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Резюме. Изведена е геометрична връзка между корените на полиноми на 
комплексна променлива с кратни корени във върховете на успоредник и коре-
ните на техните производни. Като приложение са разгледани някои полиноми 
на реална променлива с реални коефициенти.
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Известна е една геометрична връзка между корените на полиномите от 
четвърта степен, които са разположени във върховете на успоредник, и ко-
рените на съотвените им производни. Според тази връзка, ако корените на 
полином от четвърта степен са разположени във върховете на успоредник, то 
корените на неговата производна се намират във фокусите на елипсата, допи-
раща се до страните на успоредника в техните среди и центъра на успоред-
ника (Grozdev & Nenkov, 2018). От друга страна, освен споменатата елипса 
във всеки успоредник могат да се впишат безброй много елипси. Възниква 
въпросът за възможността тези елипси също да осъществяват геометрични 
връзки между полиноми и съответните им производни. Оказва се, че някои 
от тези елипси осъществяват геометрични връзки между някои видове поли-
номи с кратни корени във върховете на разглеждан успоредник и корените на 
неговата производна.

Преди да преминем към излагане на основното съдържание на горния въп-
рос, ще отбележим три помощни твърдения.

Лема 1. Ако корените на два полинома от една и съща степен образуват 
подобни геометрични фигури, то и корените на техните производни образу-
ват подобни геометрични фигури.

Доказателството на тази лема се съдържа в (Grozdev & Nenkov, 2018). От 
лема 1 следва, че от всички полиноми, принадлежащи на клас от полиноми с 
еднаква геометрия, е достатъчно да се изследва само някой нормиран поли-
ном, за да се определи геометрията на класа, зададен чрез производните на 
полиномите от разглеждания клас.
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Лема 2. Ако 1a , 2a ,  , asса корени на полином ( )P z  от n-та степен, 
така че ja  е jk  ( )1,2, ,j s=   кратен корен на ( )P z  и 1 2 sk k k n+ + + = , 
то коефициентът пред първата степен на променливата z  е равен на

( )1 2 11 1
1 2 1 2 3 2 3 1 1 2 1

skk k
s s s s sa a a k a a a k a a a k a a a−− −

−+ + +     .
Доказателството на тази лема се съдържа в (Grozdev & Nenkov, 2018).
Лема 3. Ако корените на полином ( )P z  от степен 2.n  са разположени 

в точки от комплексната равнина, които са централно симетрични спрямо 
точка S , то производната ( )P z′  има корен в точката S .

Доказателство. Нека ( )P z  е полином от степен 2.n , който има корени, 
разположени в точките 1A , 2A ,  , 2nA . Ако Aj и j nA +  ( )1,2, ,j n=   са си-
метрични спрямо точка S , то за афиксите им ja  ( )1,2, ,j n=   и s  са изпъл-
нени равенствата 2j j na a s++ =  ( )1,2, ,j n=  . Ако изберем за координатно 
начало точката S , то 0s =  и следователно 0j j na a ++ =  ( )1,2, ,j n=  .

Коефициентът пред z  според формулите на Виет е сума на 2.n събираеми, 
получени от всевъзможните произведения на числата 1a , 2a ,  , 2na , взети 
по 2. 1n −  във всяко събираемо. Тези събираеми могат да се комбинират по 
такъв начин, че разглежданият коефициент да се представи по следния начин:

( ) ( )
( ) ( )

2 3 2 2 2 2 1 1 1 1 3 1 3 2 2 2 1 2 2

1 2 2 2 2 2 1 2 1 1 2 1 2 2 2 1 2 .
n n n n n n n n n n

n n n n n n n n n n n n

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a
+ − − + + + − − +

− − − − − − −

+ + + + +

+ + + +

    

   

От това представяне на коефициента пред z  и получените от симетрия-
та равенства следва, че той е равен на нула. Следователно ( )P z′  има корен 

0z = . Това означава, че ( )P z′  има корен в точката S .
Сега, като вземем предвид лема 1, получаваме твърдението на лемата за 

произволен полином ( )zP , който притежава споменатите свойства.
За да подчертаем по-дълбоката връзка между полиномите с кратни корени 

във върховете на даден успоредник 1 2 3 4A A A A  и някои от вписаните в този ус-
поредник елипси, да предположим, че точките 1A , 2A , 3A  и 4A  са снабдени с 
маси 1k , 2k , 3k  и 4k . Това означава, че разглеждаме масовите точки ( )1 1,k A , 
( )2 2,k A , ( )3 3,k A  и ( )4 4,k A  (Paskalev & Chobanov, 1985).

Нека диагоналите на успоредника се пресичат в точката S , която всъщ-
ност е центърът на симетрия за 1 2 3 4A A A A . Следователно 3 1SA SA= −

 

 и 
4 2SA SA= −

 

.
Ако в точките 1P′ , 2P′ , 3P′ , 4P′  се намират масовите центрове съответно 

на двойките масови точки ( )3 3,k A  и ( )4 4,k A , ( )4 4,k A  и ( )1 1,k A , ( )1 1,k A  и 
( )2 2,k A , ( )2 2,k A  и ( )3 3,k A  (фиг. 1), то са изпълнени векторните равенства
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( )1 	

3 3 4 4 4 4 1 1
1 2

3 4 4 1

2 2 3 31 1 2 2
3 4

1 2 2 3

, ,

, .

k SA k SA k SA k SASP SP
k k k k

k SA k SAk SA k SASP SP
k k k k

+ +′ ′= =
+ +

++′ ′= =
+ +

   

 

  

 

Избираме 1P′ , 2P′ , 3P′ , 4P′  така, че те да бъдат допирните точки на елипса 
k′  със страните на 1 2 3 4A A A A  (фиг. 1). Тогава точките 3P′  и 4P′  са симетрич-
ни спрямо S  съответно на 1P′  и 2P′  (фиг. 1). Затова са изпълнени вектор-
ните равенства 3 1SP SP′ ′= −

 

 и 4 2SP SP′ ′= −
 

. Сега, като комбинираме първото 
с третото и второто с четвъртото в равенствата ( )1 , получаваме съответно 
( )2 3 4 1 1 2 0k k k k A A− =

 

 и ( )3 4 1 2 4 1 0k k k k A A− =
 

. Следователно 2 3 4 1 0k k k k− =  
и 3 4 1 2 0k k k k− = . Оттук непосредствено следва, че 

( )2 	 3 1k k= , 4 2k k= .
Следователно, за да бъдат точките 1P′ , 2P′ , 3P′ , 4P′  допирни за вписана в ус-

поредника 1 2 3 4A A A A  елипса k′ , трябва масите в срещуположните върхове на 
1 2 3 4A A A A  да бъдат равни. Затова от ( )2  следва, че са изпълнени равенствата

3 1 4 1 2 1: :A P A P k k′ ′= −
 

, 4 2 1 2 1 2: :A P A P k k′ ′ = −
 

, 1 3 2 3 2 1: :A P A P k k′ ′ = −
 

, 

2 4 3 4 1 2: :A P A P k k′ ′ = −
 

.

съответно на 1P  и 2P  (фиг. 1). Затова са изпълнени векторните равенства 

3 1SP SP    и 4 2SP SP   . Сега, като комбинираме първото с третото и второто с 

четвъртото в равенствата  1 , получаваме съответно  2 3 4 1 1 2 0k k k k A A   и 

 3 4 1 2 4 1 0k k k k A A  . Следователно 2 3 4 1 0k k k k   и 3 4 1 2 0k k k k  . Оттук 
непосредствено следва, че  
 2  3 1k k , 4 2k k . 

Следователно, за да бъдат точките 1P , 2P , 3P , 4P  допирни за вписана в 
успоредника 1 2 3 4A A A A  елипса k  , трябва масите в срещуположните върхове на 

1 2 3 4A A A A  да бъдат равни. Затова от  2  следва, че са изпълнени равенствата 

3 1 4 1 2 1: :A P A P k k   , 4 2 1 2 1 2: :A P A P k k    , 1 3 2 3 2 1: :A P A P k k    , 2 4 3 4 1 2: :A P A P k k    . 

 
 
Нека сега точките 1P , 2P , 3P  и 4P  (фиг. 1) са такива, че са изпълнени 

равенствата 

 3  3 1 4 1 1 2 4 2 1 2 2 1

1 3 2 3 1 2 2 4 3 4 2 1

: : , : : ,

: : , : : .

A P A P k k A P A P k k

A P A P k k A P A P k k

   

   
 

В тези точки се намират масовите ценрове съответно на двойките масови 
точки  1

1 3,k A  и  1
2 4,k A ,  1

2 4,k A  и  1
1 1,k A ,  1

1 1,k A  и  1
2 2,k A ,  1

2 2,k A  и 

 1
1 3,k A  (фиг. 1). Точките 1P , 2P , 3P  и 4P  са симетрични съответно на 1P , 2P , 3P , 

4P  спрямо средите 1M , 2M , 3M  и 4M  на отсечките 3 4A A , 4 1A A , 1 2A A  и 2 3A A  (фиг. 
1). Следователно съществува елипса k , която се допира до страните на 1 2 3 4A A A A  в 
точките 1P , 2P , 3P  и 4P . 

Ще покажем, че именно елипсата k  е свързващият елемент между корените 
на полином с кратни корени във върховете на успоредник 1 2 3 4A A A A  и неговата 
производна. 

Нека k  има за фокус точката O , а p  и e  са съответно фокалният параметър 
и численият ексцентрицитет на k . Спрямо Гаусовата координатна система 0K  от 

Фигура 
2 

Фигура 
1 

              Фигура 1		  Фигура 2

Нека сега точките 1P , 2P , 3P  и 4P  (фиг. 1) са такива, че са изпълнени ра-
венствата

( )3 	 3 1 4 1 1 2 4 2 1 2 2 1

1 3 2 3 1 2 2 4 3 4 2 1

: : , : : ,

: : , : : .

A P A P k k A P A P k k

A P A P k k A P A P k k

= − = −

= − = −
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В тези точки се намират масовите ценрове съответно на двойките масо-
ви точки ( )1

1 3,k A−  и ( )1
2 4,k A− , ( )1

2 4,k A−  и ( )1
1 1,k A− , ( )1

1 1,k A−  и ( )1
2 2,k A− , 

( )1
2 2,k A−  и ( )1

1 3,k A−  (фиг. 1). Точките 1P , 2P , 3P  и 4P  са симетрични съот-
ветно на 1P′ , 2P′ , 3P′ , 4P′  спрямо средите 1M , 2M , 3M  и 4M  на отсечките 

3 4A A , 4 1A A , 1 2A A  и 2 3A A  (фиг. 1). Следователно съществува елипса k , която 
се допира до страните на 1 2 3 4A A A A  в точките 1P , 2P , 3P  и 4P .

Ще покажем, че именно елипсата k  е свързващият елемент между коре-
ните на полином с кратни корени във върховете на успоредник 1 2 3 4A A A A  и 
неговата производна.

Нека k  има за фокус точката O , а p  и e  са съответно фокалният пара-
метър и численият ексцентрицитет на k . Спрямо Гаусовата координатна сис-
тема 0K  от фиг. 2, както е показано в (Grozdev & Nenkov, 2018), афиксите на 
точките jP  и jA  ( )1,2,3,4j =  се изразяват съответно с формулите

( )4 	
( ) ( )

1 22 2
1 1 2 2

2 2
1 2

3 42 2 2 2
1 1 2 2

2 2, ,
. 2. . 2.

. 1 . 12 2. , .
1 . 2. 1 . 2.

p pp p
e t t e e t t e

e t e tp pp p
e e t t e e e t t e

= =
+ + + +

+ +
= =

− + + − + +

( )5 	

( )( )1 21
1 22 2

1 2 1 2 1 2

2
3 42

2 1 1 2 1 2

. 1 . 1. 12 2. , . ,
1 1

. 12 2. , ,
1 .

e t e te tp pa a
e t t e et t t t e

e tp pa a
e t t e t t t t e

+ ++
= =

− − − + + +
+

= =
− − + + +

където 1 2 1t t= = .
Сега ще намерим зависимости между разглежданите величини, така 

че да бъдат изпълнени равенствата ( )3 . Тъй като простото отношение на 
произволни три точки kA , lA  и jP  от една права се изразява с равенство-

то k j k j

l jl j

A P a p
a pA P
−

=
−

, от ( )4  и ( )5  след несложни пресмятания се получават 

равенствата

( )6 	
( )
( )( )

2
1 2 1 23 1 1 3 3 41 2

22
4 1 4 2 2 3 2 4 1 2

.

1

e t t t t eA P A P A PA P
A P A P A P A P e t t

+ + +
= = = =

− −
.

От ( )3  и ( )6  се получава следва

( )7 	 ( )( ) ( )2 22
1 1 2 2 1 2 1 21 .k e t t k e t t t t e− − = + + + .
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От ( )5 , като вземем предвид, че 1 3 2 4 2.a a a a s+ = + =  и равенствата ( )2 , 
получаваме

( )( )
( ) ( ) ( )

( )( ) ( )

1 2 3 4 2 3 4 1 3 4 1 2 4 1 2 3
2

2 21 2 2
1 1 2 2 1 2 1 22 2 22

1 2 1 2 1 2

8 . 1 . 1
1 .

1 .

k a a a k a a a k a a a k a a a

p s e t e t
k e t t k e t t t t e

e t t e t t t t e

+ + + =

+ +  = − − − + + + − − + + +

Като заместим ( )7  в последното равенство, получаваме

( )8 	 1 2 3 4 2 3 4 1 3 4 1 2 4 1 2 3 0k a a a k a a a k a a a k a a a+ + + = .

Сега да разгледаме нормирания полином ( )0P z  от степен ( )1 22.n k k= +  
на комплексна променлива с комплексни коефициенти, който има 1k  кратни 
корени във върховете 1A  и 3A  и 2k  кратни корени във върховете 2A  и 4A  на 
успоредника 1 2 3 4A A A A . От лема 2 и равенство ( )8  следва, че коефициентът 
пред z  има стойност, равна на 0 . Затова ( )0P z′  има корен 0z = . Това всъщ-
ност на геометричен език означава, че ( )0P z′  има корен във фокуса O  на 
елипсата k . Следователно според лема 1 и бележката към нея се получава, че 
производната ( )P z′  на произволен полином ( )P z  със свойствата на ( )0P z  
има корен в точката O .

По аналогичен начин, ако разгледаме координатна система с център в дру-
гия фокус F  на k , получаваме, че ( )P z′  има корен и в точката F  (фиг. 2).

Като вземем предвид и лема 3, можем до обединим получените резултати 
в следната

Теорема. Ако един полином ( )P z  от степен ( )1 22.n k k= +  на комплексна 
променлива с комплексни коефициенти има 1k  кратни корена във върховете 

1A  и 3A  и 2k  кратни корена във върховете 2A  и 4A  на успоредника 1 2 3 4A A A A , 
то производната ( )P z′  на ( )P z  има корени във фокусите и центъра на 
елипсата k , допираща се до правите 3 4A A , 4 1A A , 1 2A A  и 2 3A A  съответно в 
точките 1P , 2P , 3P  и 4P , за които са изпълнени равенствата

3 1 4 1 1 2: :A P A P k k= − , 4 2 1 2 2 1: :A P A P k k= − , 1 3 2 3 1 2: :A P A P k k= − , 2 4 3 4 2 1: :A P A P k k= − .

Полиномът ( )P z′  има 1 1k −  кратни корена във върховете 1A  и 3A  и 2 1k −  
кратни корена във върховете 2A  и 4A  (Genov, Mihovski & Molov, 1991), а ос-
таналите три корена се описват от току-що доказаната теорема. По този начин 
получаваме пълна геометрична картина на корените на ( )P z′ .
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От лема 2 и равенство (8) непосредствено се получава следното:
Следствие. Ако един полином ( )P z  от степен 4.n m=  на комплексна 

променлива с комплексни коефициенти има m -кратен корен във върха jA  
( )1,2,3,4j =  на успоредника 1 2 3 4A A A A , то производната ( )P z′  на ( )P z  
има корени във фокусите и центъра на елипсата k , допираща се до отсеч-
ките 3 4A A , 4 1A A , 1 2A A  и 2 3A A  в техните среди.

По този начин се получава едно обобщение на теоремата, доказана в 
(Grozdev & Nenkov, 2018).

Ако ( ) ( )P z P x=  е полином с реални коефициенти на реална променли-
ва, можем да представим някои геометрични интерпретации на следствие-
то. На фиг. 3 и фиг. 4 са представени полиноми ( )P x  с двукратни корени 
във върховете на ромб 1 2 3 4A A A A . В случая, показан на фиг. 3, производната 

( )P x′  има реални корени във фокусите 1F  и 2F  и центъра O  на елипсата k , 
допираща се до средите на страните 3 4A A , 4 1A A , 1 2A A  и 2 3A A . Затова графи-
ката на ( )P x′  минава през точките 1F , 2F  и O . В случая, показан на фиг. 4, 
производната ( )P x′  няма реални корени във фокусите 1F  и 2F  на елипсата 
k . Затова графиката на ( )P x′  минава само през центъра є O .

 
 

 
На фиг. 5 и фиг. 6 са представени полиноми  P x  с трикратни корени във 

върховете на правоъгълник 1 2 3 4A A A A . В случая, показан на фиг. 5, производната 
 P x  има реални корени във фокусите 1F  и 2F  и центъра O  на елипсата k , 
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На фиг. 5 и фиг. 6 са представени полиноми  P x  с трикратни корени във 

върховете на правоъгълник 1 2 3 4A A A A . В случая, показан на фиг. 5, производната 
 P x  има реални корени във фокусите 1F  и 2F  и центъра O  на елипсата k , 
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На фиг. 5 и фиг. 6 са представени полиноми ( )P x  с трикратни корени 
във върховете на правоъгълник 1 2 3 4A A A A . В случая, показан на фиг. 5, про-
изводната ( )P x′  има реални корени във фокусите 1F  и 2F  и центъра O  на 
елипсата k , допираща се до средите на страните 3 4A A , 4 1A A , 1 2A A  и 2 3A A . 
Затова графиката на ( )P x′  минава през точките 1F , 2F  и O . В случая, по-
казан на фиг. 6, производната ( )P x′  няма реални корени във фокусите 1F  и 

2F  на елипсата k . Затова графиката на ( )P x′  минава само през центъра Ӱ O .
На фиг. 7 и фиг. 8 са представени полиноми ( )P x  с четирикратни корени 

във върховете на квадрат 1 2 3 4A A A A . В тези случаи елипсата, допираща се до 
средите на страните 3 4A A , 4 1A A , 1 2A A  и 2 3A A , е окръжност. Затова произ-
водната ( )P x′  има трикратен корен в центъра O  на вписаната в квадрата 
окръжност. Всъщност в тези случаи ( )P x′  има трикратни корени във всяка 
от точките 1A , 2A , 3A , 4A  и O .



442

Сава Гроздев, Веселин Ненков

допираща се до средите на страните 3 4A A , 4 1A A , 1 2A A  и 2 3A A . Затова графиката на 
 P x  минава през точките 1F , 2F  и O . В случая, показан на фиг. 6, производната 
 P x  няма реални корени във фокусите 1F  и 2F  на елипсата k . Затова графиката 

на  P x  минава само през центъра й O . 
На фиг. 7 и фиг. 8 са представени полиноми  P x  с четирикратни корени 

във върховете на квадрат 1 2 3 4A A A A . В тези случаи елипсата, допираща се до 
средите на страните 3 4A A , 4 1A A , 1 2A A  и 2 3A A , е окръжност. Затова производната 

 P x  има трикратен корен в центъра O  на вписаната в квадрата окръжност. 
Всъщност в тези случаи  P x  има трикратни корени във всяка от точките 1A , 2A , 

3A , 4A  и O . 
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POLYNOMIALS WITH MULTIPLE ROOTS 
IN THE VERTICES OF A PARALLELOGRAM

Abstract. A geometric relation is derived between the roots of polynomials of 
complex variable with multiple roots in the vertices of a parallelogram and the roots 
of their derivatives. As an application some polynomials of real variable with real 
coefficients are considered.

Keywords: polynomial; roots of polynomial; parallelogram; rhombus; rectangle; 
ellipse; focus; centre
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