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ПРОЕКТИВНИ АЛГЕБРИЧНИ КРИВИ, 
КОНИЧНИ СЕЧЕНИЯ И ТЕОРЕМАТА 

НА ПАСКАЛ

Живко Желев

Резюме. Теоремата на Паскал е основен резултат в класическата проективна 
геометрия на коничните сечения. Чрез методите на съвременната изчислителна 
геометрия – дял от алгебричната геометрия, занимаващ се с намирането на броя на 
различни геометрични обекти в дадено многообразие, удовлетворяващи различни 
условия – са разгледани както теоремата на Паскал, така и някои други факти от 
проективната геометрия.

Keywords: Enumerative geometry, intersection theory, Bezout theorem, Pascal 
theorem.

   
Равнинни алгебрични криви. Алгебрична равнинна крива в 2 наричаме 

всяка крива, която се задава с уравнение от вида 0, ,i j
ij

i j n
a x y i j +

+ ≤

= ∈∑  , като 

0ija ≠  поне за една двойка ( , ),i j  такава че .i j n+ =  В този случай n се нарича 
степен на кривата.

Много от неприятностите, които възникват при изучаването на свойствата на 
различни криви в 2 , изчезват, когато се премине към комплексната проективна 
равнина 2.P  Да напомним, че комплексна проективна равнина наричаме мно-
жеството от лъчи в пространството 3,  които минават през началото на коорди-
натната система. С други думи, точките в 2P  представляват наредени тройки 
числа ( , , ), , , ,x y z x y z ∈  като точките ( , , )x y z  и ( , , ), \{0}x y zλ λ λ λ ∈  считаме 
за еквивалентни, т. е. ( , , ) ~ ( , , )x y z x y zλ λ λ  и ~ е релация на еквивалентност. При-
ето е точките в проективното пространство да се означават така: ( : : ).x y z  По 
този начин се вижда, че всъщност пространството 2P  е разширение на ком-
плексната равнина 2. 1

Така на всяка реална алгебрична крива 0i j
ij

i j n
a x y

+ ≤

=∑  в 2  може да се съпостави 

крива i j n i j
ij

i j n
a x y z − −

+ ≤
∑  в 2.P  Условията 1, ,z x y= ∈ образуват в 2P  множес-

тво, съвпадащо с 2 . Ограничението на тази крива в 2P  върху това множество 

представлява точно равнинна алгебрична крива със същите коефициенти .ija
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Равнинната алгебрична крива ( , ) 0F x y =  се нарича неразложима, ако мно-
гочленът F не може да е представи като произведение на многочлени 1F  и 2F  
с положителна степен. В противен случай кривата се нарича разложима. Като 
множество от точки, тази разложима крива представлява обединение на кри-
вите 1 0F =  и 2 0.F =  Най-простата разложима крива от степен n се задава с 
уравнението 1 2 0,n =    където 1 2, , , n     са линейни функции. Като 
множество от точки, кривата може да се представи като обединение на правите 

1 20, 0, , 0.n= = =     Тази най-проста алгебрична крива в много от случаите 
помага да се изясни как би изглеждала ситуацията при произволна крива от сте-
пен n. Например кривите 1 2 0m =    и ' ' '

1 2 0n =    имат mn общи точки. 
Както ще видим по-нататък, произволни криви от степени m и n също имат mn 
общи точки (заедно с техните кратности) или безброй много общи точки.

Изчислителна геометрия и конични сечения. Изчислителната геометрия, 
като дял от алгебричната геометрия, се превръща в съвременна математическа 
дисциплина, когато е формулирана като част от петнадесетия проблем на Д. Хил-
берт (1862 – 1943) в неговия знаменит доклад, изнесен през 1900 г. в Париж. Този 
проблем в частност е насочен към изграждането и прецизирането на т. нар. Шу-
бертово смятане, което е представено за първи път от немския математик Х. Шу-
берт (1848 – 1911) в неговата книга от 1879 г. „Kalkül der abzählenden Geometrie“.

Най-общо казано, основният въпрос, който си поставя съвременната изчис-
лителна геометрия, е следният: Колко на брой геометрични структури от да-
ден тип удовлетворяват някакъв набор от геометрични условия? (Zhelev, 2006), 
(Katz, 2006). Това, което е важно да се отбележи тук, е, че единственото условие, 
което трябва да удовлетворяват тези геометрични структури, е те да бъдат краен 
брой. Като тривиален пример можем да формулираме следната задача: Колко точ-
ки в равнината лежат върху две дадени прави?

Алгебричните равнинни криви от 2 степен е прието да се наричат накратко ко-
нични сечения. Известно е, че коничните сечения могат да бъдат класифицирани 
в следните групи: параболи, елипси, хиперболи, двойка прави или двойни прави. 
Първите три от тях оформят специален клас, т. нар. гладки конични сечения. Вся-
ко конично сечение може да се представи по единствен начин с хомогенно урав-
нение от вида (Шафаревич, 1972), (Gathmann, 2003):

2 2 2
0 0 1 0 1 2 0 2 3 1 4 1 2 5 2 0,a x a x x a x x a x a x x a x+ + + + + =

като всеки коефициент , 0,1, ,5ia i =   е определен от коничното сечение с точ-
ност до общ ненулев множител. По този начин можем да си мислим за проектив-
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ното пространство 5 6: / ~P =   (~ е релацията на еквивалентност, дефинирана 
по-горе) с хомогенни координати ia  като за пространството на всички конични 
сечения.2

Нека сега 2P P∈  е произволна точка в равнината. Тогава коничното сечение 
(определено от координатите ia ) минава през точка P тогава и само тогава, когато 
горното уравнение е изпълнено и приемем, че 0 1 2( : : ).P P x x x=  По отношение на 
координатите ia  на 5P  това е едно линейно условие. Тъй като това проективно 
пространство е петмерно, то трябва и да очакваме краен брой конични сечения, 
ако искаме те да са инцидентни с 5 дадени точки в равнината. Всъщност, както 
е известно, съществува точно едно такова конично сечение, тъй като решението 
на 5 линейни условия в 5P  представлява единствена точка в това пространство. 
Все пак трябва да отбележим и два потенциални проблема, които могат да се по-
явят в зависимост от избора на петте точки (Gathmann, 2003):

1. Трябва да се уверим, че петте линейни уравнения в 5P  са наистина неза-
висими, за да може тяхното пресичане да даде точка, а не пространство с 
по-висока размерност.

2. Не всички точки в модулното пространство 5P  описват конични сече-
ния. Както видяхме вече, някои от тях описват обединение на две прави 
или двойни прави. С други думи „истинското“ модулно пространство на 
тези конични сечения не е цялото 5P , а някакво отворено подмножество 

5.U P⊂   Допълнението 5 \P U  обикновено се нарича граница на модул-
ното пространство. Ние не можем a priori да знаем дали дадена точка от мо-
дулното пространство, която се явява решение на петте линейни условия, 
лежи в U или не, т. е. гладко конично сечение през петте дадени точки може 
и да не съществува.

Криви, резултанти и теоремата на Безу. Нека C и D са равнинни проектив-
ни криви от степен c и d съответно. Тогава основен въпрос на изчислителната 
геометрия е следният: Колко точки в 2P лежат както на C, така и на D? С 
други думи, трябва да се намери броят на пресечните точки на двете криви. Как-
то отбелязахме вече, за да има отговор на този въпрос, би трябвало да очакваме 
множеството C D∩  да е крайно. По-точно, нека p C D∈ ∩  и C D∩  е крайно 
множество. Да означим с ( )pmult C D⋅  пресечната кратност (Katz, 2006) на кри-
вите C и D в т. p. Очевидно ( ) 0 .pmult C D p C D⋅ > ⇔ ∈ ∩  Тогава е в сила следният 
изключително важен резултат в алгебричната геометрия:
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Теорема 1 (Безу) Ако множеството
 
C D∩

 
е крайно, то ( ) .p

p C D
mult C D cd

∈ ∩

⋅ =∑

Досега разглеждахме алгебрични равнинни криви и техните точки на преси-
чане, но това е геометрична интерпретация на алгебричния въпрос за намирането 
на общите корени (заедно с техните кратности) на конкретни полиномни уравне-
ния, които представят тези криви.

Знаем, че два полинома имат общ корен точно когато не са взаимно прости 
(Курош, 1971) и с помощта на алгоритъма на Евклид можем да проверяваме дали 
два полинома имат общ корен. Възможен е и по-общ подход, свързан с намиране-
то на т. нар. резултанта на тези полиноми.

Нека 0 0 0 0, [ ], , 0m n
m nf a x a g b x b x a b= + + = + + ∈ ≠    и , 0m n >  с корени 

съответно 1 2, , , mα α α ∈   и 1 2, , , .nβ β β ∈   Тогава можем да дадем следната

Дефиниция 1. Елемента ( )0 0
1 1

( , )
m n

n m
i j

i j

R f g a b α β
= =

= −∏∏  на полето   ще на-
ричаме резултанта на полиномите  f  и g.

Очевидно f и g имат общ корен точно когато ( , ) 0.R f g =  Ясно е още, че 
( , ) ( 1) ( , ).mnR g f R f g= −  В сила е и следното

Твърдение 1. ( )0
1

( , ) .
m

n
i

i

R f g a g α
=

= ∏
Доказателство: Като използваме равенството ( )0

1

( ) ,
n

j
j

g x b x β
=

= −∏  получаваме:

                      ( ) ( ) ( )0 0 0 0 0
1 1 1 1 1

( , ) .
m n m n m

n m n n
i j i j i

i j i j i

R f g a b a b a gα β α β α
= = = = =

⎛ ⎞
= − = − =⎜ ⎟

⎝ ⎠
∏∏ ∏ ∏ ∏

  
        

Това твърдение показва, че ( , )R f g  е симетричен полином с коефициенти от 
  на корените 1 2, , , mα α α ∈   на полинома f и следователно ( , ) .R f g ∈  Сега 
вече, на базата на горните резултати, можем да дадем нова формулировка на тео-
ремата на Безу:

Теорема 1’ (Безу)  За всеки две проективни алгебрични криви от степен  m и 
n, резултантата им представлява хомогенен полином от степен mn или е тъждес-
твено равна на нула.

Теорема на Паскал – проективно-аналитичен подход. Един от красивите 
резултати в проективната геометрия е теоремата на Паскал:
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Теорема 2. (Паскал) Нека 2X P⊂   е крива от втора степен и нека точките 
A, B, C, D, E и F върху кривата са върхове на вписан шестоъгълник. Тогава пре-
сечните точки на срещуположните страни на шестоъгълника (на черт. по-долу 
точките , ,P AB DE Q BC EF R CD AF= ∩ = ∩ = ∩ ) лежат на една права.

 
   

Фигура 1. Точките P, Q и R лежат на една права

Преди да докажем теоремата, ще направим някои забележки. Най-общо семей-
ството от конични сечения, които минават през върховете на произволен четири-
ъгълник ABCD, могат лесно да бъдат описани. Наистина, нека AB  е уравнението 
на правата AB. Тогава върховете на  ABCD  анулират израза ,AB CD⋅   а така също 
и .BC AD⋅   Следователно уравнението 0, ,AB CD BC ADλ μ λ μ ∗⋅ + ⋅ = ∈      
определя конично сечение, което минава през върховете на  ABCD. По-важното е, 
че е в сила и обратното

Твърдение 2. Нека точките A, B, C и D са такива, че никои три от тях не лежат на 
една права. Тогава коничното сечение през тези точки може да бъде записано във вида
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0.AB CD BC ADλ μ⋅ + ⋅ =   

Доказателство: Без ограничение на общността можем да предполагаме, че 
правите AB и  AD  имат уравнения във фиксирана координатна система съответно  
y = 0 и x = 0. Нека f = 0 е уравнението на коничното сечение. Ограниченията на f 
и AB CD BC AD CD BCy xλ μ λ μ⋅ + ⋅ = ⋅ +       върху произволна координатна система 
представляват квадратични форми с общи корени (А и B или А и D). По този на-
чин числата ,λ μ ∈  могат да се изберат така, че полиномът

( , ) ( , ) ( , ) ( , )CD BCP x y f x y y x y x x yλ μ= − ⋅ − ⋅ 
да се анулира при x = 0 и y = 0. Това означава, че | ( , ),xy P x y  т. е. ( , )P x y xy Q= ⋅  и 
Q е константа. Но в т. C полиномът P също се анулира и тъй като 0,xy ≠  то 0.Q =  
Следователно .AB CD BC ADf λ μ= ⋅ + ⋅   

Следствие 1. Нека f = 0 и g = 0 описват две конични сечения, минаващи през 
върховете на четириъгълника ABCD. Тогава уравнението на произволно конично 
сечение, минаващо през тези върхове, има вида 0f gλ μ+ =  за някакви , .λ μ ∈
Доказателство: Коничните сечения, които минават през върховете на ABCD, 

образуват проективна права, която се генерира от точките, удовлетворяващи урав-
ненията 0AB CD⋅ =   и 0.AD BC⋅ =   Но тези прави са генерирани и от точките, за 
които f = 0 и g = 0. С това доказателството е завършено.     
  
Доказателство на Теорема 2: Да разгледаме шестоъгълника ABCDEF, чиито 

върхове лежат върху коничното сечение с уравнение f = 0. Четириъгълниците 
ABCD, AFED и BEFC са вписани в коничното сечение и следователно f  може да 
се представи в някоя от следните форми:

1 1

2 2

3 3

, (1)
, (2)
. (3)

AB CD AD BC

AF ED AD EF

BE CF BC EF

f
f
f

λ μ
λ μ
λ μ

= ⋅ + ⋅
= ⋅ + ⋅
= ⋅ + ⋅

   
   
   

След приравняване на (1) и (2), получаваме 
( )1 2 1 2 .AB CD AF ED BC EF ADλ λ μ μ⋅ − ⋅ = − ⋅        Нека .P AB ED= ∩  Тога-

ва в т. P 0 ,AB CD AF ED⋅ = = ⋅     но 0AD ≠  и следователно 1 2 0BC EFμ μ− =   
в т. P, т. е. { }1 2 0 .BC EFP μ μ∈ − =   Аналогично се доказва, че 

{ }1 2 0 .BC EFR CD AF μ μ= ∩ ∈ − =   Очевидно и { }1 2 0 .BC EFQ BC EF μ μ= ∩ ∈ − =   
Теоремета е доказана.



Живко Желев

520

Сега да се опитаме да отидем малко по-нататък. Като приравним (2) и (3), получава-
ме, че { }2 3, , 0 .AD BCAF BE ED CF AD BC μ μ∩ ∩ ∩ ∈ − =   От друга страна, ако при-
равним (1) и (3), ще получим, че { }1 3, , 0 .AD EFAB CF CD BE AD EF μ μ∩ ∩ ∩ ∈ − =   
Тогава не е трудно да се види, че правите

1 2 2 3 1 30, 0, 0BC EF AD BC AD EFμ μ μ μ μ μ− = − = − =     
се пресичат в обща точка. Ще дадем следната:

Дефиниция 2. Правата, която съдържа пресечните точки на двойките срещу-
положни страни на шестоъгълника, вписан в коничното сечение, се нарича права 
на Паскал.

На базата на заключенията по-горе можем да формулираме и следната
Теорема 3. (Щайнер) Нека точките A, B, C, D, E и F лежат върху конично сече-

ние. Тогава правите на Паскал за шестоъгълниците ABCDEF, ADEBCF и ADCFEB 
се пресичат в една точка.

Ако вземем предвид факта, че четириъгълниците, които разгледахме по-горе, 
бяха ABCD, AFED и BEFC, но могат да бъдат разгледани и четириъгълниците 
ABEF, ABDF и CDEF, то можем да формулираме и

Теорема 4. (Киркман) Правите на Паскал за шестоъгълниците ABFDCE, 
AEFBDC и ABDFEC се пресичат в една точка.

Не е трудно да се види още, че за всеки шестоъгълник, вписан в конично сече-
ние, има точно (6 1)!60

2
−=  прави на Паскал, като всяка права на Паскал принад-

лежи на една Щайнерова тройка шестоъгълници и на три Киркманови тройки.
Теорема на Паскал – алгебрично-геометричен подход. Накрая ще дадем до-

казателство на теоремата на Паскал, като използваме теоремата на Безу и съвре-
менния подход на изчислителната алгебрична геометрия.

Да си разгледаме разложимите кубични криви 1X AB CD EF= ∪ ∪  и 
2 ,X BC DE AF= ∪ ∪  представени като обединение на три прави и нека техните 

уравнения са съответно 1 0f =  и 2 0.f =  Според теоремата на Безу тези кубични 
криви се пресичат в девет точки: A, B, C, D, E, F, P, Q и R.

Избираме си точка 2 ,S X P∈ ⊂   която е различна от по-горе изброените. Ясно е, 
че съществуват числа , ,λ μ ∈  такива че 1 2f fλ μ+  се анулира в точка S. Нека с 'X  
означим кривата в 2 ,P  която се описва с уравнението 1 2 0.f fλ μ+ =  Следователно 

'X  е също кубична крива и в частност '.S X∈  Нещо повече, 'X  се пресича с X в 
седем точки A, B, C, D, E, F и S, въпреки че 'deg deg 6.X X⋅ =  От теоремата на Безу 
следва, че 'X  и X трябва да имат общ компонент. Поради самите степени на кривите 
обаче единствената възможност за това е кубичната крива 'X  също да е разложима и 
да съдържа в себе си коничното сечение X, т. е. ' ,X X L= ∪  където L е някаква права.
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Накрая да забележим, че 1, ,P Q R X∈  и 2.X  Следователно , , ,P Q R X L∈ ∪  но 
, ,P Q R X∉  и следователно трябва да лежат на права L. 
Това кратко и елегантно доказателство на иначе силен и недоказващ се лесно 

резултат от проективната геомерия, показва силата и мащабите на методите, кои-
то притежава съвременната алгебрична геометрия.

БЕЛЕЖКИ
1. Целият процес на преминаване от комплексна равнина към комплексна проективна 

равнина се нарича компактификация.
2. В този случай се казва, че 5P  е модулно пространство (moduli space) за равнинни-

те конични сечения
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PROJECTIVE ALGEBRAIC CURVES, 
CONICS AND PASCAL THEOREM

Abstract.  The Pascal theorem is a key result in the classic Projective geometry of 
conics. The paper considers the Pascal theorem and some other facts from Projective 
geometry by means of the methods of the contemporary Enumerative geometry – a part 
of the Algebraic geometry dealing with the number of various geometric objects under 
different conditions in a given variety.
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