a A pa Ce    ,

II III

/ψ ( ) ψ ( ) sin( / ) .s s qaa a pA pa qCe       

Константите A′  и C  трябва да са различни от нула, което е възможно само ако
(23)	 tg( / )p pa q= .

Същата процедура, приложена за антисиметричната функция, дава

За да бъде изпълнено това условие за всяко x , е достатъчно A B , при което 
функцията 
   

II

/ /ψ ( ) ( ) 2 cos( / ) cos( / )s ipx ipxx A e e A px A px     . 

Аналогично като използваме (20) при x a  имаме I IIIψ ( ) ψ ( )x x  , т. е. 

   / /qx qxCe De  , 
откъдето следва C D . Следователно вълновата функция, симетрична спрямо 
средата на ямата, има вида 
    

   

/

/

, ,
ψ ( ) cos( / ), ,

, .

qx

s
qx

Ce x a
x A px a x a

Ce x a

  
    
 

 

Аналогично асиметричните функции удовлетворяват условието 
(22)      ψ ψx x   , 

което означава че функцията е нечетна. Тогава намираме 
   B A  ,        D C  . 
Следователно вълновата функция, асиметрична спрямо средата на ямата, има вида 

   

/

/

, ,
ψ ( ) cos( / ), ,

, .

qx

a
qx

Ce x a
x A px a x a

Ce x a

  
    
  

  

На функциите трябва да бъдат наложени условия за непрекъснатост и гладък преход в 
точките x a  . Тъй като възможните вълнови функции са или четни, или нечетни, 
достатъчно е да наложим условията само при x a . Така за симетричната функция 
имаме 
   

II III

/ψ ( ) ψ ( ) cos( / )s s qaa a A pa Ce   , 

   
II III

/ψ ( ) ψ ( ) sin( / ) .s s qaa a pA pa qCe       

Константите A  и C  трябва да са различни от нула, което е възможно само ако 
(23)   tg( / )p pa q . 
Същата процедура, приложена за антисиметричната функция, дава 
   

II III

/ψ ( ) ψ ( ) sin( / )a a qaa a A pa Ce   . 

   
II III

/ψ ( ) ψ ( ) cos( / )a a qaa a pA pa qCe     , 

(24)   ctg( / )p pa q  . 
                                
Условията (23) и (24) не могат да бъдат удовлетворени едновременно, защото, ако 
това е възможно, би се получило 2 2p q  , или 0 0U  , което противоречи на 

условието на задачата. Техните решения определят възможните стойности на 
енергията на частицата. Те могат да бъдат намерени чрез графично или числено 

,

(24)	 ctg( / )p pa q= − .

Условията (23) и (24) не могат да бъдат удовлетворени едновременно, за-
щото, ако това е възможно, би се получило 2 2p q= − , или 0 0U = , което про-
тиворечи на условието на задачата. Техните решения определят възможните 
стойности на енергията на частицата. Те могат да бъдат намерени чрез гра-
фично или числено решение на (23) и (24). За да направим графичното реше-
ние, ще въведем безразмерните величини

ξ , ηpa qa
   

Тогава решенията на уравнението
(25)	

решение на (23) и (24). За да направим графичното решение, ще въведем 
безразмерните величини 

   ξ , ηpa qa
  . 

Тогава решенията на уравнението 
(25)   η = ξ tgξ ,  
съответстват на симетрична вълнова функция, а решенията на уравнението 
(26)   η = ξctgξ  
на асиметрична вълнова функция, при което е изпълнено 

(27)   
2

2 2 20
2

2ξ + η mU a R  . 

 На фиг. 10а са показани графиките на функцията η = ξ tgξ  и окръжността (27) 
при ξ > 0, η > 0 , а на фиг. 10б – графиките на функцията η = ξctgξ  и окръжността (27) 
при същите условия. Координатите на пресечните точки на окръжността (27), 
съответно с кривите (25) и (26), дават възможните стойности на ξ и η . Като отчетем, че 

   Фигура 10 
енергията 2 / 2Е p m  и безразмерния параметър ξ = /pa , намираме 

(28)   
2 2

2 2
02 2ξ η

2 2
E U

ma ma
   . 

Броят на енергетичните нива в ямата е винаги краен и се определя от дълбочината 0U  

и широчината 2a  на потенциалната яма. Например, ако радиусът на окръжността (27) 
е 7,R  се получават пет на брой нива. На точките на пресичане 1, 3, 5 съответстват 
симетрични, а на точките 2, 4 – aсиметрични вълнови функции. Ако π/2R  , т. е. 

   
2 2

2
0

π
8

U a
m

 , 

съществува само една пресечна точка, на която съответства симетрична вълнова 
функция. В този случай в ямата има само едно ниво. Намаляването на стойността на 

0U  (при дадена стойност на a ) или на a  (при фиксирано 0U ) води до ситуация, при 

която в ямата винаги остава само едно ниво. Такава яма се нарича плитка яма. При по-
нататъшно намаляване  на 0U  (или на a ) енергията на частицата нараства (вж. 

формула (28)) и се приближава към 0U , но не надминава тази стойност (фиг. 11). 

,
съответстват на симетрична вълнова функция, а решенията на уравнението

(26)	

решение на (23) и (24). За да направим графичното решение, ще въведем 
безразмерните величини 

   ξ , ηpa qa
  . 

Тогава решенията на уравнението 
(25)   η = ξ tgξ ,  
съответстват на симетрична вълнова функция, а решенията на уравнението 
(26)   η = ξctgξ  
на асиметрична вълнова функция, при което е изпълнено 

(27)   
2

2 2 20
2

2ξ + η mU a R  . 

 На фиг. 10а са показани графиките на функцията η = ξ tgξ  и окръжността (27) 
при ξ > 0, η > 0 , а на фиг. 10б – графиките на функцията η = ξctgξ  и окръжността (27) 
при същите условия. Координатите на пресечните точки на окръжността (27), 
съответно с кривите (25) и (26), дават възможните стойности на ξ и η . Като отчетем, че 

   Фигура 10 
енергията 2 / 2Е p m  и безразмерния параметър ξ = /pa , намираме 

(28)   
2 2

2 2
02 2ξ η

2 2
E U

ma ma
   . 

Броят на енергетичните нива в ямата е винаги краен и се определя от дълбочината 0U  

и широчината 2a  на потенциалната яма. Например, ако радиусът на окръжността (27) 
е 7,R  се получават пет на брой нива. На точките на пресичане 1, 3, 5 съответстват 
симетрични, а на точките 2, 4 – aсиметрични вълнови функции. Ако π/2R  , т. е. 

   
2 2

2
0

π
8

U a
m

 , 

съществува само една пресечна точка, на която съответства симетрична вълнова 
функция. В този случай в ямата има само едно ниво. Намаляването на стойността на 

0U  (при дадена стойност на a ) или на a  (при фиксирано 0U ) води до ситуация, при 

която в ямата винаги остава само едно ниво. Такава яма се нарича плитка яма. При по-
нататъшно намаляване  на 0U  (или на a ) енергията на частицата нараства (вж. 

формула (28)) и се приближава към 0U , но не надминава тази стойност (фиг. 11). 

на асиметрична вълнова функция, при което е изпълнено

(27)	

решение на (23) и (24). За да направим графичното решение, ще въведем 
безразмерните величини 

   ξ , ηpa qa
  . 

Тогава решенията на уравнението 
(25)   η = ξ tgξ ,  
съответстват на симетрична вълнова функция, а решенията на уравнението 
(26)   η = ξctgξ  
на асиметрична вълнова функция, при което е изпълнено 

(27)   
2

2 2 20
2

2ξ + η mU a R  . 

 На фиг. 10а са показани графиките на функцията η = ξ tgξ  и окръжността (27) 
при ξ > 0, η > 0 , а на фиг. 10б – графиките на функцията η = ξctgξ  и окръжността (27) 
при същите условия. Координатите на пресечните точки на окръжността (27), 
съответно с кривите (25) и (26), дават възможните стойности на ξ и η . Като отчетем, че 

   Фигура 10 
енергията 2 / 2Е p m  и безразмерния параметър ξ = /pa , намираме 

(28)   
2 2

2 2
02 2ξ η

2 2
E U

ma ma
   . 

Броят на енергетичните нива в ямата е винаги краен и се определя от дълбочината 0U  

и широчината 2a  на потенциалната яма. Например, ако радиусът на окръжността (27) 
е 7,R  се получават пет на брой нива. На точките на пресичане 1, 3, 5 съответстват 
симетрични, а на точките 2, 4 – aсиметрични вълнови функции. Ако π/2R  , т. е. 

   
2 2

2
0

π
8

U a
m

 , 

съществува само една пресечна точка, на която съответства симетрична вълнова 
функция. В този случай в ямата има само едно ниво. Намаляването на стойността на 

0U  (при дадена стойност на a ) или на a  (при фиксирано 0U ) води до ситуация, при 

която в ямата винаги остава само едно ниво. Такава яма се нарича плитка яма. При по-
нататъшно намаляване  на 0U  (или на a ) енергията на частицата нараства (вж. 

формула (28)) и се приближава към 0U , но не надминава тази стойност (фиг. 11). 

.

На фиг. 10а са показани графиките на функцията 

решение на (23) и (24). За да направим графичното решение, ще въведем 
безразмерните величини 

   ξ , ηpa qa
  . 

Тогава решенията на уравнението 
(25)   η = ξ tgξ ,  
съответстват на симетрична вълнова функция, а решенията на уравнението 
(26)   η = ξctgξ  
на асиметрична вълнова функция, при което е изпълнено 

(27)   
2

2 2 20
2

2ξ + η mU a R  . 

 На фиг. 10а са показани графиките на функцията η = ξ tgξ  и окръжността (27) 
при ξ > 0, η > 0 , а на фиг. 10б – графиките на функцията η = ξctgξ  и окръжността (27) 
при същите условия. Координатите на пресечните точки на окръжността (27), 
съответно с кривите (25) и (26), дават възможните стойности на ξ и η . Като отчетем, че 

   Фигура 10 
енергията 2 / 2Е p m  и безразмерния параметър ξ = /pa , намираме 

(28)   
2 2

2 2
02 2ξ η

2 2
E U

ma ma
   . 

Броят на енергетичните нива в ямата е винаги краен и се определя от дълбочината 0U  

и широчината 2a  на потенциалната яма. Например, ако радиусът на окръжността (27) 
е 7,R  се получават пет на брой нива. На точките на пресичане 1, 3, 5 съответстват 
симетрични, а на точките 2, 4 – aсиметрични вълнови функции. Ако π/2R  , т. е. 

   
2 2

2
0

π
8

U a
m

 , 

съществува само една пресечна точка, на която съответства симетрична вълнова 
функция. В този случай в ямата има само едно ниво. Намаляването на стойността на 

0U  (при дадена стойност на a ) или на a  (при фиксирано 0U ) води до ситуация, при 

която в ямата винаги остава само едно ниво. Такава яма се нарича плитка яма. При по-
нататъшно намаляване  на 0U  (или на a ) енергията на частицата нараства (вж. 

формула (28)) и се приближава към 0U , но не надминава тази стойност (фиг. 11). 

 и окръжността 
(27) при 

решение на (23) и (24). За да направим графичното решение, ще въведем 
безразмерните величини 

   ξ , ηpa qa
  . 

Тогава решенията на уравнението 
(25)   η = ξ tgξ ,  
съответстват на симетрична вълнова функция, а решенията на уравнението 
(26)   η = ξctgξ  
на асиметрична вълнова функция, при което е изпълнено 

(27)   
2

2 2 20
2

2ξ + η mU a R  . 

 На фиг. 10а са показани графиките на функцията η = ξ tgξ  и окръжността (27) 
при ξ > 0, η > 0 , а на фиг. 10б – графиките на функцията η = ξctgξ  и окръжността (27) 
при същите условия. Координатите на пресечните точки на окръжността (27), 
съответно с кривите (25) и (26), дават възможните стойности на ξ и η . Като отчетем, че 

   Фигура 10 
енергията 2 / 2Е p m  и безразмерния параметър ξ = /pa , намираме 

(28)   
2 2

2 2
02 2ξ η

2 2
E U

ma ma
   . 

Броят на енергетичните нива в ямата е винаги краен и се определя от дълбочината 0U  

и широчината 2a  на потенциалната яма. Например, ако радиусът на окръжността (27) 
е 7,R  се получават пет на брой нива. На точките на пресичане 1, 3, 5 съответстват 
симетрични, а на точките 2, 4 – aсиметрични вълнови функции. Ако π/2R  , т. е. 

   
2 2

2
0

π
8

U a
m

 , 

съществува само една пресечна точка, на която съответства симетрична вълнова 
функция. В този случай в ямата има само едно ниво. Намаляването на стойността на 

0U  (при дадена стойност на a ) или на a  (при фиксирано 0U ) води до ситуация, при 

която в ямата винаги остава само едно ниво. Такава яма се нарича плитка яма. При по-
нататъшно намаляване  на 0U  (или на a ) енергията на частицата нараства (вж. 

формула (28)) и се приближава към 0U , но не надминава тази стойност (фиг. 11). 

, а на фиг. 10б – графиките на функцията 

решение на (23) и (24). За да направим графичното решение, ще въведем 
безразмерните величини 

   ξ , ηpa qa
  . 

Тогава решенията на уравнението 
(25)   η = ξ tgξ ,  
съответстват на симетрична вълнова функция, а решенията на уравнението 
(26)   η = ξctgξ  
на асиметрична вълнова функция, при което е изпълнено 

(27)   
2

2 2 20
2

2ξ + η mU a R  . 

 На фиг. 10а са показани графиките на функцията η = ξ tgξ  и окръжността (27) 
при ξ > 0, η > 0 , а на фиг. 10б – графиките на функцията η = ξctgξ  и окръжността (27) 
при същите условия. Координатите на пресечните точки на окръжността (27), 
съответно с кривите (25) и (26), дават възможните стойности на ξ и η . Като отчетем, че 

   Фигура 10 
енергията 2 / 2Е p m  и безразмерния параметър ξ = /pa , намираме 

(28)   
2 2

2 2
02 2ξ η

2 2
E U

ma ma
   . 

Броят на енергетичните нива в ямата е винаги краен и се определя от дълбочината 0U  

и широчината 2a  на потенциалната яма. Например, ако радиусът на окръжността (27) 
е 7,R  се получават пет на брой нива. На точките на пресичане 1, 3, 5 съответстват 
симетрични, а на точките 2, 4 – aсиметрични вълнови функции. Ако π/2R  , т. е. 
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 , 

съществува само една пресечна точка, на която съответства симетрична вълнова 
функция. В този случай в ямата има само едно ниво. Намаляването на стойността на 

0U  (при дадена стойност на a ) или на a  (при фиксирано 0U ) води до ситуация, при 

която в ямата винаги остава само едно ниво. Такава яма се нарича плитка яма. При по-
нататъшно намаляване  на 0U  (или на a ) енергията на частицата нараства (вж. 

формула (28)) и се приближава към 0U , но не надминава тази стойност (фиг. 11). 

 и 
окръжността (27) при същите условия. Координатите на пресечните точки на 
окръжността (27), съответно с кривите (25) и (26), дават възможните стойно-
сти на ξ и η. Като отчетем, че
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Фигура 10

енергията E 2 / 2Å p m=  и безразмерния параметър ξ = /pa  , намираме

(28)			
2 2

2 2
02 2ξ η

2 2
E U

ma ma
    .

Броят на енергетичните нива в ямата е винаги краен и се определя от дъл-
бочината 0U  и широчината 2a  на потенциалната яма. Например, ако радиус-
ът на окръжността (27) е 7,R = се получават пет на брой нива. На точките на 
пресичане 1, 3, 5 съответстват симетрични, а на точките 2, 4 – aсиметрични 
вълнови функции. Ако π/2R   , т. е.

2 2
2

0
π
8

U a
m

  ,

съществува само една пресечна точка, на която съответства симетрична въл-
нова функция. В този случай в ямата има само едно ниво. Намаляването на 
стойността на 0U  (при дадена стойност на a ) или на a  (при фиксирано 0U ) 
води до ситуация, при която в ямата винаги остава само едно ниво. Такава 
яма се нарича плитка яма. При по-нататъшно намаляване  на 0U  (или на a ) 
енергията на частицата нараства (вж. формула (28)) и се приближава към 0U , 
но не надминава тази стойност (фиг. 11).



181

Първи стъпки в квантовата...

Фигура 11

В случая, когато 0U → ∞ , стойностите на 
     Фигура 11 
В случая, когато 0U  , стойностите на ξ π/2, 1, 2, 3, ...n n n  . Ямата преминава в 
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в пълно съответствие с формула (2). Следва да се отбележи, че енергетичните нива в 
потенциална яма с крайна дълбочина са разположени по-ниско спрямо дъното на 
ямата от съответните нива в безкрайно дълбока потенциална яма, т.е.  n nE E . На 

фиг. 12 са показани първите две енергетичните нива ( a ) и съответните две вълнови 
функции (б ) на частица в яма с крайна дълбочина. 
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Както се вижда от фиг. 12, по-ниското положение на нивата се дължи на по-слабата 
локализация на частицата в ямата с крайна дълбочина, отколкото в безкрайно 
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 Да анализираме поведението на частицата при енергии 0E U . В този случай с 
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Физически те могат да бъдат интерпретирани по следния начин. Нека приемем, че на 
минус безкрайност има източник, който изстрелва частици. Всяка една се движи в 
посоката на оста x , съответстващата ѝ вълна достига до предната част на ямата при 
x a  , частично се отразява, частично преминава. Преминалата вълна достига до 
x a , частично се отразява, частично преминава, като се разпространява до 
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Да анализираме поведението на частицата при енергии 0E U> . В този 
случай с отчитане на принципа на суперпозицията клоновете на функцията  
ψø ( )x  в трите области съответно са
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емем, че на минус безкрайност има източник, който изстрелва частици. Всяка 
една се движи в посоката на оста x , съответстващата є вълна достига до 
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Вълновата функция трябва да удовлетворява стандартните условия. Тя е 
ограничена навсякъде, но не е осигурена непрекъснатостта и гладкия преход 
при преминаване през точките x a= ± . За тази цел налагаме следните усло-
вия:

(29а)	 / / / /
I IIψ ( ) ψ ( ) ip a ip a ipa ipaa a Ae Be Ce De          ,

(29б)	 / / / /
I IIψ ( ) ψ ( ) ( ) ( )ip a ip a ipa ipaa a p Ae Be p Ce De            ,

(29в)	 / / /
II IIIψ ( ) ψ ( ) ipa ipa ip aa a Ce De Fe      ,

(29г)	 / / /
II IIIψ ( ) ψ ( ) ( )ipa ipa ip aa a p Ce De p Fe        .

От съотношенията (29а) и (29б) можем да определим коефициентите C  и 
D  чрез A  и B .

(30а)	 / / /

2 2
ipa ip a ip ap p p pCe e A e B

p p
′ ′− −′ ′+ −

= +   ,

(30б)	 / / /

2 2
ipa ip a ip ap p p pDe e A e B

p p
′ ′−′ ′− +

= +   .

Като умножим (29в) с p′  и приравним левите страни на (29в) и (29г), намираме

(31)			  / /( ) ( )ipa ipap p De p p Ce−′ ′+ = −  .	
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Да заместим C  и D  от (30)  в (31) и от полученото равенство да изразим 
B  чрез A  при произволна енергия на частицата. Така получаваме

(32)	
2 2

2 /
2 2

( )sin(2 / )
2 cos(2 / ) ( )sin(2 / )

i p aB i p p pa e
A pp pa i p p pa

′−′−
=

′ ′− +




 

.

Коефициентът A  може да бъде определен от условието за нормировка 
на вълновата функция и тъй като всички останали коефициенти се изразяват 
чрез него, съществува еднозначно определена вълнова функция на частицата 
при 0E U>  за всяка енергия от този интервал. Това означава, че частица-
та има непрекъснат енергетичен спектър в този енергетичен интервал. Така 
пълният енергетичен спектър на частицата е смесен – той включва участъ-
ка 00 E U< < , в който възможните стойности на енергията са дискретни, и 
участъка  0E U> , където енергията е непрекъсната.	

С получения израз (32) можем да пресметнем коефициента на отражение 
от ямата

(33)		
2 2 2 2 2

2 2 2 2 2 2

( ) sin (2 / )
4 ( ) sin (2 / )

B p p paR
A p p p p pa

′−
= =

′ ′+ −




,

а като отчетем равенството 1R T+ = , намираме също и коефициента на пре-
минаване над ямата

(34)	
2 2 2

2 2 2 2 2 2

41
4 ( ) sin (2 / )

F p pT R
A p p p p pa

′
= = − =

′ ′+ − 

                

11 2 22 2 2
2 0

2 2
0

sin (2 / )( )1 sin (2 / ) 1
4 4 ( )

U pap p pa
p p E E U

−−
 ′ −

= + = +  ′ −   



 .

Ще отбележим най-характерните особености на полученото решение. Пре-
ди всичко се вижда, че при произволна енергия коефициентът на отражение 

0R ≠ , а коефициентът на преминаване 1T < , т.е. в квантовия случай пора-
ди вълновите свойства на частиците съществува различна от нула вероятност 
частицата да се отрази от ямата. Това поведение съществено се различава от 
класическото, при което частицата, достигайки ямата, увеличава скоростта си 
и преминава над нея. В класическия случай имаме 0R = , 1T = . 

Освен това в квантовия случай може да се наблюдава поведение на части-
цата, аналогично на това в класическия случай. Когато

2sin(2 / ) 0 π,   1, 2, 3, ...papa n n      ,
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имаме 0R = , 1T = . Процесът на преминаване над ямата се нарича резонансно 
преминаване, което се дължи на отчитането на вълновите свойства на частиците. 
То се случва, когато дължината на вълната на Дьо Бройл ë  в областта над ямата 

a x a− ≤ ≤  удовлетворява условието λ/2 = 2n a   и се наблюдава при енергии

(35)	
2 2

2
02

π
8nE n U
ma

   ,

където n  са цели положителни числа, удовлетворяващи условието 0nE U> . 
На фиг. 13 е показана графиката на коефициента на преминаване T  в зависи-
мост от енергията E  на частицата. Както се вижда от фигурата, наблюдава се 
резонансен характер на преминаването ( 1T = ) при енергии 0E U> .

Фигура 13
Направеният анализ дава квантовомеханично обяснение на ефекта на Рам-

зауер. В опита на Рамзауер е наблюдавана прозрачност на атомите на инерт-
ните газове (VIII група) за сноп от електрони при определени стойности на 
енергията на електроните. Въпреки че опитът на Рамзауер изисква тримерен 
анализ, направеното едномерно решение не само дава качествено обяснение 
на резултатите от опита, но и предлага определени количествени съотноше-
ния (вж. изразите (34) и (35)).

Заключение
В настоящата работа на база идеите, изложени в (Avramov & Marvakov 

2020), са разгледани и анализирани решенията на различни по форма пра-
воъгълни потенциални ями и е показано по какъв начин тези решения могат 
да се използват за числена оценка на характерните параметри на съответната 
задача (широчина и дълбочина на потенциалната яма, стойности на енерге-
тичните нива).
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ПРИЛОЖЕНИЕ

КОМПЛЕКСНИ ЧИСЛА

За да въведем и изброим основните свойства на комплексните числа, ще 
разгледаме квадратното уравнение

			   2 0az bz c+ + = ,
където , ,a b c  са реални числа. Решенията на уравнението са

			 
2

1
4

2
b b acz

a
− + −

= ,      
2

2
4

2
b b acz

a
− − −

= .

Когато дискриминантата 2 4 0D b ac= − < , не съществува реално число, 
което да удовлетворява уравнението. За да има уравнението решение и в този 
случай, е необходимо разширение на понятието число, което е свързано с 
въвеждането на така наречената имагинерна единица с условието

			 
2 3 2 4 3 21 1, . , . 1i i i i i i i i i i= − ⇒ = − = = − = = − = .

Тогава решенията се записват във вида

			 
2

1
4

2 2
b ac bz i
a a

−
= − + ,      

2

2
4

2 2
b ac bz i
a a

−
= − − .

Число от вида z x iy= +  се нарича комплексно число, където числата 
x  и y  са реални. Те се наричат съответно реална и имагинерна част на 
комплексното число и се означават като Rex z=  и Imy z= . Ако Im 0z = , 
числото z x=  е реално, а ако Re 0z = , числото z iy=  е имагинерно. 

	 Комплексното число е равно на нула само в случая, че реалната и 
имагинерната му части са равни на нула, т. е. 

		  0 0 0z i= = + →     Re 0x z= = ,   Im 0y z= = .

В общия случай две комплексни числа 1 1 1z x iy= +  и 2 2 2z x iy= +  са равни 
само когато 

			   1 2 1 2 1 2,z z x x y y= → = = .
Действията събиране, изваждане и умножение се извършват почленно 

както при действие с реални числа с отчитане на свойствата на имагинерната 
единица. Така имаме

		  1 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( )z z x y x iy x x i y y± = + ± + = ± + ± ,
		  1 2 1 1 2 2 1 2 1 2 1 2 1 2( )( ) ( ) ( )z z x iy x iy x x y y i x y y x= + + = − + + ,

като е използвано, че 2 1i = − .							     
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На всяко комплексно число z x iy= +  може да се съпостави комплексно 
спрегнатото му *z x iy= − , при което всяко реално число удовлетворява 
условието * ( 0)z z y= = , а 22 2. *z z x y z= + = е също реално. Полезни са 
следните свойства на всяко комплексно число

(1)		  * 2z z x+ = ,   * 2z z iy− = ,    
1 ( *)
2

x z z= + ,    
1 ( *)
2

y z z
i

= −

 Тогава деленето на две комплексни числа се задава с правилото		
*

1 1 2 1 2 1 2 1 2 1 2
* 2 2 2 2

2 2 2 2 2 2 2

z z z x x y y y x x yi
z z z x y x y

+ −
= = +

+ +
.

На комплексните числа може да се даде геометрична интерпретация. 
Всяко реално число се задава с точка от ориентирана права. Тъй като всяко 
комплексно число се определя от две независими реални числа x  и y , те 
могат да се разглеждат като правоъгълни координати на точка в равнината 
(фиг. 1). Представянето z x iy= +  се нарича алгебричен вид на комплексното 
число. Ако изразим декартовите координати

Фигура 1

( , )x y чрез полярните координати ( ,φ)r  , имаме

			   cosφx r  ,       sinφy r  .
След като заместим в z x iy= + , комплексното число придобива вида

2 2(cosφ sinφ) , tgφ , φ Argyz r i r x y z z
x

         .

Полученото представяне е известно като тригонометричен вид на 
комплексното число, като могат да се изведат конкретни правила за действия 
с ( ,φ)r   при извършване на алгебрични действия. Правилата силно могат да 
се упростят, като установим поведението на функцията на реална променлива

(φ) cosφ sinφf i   

чиито стойности са комплексни числа. Като диференцираме (φ)f  , получаваме
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нарича алгебричен вид на комплексното число. Ако изразим декартовите координати 

Фигура 1 
( , )x y чрез полярните координати ( ,φ)r , имаме 
   cosφx r ,        sin φy r . 
След като заместим в z x iy  , комплексното число придобива вида 

  2 2(cosφ sin φ) , tgφ , φ Argyz r i r x y z z
x

        . 
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  2(φ) sinφ cosφ sinφ cosφ (cosφ sinφ) (φ)f i i i i i if         . 
Тъй като единствената функция, за която (φ) ~ (φ)f f , е  

αφ αφ(φ) (φ) αf e f e   , 

намираме формулата 
   φ(φ) cosφ sinφ if i e   , 
установена от Леонард Ойлер и наречена в негова чест формула на Ойелер. 
Представянето φiz re  се нарича експоненциаллен вид на комплексното число. Като 
използваме свойствата на експонентата, получаваме  
  φ φ( )* cosφ sinφ cos( φ) sin( φ)i ie i i e       . 
Тогава от (1), следва 
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установена от Леонард Ойлер и наречена в негова чест формула на Ойелер. 
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на алгебрични действия. Правилата силно могат да се упростят, като установим 
поведението на функцията на реална променлива 
   (φ) cosφ sinφf i  , 
чиито стойности са комплексни числа. Като диференцираме (φ)f , получаваме 

  2(φ) sinφ cosφ sinφ cosφ (cosφ sinφ) (φ)f i i i i i if         . 
Тъй като единствената функция, за която (φ) ~ (φ)f f , е  

αφ αφ(φ) (φ) αf e f e   , 

намираме формулата 
   φ(φ) cosφ sinφ if i e   , 
установена от Леонард Ойлер и наречена в негова чест формула на Ойелер. 
Представянето φiz re  се нарича експоненциаллен вид на комплексното число. Като 
използваме свойствата на експонентата, получаваме  
  φ φ( )* cosφ sinφ cos( φ) sin( φ)i ie i i e       . 
Тогава от (1), следва 

  φ φ1cosφ ( )
2

i ie e  ,                   φ φ1sin φ ( )
2

i ie e
i

  , 

  φ φ1cos( φ) ( ) ch φ
2

i e e   ,      φ φ1sin( φ) ( ) sh φ
2

i e e i
i

    , 

  1 2 1 2φ φ (φ + φ )
1 2 1 2 1 2. ( )i i iz z re r e rr e  ,  

1
1 2

2

φ
(φ φ )1 1 1

φ
2 2 2

i
i

i
z re r e
z r e r

 
   

 
,  φn n inz r e  

	

Полезни допълнителни свойства на комплексните числа и други 
математически сведения можете да намерите в 

K. Weltner et al., Mathematics for Engineers and Scientists, Springer-Dordrecht-
Heidelberg- London-New York, 2009.

Klaus. Hefft, Mathematical Preparation Course Before Studying Physics, Uni-
versity of Heidelberg, 2013.
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FIRST STEPS IN QUANTUM PHYSICS:
BASICS – 2. MODEL EXAMPLES (SQUARE WELLS)

Abstract. Cases of a particle in a one-dimensional square well – infinitely deep 
and with finite depth – are also analyzed in detail. As an example, the adsorption 
of a hydrogen atom on a metal surface by a qualitative and accurate solution of the 
problem is considered.

Keywords: quantum physics; square well; metal surface; adsorption

 Dr. Mihail Avramov
Web of Science ResearcherID: B-5481-2010 

Author ID (SCOPUS): 6701414288
ORCID iD: 0000-0001-8128-4946

Faculty of Chemistry
University of Sofia

1, James Bourchier Blvd.
1164 Sofia, Bulgaria

E-mail: mavramov@chem.uni-sofia.bg

 Dr. Dimitar Marvakov
Author ID (SCOPUS): 6506098047

Faculty of Physics
University of Sofia

5, James Bourchier Blvd.
1164 Sofia, Bulgaria

E-mail: marvakov@phys.uni-sofia.bg


