2.1) If ABCD is a trapezoid with $AB \parallel CD$ and $BC \cap AD = W$, then the common point of the diagonal AC and the circumcircle k(BDW) of ΔBDW is the desired point X. The proof is the following:

i)
$$\angle XAB = \angle XCD$$
 (cross-opposite angles);
ii) $\angle XBC = \frac{\widehat{XDW}}{2} = \frac{\widehat{XD} + \widehat{DW}}{2} = \angle XDA$.

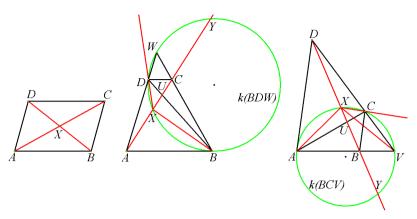
Reversely, the equality $\angle XAB = \angle XCD$ implies, that the point X belongs to the diagonal AC, while the equality $\angle XBC = \angle XDA$ is verified when X is on the circle k(BDW). Since AC and k(BDW) have only one common point, which is in the interior of ABCD, then the point X is unique. The second intersection point Y of the line AC and k(BDW) is such, that $\angle YAB = 180^{\circ} - \angle YCD$ and $\angle YBC = 180^{\circ} - \angle YDA$.

2.2) If ABCD is a trapezoid with $BC \parallel AD$ and $AB \cap CD = V$, then the common point of the diagonal BD and the circumcircle k(ACV) of ΔACV is the desired point X. The proof is the following:

i)
$$\angle XAB = \frac{\widehat{XCV}}{2} = \frac{\widehat{XC} + \widehat{CV}}{2} = \angle XCD$$
;

ii) $\angle XBC = \angle XDA$ (cross-opposite angles).

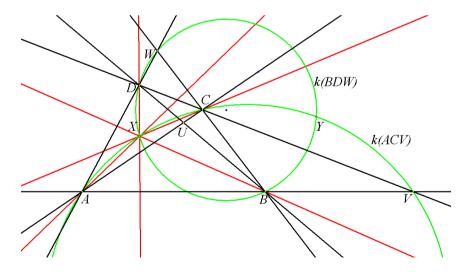
The uniqueness of the point X could be proved in the same manner as in the previous case. The second common point Y of the line BD and k(ACV) is such, that $\angle YAB = 180^{\circ} - \angle YCD$ and $\angle YBC = 180^{\circ} - \angle YDA$.



3) If ABCD is without parallel sides and $AB \cap CD = V$, $BC \cap AD = W$, then the interior point of ABCD, which is the intersection point of the circumcircles k(ACV) and k(BDW) of ΔACV and ΔBDW , respectively, is the desired point X. The proof is the following:

i)
$$\angle XAB = \frac{\widehat{XCV}}{2} = \frac{\widehat{XC} + \widehat{CV}}{2} = \angle XCD$$
;

ii)
$$\angle XBC = \frac{\widehat{XDW}}{2} = \frac{\widehat{XD} + \widehat{DW}}{2} = \angle XDA$$
.

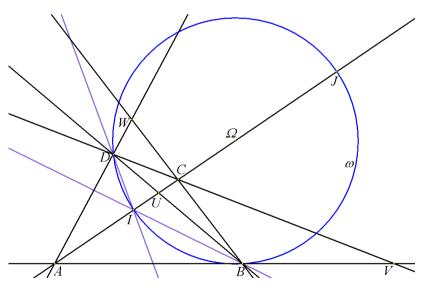


Reversely, the equality $\angle XAB = \angle XCD$ means, that the point X belongs to the circle k(ACV), while the equality $\angle XBC = \angle XDA$ is verified when X is on the circle k(BDW). Since AC and k(BDW) have only one common point, which is in the interior of ABCD, then the point X is unique. The second intersection point Y of k(ACV) and k(BDW) is such, that $\angle YAB = 180^{\circ} - \angle YCD$ and $\angle YBC = 180^{\circ} - \angle YDA$.

Lemma 2. If the sides of the convex quadrilateral ABCD satisfy the equality AB.CD = BC.DA, then:

- a) the angular bisectors of the angles ABC and CDA meet in the point I from the diagonal AC;
- b) the angular bisectors of the angles BAD and DCB meet in the point I' from the diagonal BD.

Proof: Rewrite the given equality in the form $\frac{BA}{BC} = \frac{DA}{DC}$. If I is such a point on the diagonal AC, that $\frac{IA}{IC} = \frac{BA}{BC}$, then BI is the angular bisector of $\angle ABC$. On the other hand, the equality $\frac{IA}{IC} = \frac{DA}{DC}$ is true, which means, that DI is the angular bisector of $\angle CDA$. The assertion b) could be obtained analogously.



In fact, if $BA \neq BC$, then there exists a point J on the line BC with the property $\frac{JA}{JC} = \frac{BA}{BC}$. The circle ω with diameter IJ is the locus of the points M, for which $\frac{MA}{MC} = \frac{BA}{BC}$. The circle ω is known to be the *Apollonius circle* for the segment AC under the ratio $\frac{BA}{BC}$. For this reason, if an arbitrary ΔABC is given,

then the point D from the Apollonius circle ω is the fourth vertex of the quadrilateral ABCD, for which AB.CD = BC.DA. In such a way we come upon an idea for the construction of a quadrilateral satisfying the conditions of the problem under consideration. On the other hand, lemma 1 gives a possibility to construct the point X for this quadrilateral.

Lemma 3. Let ABC be an arbitrary triangle, while B_1 and B_2 be such points on the line AC, that the lines BB_1 and BB_2 are symmetric with respect to the

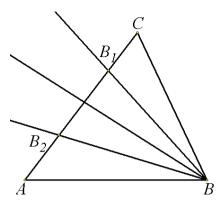
angular bisector of
$$\angle ABC$$
. Then $\frac{\overline{CB_1}}{\overline{AB_1}} \cdot \frac{\overline{CB_2}}{\overline{AB_2}} = \frac{BC^2}{AB^2}$.

Proof: For the areas of the triangles BCB_1 and BAB_2 we have, that $\frac{S_{BCB_1}}{S_{BAB_2}} = \frac{CB_1}{AB_2}$

and
$$\frac{S_{BCB_1}}{S_{BAB_2}} = \frac{BC.BB_1.\sin \angle B_1BC}{AB.BB_2.\sin \angle B_2BA} = \frac{BC.BB_1}{AB.BB_2}$$
. Consequently $\frac{CB_1}{AB_2} = \frac{BC.BB_1}{AB.BB_2}$.

Analogously, using the areas of the triangles CBB_2 and ABB_1 we get the equality $\frac{CB_2}{AB_1} = \frac{BC.BB_2}{AB.BB_1}$. Multiplying the obtained equalities we find, that

$$\frac{CB_1}{AB_1} \cdot \frac{CB_2}{AB_2} = \frac{BC^2}{AB^2}.$$



Lemma 4. If the convex quadrilateral ABCD satisfies the equality AB.CD = BC.DA, then:

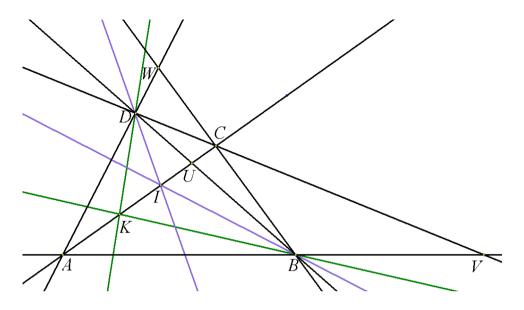
- a) the symmetric images of the diagonal BD with respect to the angular bisectors of $\angle ABC$ and $\angle CDA$ meet in a point K from the diagonal AC;
- b) the symmetric images of the diagonal AC with respect to the angular bisectors of $\angle BAD$ and $\angle DCB$ meet in a point K' from the diagonal BD.

Proof: Denote by U the common point of the diagonals AC and BD. Let the symmetric images of BD with respect to the angular bisectors of $\angle ABC$ and $\angle CDA$ meet AC in the points K_1 and K_2 , respectively. Applying lemma 3 to ΔABC we obtain the equality $\frac{CU}{AU} \cdot \frac{CK_1}{AK_1} = \frac{BC^2}{AB^2}$. Applying lemma 3 to ΔCDA

we obtain $\frac{AU}{CU} \cdot \frac{AK_2}{CK_2} = \frac{DA^2}{CD^2}$. Multiplying the two equalities we deduce, that

$$\frac{CK_1.AK_2}{AK_1.CK_2} = \left(\frac{BC.DA}{AB.CD}\right)^2 = 1. \text{ Therefore, } \frac{AK_2}{CK_2} = \frac{AK_1}{CK_1}. \text{ Since the points } K_1 \text{ and } K_2 = \frac{AK_2}{CK_2} = \frac{AK_1}{CK_2}$$

 K_2 belong to the segment AC, the last equality means, that the points K_1 and K_2 coincide. The assertion for the point K' could be proven analogously.



It follows from lemma 4 that the point I is the center of the incircle of $\triangle BDK$. Thus, AC is the angular bisector of $\angle BKD$. Consequently $180^\circ = \angle AKD + \angle DKC = \angle AKD + \angle BKC$. Thus we obtain the following **Conclusion**. The equalities $\angle AKD + \angle BKC = 180^\circ$ and $\angle BK'A + \angle CK'D = 180^\circ$ are satisfied.

Lemma 5. If the convex quadrilateral ABCD satisfies the equality AB.CD = BC.DA, then:

- a) The second common point X of the circumcircles k(BCK) and k(DAK) of ΔBCK and ΔDAK , respectively, is such that $\angle XAB = \angle XCD$ and $\angle XBC = \angle XDA$.
- b) The second common point X of the circumcircles k(BCK') and k(DAK') of $\Delta BCK'$ and $\Delta DAK'$, respectively, is such that $\angle XAB = \angle XCD$ and $\angle XBC = \angle XDA$.

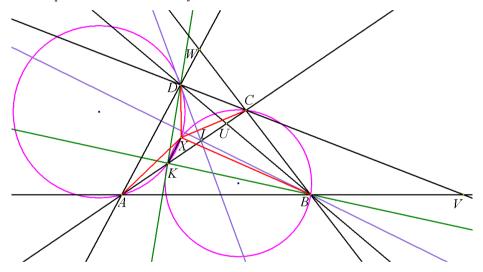
Proof: We will consider the first case only. Let $AB \cap AD = V$ and the second common point of k(BCK) and k(DAK) be X. In order to prove the first equality it is enough to establish, that the point X belongs to the circumcircle k(ACV) of ΔACV (as shown in lemma 1). The following equalities are true:

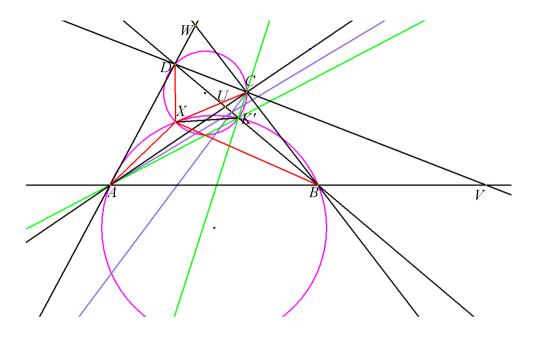
$$\angle CXA = \angle CXK + \angle KXA = 180^{\circ} - \angle CBK + \frac{\widehat{AK}}{2} = 180^{\circ} - \angle DBA + \angle ADK =$$

$$= \angle DBV + \angle BDV = 180^{\circ} - \angle AVD$$

Consequaently $\angle CXA + \angle AVD = 180^\circ$. This equality means that the point X belongs to the circumcircle of $\triangle ACV$. For this reason $\angle XAB = \angle XCD$. The second equality could be obtained in the following way: $\angle XBC = \frac{\widehat{XC}}{2} = \angle XKC = 180^\circ - \angle AKX = \angle XDA$.

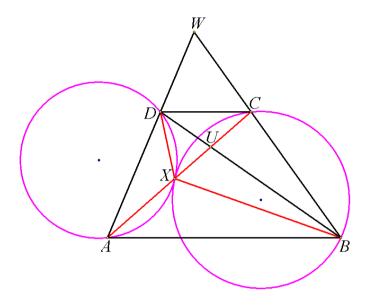
The assertion for the other couple of circles under the condition $AD \cap BC = W$ could be proven in the same way.





If $AB \parallel CD$ and the second common point of k(BCK) and k(DAK) is X, as in the case just considered, we obtain $\angle CXA = 180^{\circ} - \angle DBA + \angle BDC = 180^{\circ}$. This means that the points C, X and A are collinear, i.e. the point X is on the diagonal AC. Consequently, the common points X and X of the circles k(BCK) and k(DAK) are on the diagonal AC. But the circle k(BCK) intersects the line AC in the point C. Since a circle and a line could have no more than two common points, then the point X coincides with X. Therefore, in this case the circles k(BCK) and k(DAK) are tangent at the point X.

Analogously, if $AD \parallel BC$, the circles k(BCK') and k(DAK') are tangent at the point $X \equiv K'$.



Solution of problem 6: If ABCD is a parallelogram, then the equality AB.CD = BC.DA is satisfied only in the case when ABCD is a rhombus. Since Xis the intersection point of its diagonals, $\angle BXA + \angle DXC = 90^{\circ} + 90^{\circ} = 180^{\circ}$. Let now ABCD is such, that two of its sides at least are not parallel to each other. For definiteness let $AB \cap CD = V$. Since (according to lemma 5) the point X belongs to the circles k(BCK) and k(DAK), then $\angle DXA + \angle BXC = \angle AKD + \angle BKC$. From the conclusion we obtain, that $\angle DXA + \angle BXC = 180^{\circ}$. But $(\angle BXA + \angle DXC) + (\angle DXA + \angle BXC) = 360^{\circ}$. Therefore $\angle BXA + \angle DXC = 180^{\circ}$. If we consider the point X as a common point of the circles k(BCK') and k(DAK'), we deduce the desired equality as a consequence of lemma 5 and the conclusion in the following way:

$$\angle BXA + \angle DXC = \angle BK'A + \angle CK'D = 180^{\circ}$$
.

REFERENCES/JИТЕРАТУРА

Stanilov, G. (1979). *Analytic geometry*. Sofia: Nauka i Izkustvo. [Станилов, Г. (1979). *Аналитична геометрия*. София: Наука и изкуство.]

- Grozdev, S. & V. Nenkov (2012). Around the orthocenter in the plane and the space. Sofia: Archimedes 2000. [Гроздев, С. & В. Ненков. (2012). Около ортоцентъра в равнината и пространството. София: Архимед.]
- Grozdev, S. & V. Nenkov (2012). Three notable points on the medians of the triangle. Sofia: Archimedes 2000. [Гроздев, С. & В. Ненков. (2012). Три забележителни точки върху медианите на триъгълника. София: Архимед 2000.]
- Grozdev, S. (2007). For High Achievements in Mathematics. The BulgarianExperience (Theory and Practice). Sofia: ADE. (ISBN 978-954-92139-1-1)
- Malcheski, R., S. Grozdev & K. Anevska (2015). *Geometry of complex numbers*, Sofia: Arhimedes 2000. (ISBN 978-954-779-1886)

ЗАДАЧА 6. ОТ ІМО'2018

Резюме. Международната олимпиада по математика е едно от уважаваните събития и едно от най-старите международни образователни и научни състезания. Тя е най-голямата, най-старата и най-престижната научна олимпиада за гимназиални ученици. 59-ото издание на събитието се проведе в Клуж-Напока, Румъния, в периода 3 – 14 юли 2018. Настоящата статия е посветена на шестата задача от темата. Предложен е подробен анализ на задачата с методологически характер, който ще бъде полезен за ученици и учители по време на подготовката за бъдещи участия в математически състезания.

☐ Prof. Sava Grozdev, DSc.
University of Finance, Business and Entrepreneurship
1, Gusla St.
1618 Sofia, Bulgaria
E-mail: sava.grozdev@gmail.com

Dr. Veselin Nenkov, Assoc. Prof. "Nikola Vaptsarov" Naval Academy 73, Vasil Drumev St. Varna, Bulgaria E-mail: vnenkov@mail.bg Конкурсни задачи Contest Problems Рубриката се води от доц. д-р Веселин Ненков

РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 2, 2018

Задача 1. Да се намери най-малкото естествено число n, при което n куба с целочислени дължини на ръбовете в сантиметри имат сума на обемите, равна на $2018 \ cm^3$.

Христо Лесов, Казанлък

Решение: тъй като $12^3 = 1728 < 2018 < 2197 = 13^3$, то 2018 не е куб на естествено число и затова n > 1. Разглеждаме последователно случаите за $n \ge 2$.

- 1) При n=2 разглеждаме естествени числа x и y, за които са изпълнени релациите $x \ge y \ge 1$ и $x^3 + y^3 = 2018$. Тогава $2x^3 \ge x^3 + y^3 = 2018$, откъдето $x^3 \ge 1009 > 1000 = 10^3$, т.е. $x \ge 11$. Освен това $x^3 + 1 \le x^3 + y^3 = 2018$, откъдето $x^3 \le 2017 < 2197 = 13^3$, т.е. $x \le 12$. Така получихме, че $11 \le x \le 12$. Лесно се проверява, че при x=11 и x=12 няма естествени стойности на y, за които е изпълнено равенството $x^3 + y^3 = 2018$.
- 2) При n=3 разглеждаме естествени числа x, y и z, за които са изпъл $x \ge y \ge z \ge 1$ и $x^3 + y^3 + z^3 = 2018$. релациите $3x^3 \ge x^3 + y^3 + z^3 = 2018$, откъдето $x^3 \ge 672 > 512 = 8^3$, т.е. $x \ge 9$. Освен това $x^3 + 1^3 + 1^3 \le x^3 + y^3 + z^3 = 2018$, откъдето $x^3 \le 2016 < 2197 = 13^3$, т.е. $x \le 12$. Така получихме, че $9 \le x \le 12$. Ако x = 9 имаме $y^3 + z^3 = 1289$. Оттук $2y^3 \ge y^3 + z^3 = 1289$, $y^3 > 644 > 512 = 8^3$, т.е. $y \ge 9$. Освен това $y^3 + 1^3 \le y^3 + z^3 = 1289$, $y^3 \le 1288 < 1331 = 11^3$, т.е. $y \le 10$. Така получихме, че $9 \le y \le 10$. Лесно се проверява, че при x = 9 и y = 9,10 няма естествени стойности на z, за които е изпълнено равенството $x^3 + y^3 + z^3 = 2018$. $y^3 + z^3 = 1018$. Ottyk $2y^3 \ge y^3 + z^3 = 1018$, имаме $y^3 > 509 > 343 = 7^3$, T.E. $y \ge 8$. Ocbeh Toba $y^3 + 1^3 \le y^3 + z^3 = 1018$, $v^3 \le 1017 < 1331 = 11^3$, т.е. $v \le 10$. Така получихме, че $8 \le v \le 10$. Лесно се проверява, че при x = 10 и y = 8,9,10 няма естествени стойности на z, за които е изпълнено равенството $x^3 + y^3 + z^3 = 2018$. Ако x = 10, имаме $y^3 + z^3 = 1018$. Ottyk $2y^3 \ge y^3 + z^3 = 1018$, $y^3 > 509 > 343 = 7^3$, t.e. $y \ge 8$. Освен това $y^3 + 1^3 \le y^3 + z^3 = 1018$, $y^3 \le 1017 < 1331 = 11^3$, т.е. $y \le 10$. Така получихме, че $8 \le y \le 10$. Лесно се проверява, че при x = 10 и y = 8.9.10