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ПОЛИНОМИ С КРАТНИ КОРЕНИ  
ВЪВ ВЪРХОВЕТЕ НА ТРИЪГЪЛНИК

1)Сава Гроздев, Веселин Ненков
1)Висше училище по застраховане и финанси – София

Резюме. Разгледана е една геометрична връзка между корените на поли-
ном и тези на неговата производна, когато всички корени на полинома се на-
мират в три неколинеарни точки. Тази връзка се осъществява чрез фокусите 
на специална елипса, определена от кратностите на корените на полинома.
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Известна е една геометрична връзка между корените на полиномите от 
трета степен с неколинеарни корени и корените на съответните им производ-
ни. Според тази връзка, ако корените на полином от трета степен са разпо-
ложени във върховете на триъгълник, то корените на неговата производна се 
намират във фокусите на елипсата, допираща се до страните на триъгълника 
в техните среди (Nenkov, 2010). От друга страна, освен споменатата елипса 
във всеки триъгълник могат да се впишат безброй много елипси. Затова въз-
никва въпросът за възможността някои от тези елипси също да осъществяват 
геометрични връзки между полиноми и съответните им производни. Оказва 
се, че някои от тези елипси осъществяват геометрични връзки между някои 
видове полиноми с кратни корени във върховете на разглеждан триъгълник и 
корените на неговата производна.

Преди да преминем към излагане на основното съдържание на този въп-
рос, ще отбележим три помощни твърдения.

Лема 1. Ако корените на два полинома от една и съща степен образуват 
подобни геометрични фигури, то и корените на техните производни образу-
ват подобни геометрични фигури (Grozdev & Nenkov, 2018 a)

Ясно е, че ако един нормиран полином (който има коефициент 1 пред най-
високата си степен) и един ненормиран полином (който има коефициент, раз-
личен от 1, пред най-високата си степен) имат едни и същи корени, то и тех-
ните производни ще имат едни и същи корени. Затова от тази лема следва, че 
ако за производната на един нормиран полином от известен клас установим 
геометрията на корените му, то можем да твърдим, че всеки полином от този 
клас има същата геометрия на корените си (Grozdev & Nenkov, 2018 a).
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Лема 2. Ако 1a , 2a ,  , sa  са корени на полином ( )P z  от n -та степен, 
jk  ( )1,2, ,j s=   са съответните им кратности и 1 2 sk k k n+ + + = , то 

коефициентът пред първата степен на променливата z  е равен на:

( )1 2 11 1
1 2 1 2 3 1 2 3 4 1 1 2 2 1

skk k
s s s s s s sa a a k a a a a k a a a a k a a a a−− −

− − −+ + +     .
Доказателство. Означаваме корените на ( )P z  с 1b , 2b , ..., nb . Коефици-

ентът пред z  според формулите на Виет е сума на n  събираеми, получени от 
всевъзможните произведения на числата 1b , 2b ,  , nb , взети по 1n −  пъти 
във всяко събираемо.

Нека 1 1b a= , 2 2b a= ,  , s sb a= ; 
11 2 1 1s s s kb b b a+ + + −= = = = ,

1 1 1 21 2 2s k s k s k kb b b a+ + + + + −= = = = ,  ,

( ) ( ) ( )1 2 1 1 2 1 1 2 12 2 1 2 2s s s s ss k k k s s k k k s s k k k s kb b b a
− − −+ + + + − − + + + + − − + + + + + − − + −= = = =

  



( )2 3 1s sn k n k n n sb b b b a− + − + −= = = = = .

Едно от събираемите в коефициента пред z  е 
1 2

1 2 2 1 1 2 1
s sk kk k

n n s sb b b b a a a a− − −   (тъй като липсва само n sb a= ). Сега, ако 
заменим в b1b2...bn –2bn – 1 последователно 1nb − , 2nb − ,  , 2sn kb − +  с nb , получа-
ваме още 2sk −  пъти 11 2 1

1 2 1
s sk kk k

s sa a a a− −
− . Следователно по този начин получа-

ваме 1sk −  пъти това събираемо. Накрая, като заменим sb  с nb , получаваме 
същото произведение още един път. Следователно цялата сума съдържа про-
изведението 11 2 1

1 2 1
s sk kk k

s sa a a a− −
−  точно sk  пъти.

Като приложим същата идея за всеки от другите корени, получаваме съот-
ветното събираемо в твърдението на лемата. Така стигаме до доказателство 
на лемата.

Лема 3. Ако точките 1P , 2P  и 3P  лежат съответно върху страните 
2 3A A , 3 1A A  и 1 2A A  на 1 2 3A A A∆ , то коничното сечение k , минаващо през 1P , 

 2P  и 3P , се допира до правите 2 3A A , 3 1A A  и 1 2A A  тогава и само тогава, 
когато правите 1 1A P , 2 2A P  и 3 3A P  минават през една точка P .

Доказателство. Нека коничното сечение k  се допира до правите 2 3A A , 
3 1A A  и 1 2A A  съответно в точките 1P , 2P  и 3P . Означаваме правите 2 3A A , 
3 1A A  и 1 2A A  съответно с 1p , 2p  и 3p . Ако разгледаме тези прави в реда 
1 2 2 3 3 1p p p p p p , според теоремата на Брианшон (Mateev, 1977) получаваме, че 

правите 1 1 1p A P= , 2 2 2p A P=  и 3 3 3p A P=  се пресичат в една точка P .
Обратно, ако правите 1 1 1p A P= , 2 2 2p A P=  и 3 3 3p A P= се пресичат в една 

точка P  и отново разгледаме реда прави 133221 pppppp , то според теоремата 
на Брианшон (Mateev, 1977), приложена в обратна посока, следва, че 1P , 2P  и 
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3P  са допирни точки съответно за правите 2 3A A , 3 1A A  и 1 2A A  към конично 
сечение k . С това лемата е доказана.

За да подчертаем по-дълбоката връзка между полиномите с кратни корени 
във върховете на даден триъгълник 1 2 3A A A  и някои от вписаните в този три-
ъгълник елипси, да предположим, че точките 1A , 2A  и 3A  са снабдени с маси 

1k , 2k  и 3k . Това означава, че разглеждаме масовите точки ( )1 1,k A , ( )2 2,k A  
и ( )3 3,k A  (Paskalev & Chobanov, 1985).

Ако в точките 1P′ , 2P′  и 3P′  се намират масовите центрове съответно на двой-

ките масови точки ( )2 2,k A  и ( )3 3,k A , ( )3 3,k A  и ( )1 1,k A  и ( )1 1,k A  и ( )2 2,k A , 
то са изпълнени равенствата: 2 1 3 1 3 2: :A P A P k k′ ′= − , 3 2 1 2 1 3: :A P A P k k′ ′ = − , 

1 3 2 3 2 1: :A P A P k k′ ′ = −  (Paskalev & Chobanov, 1985). От тези равенства и тео-
ремата на Чева (Paskalev & Chobanov, 1985) следва, че правите 1 1A P′ , 2 2A P′  и 

3 3A P′  се пресичат в една точка P′ , в която се намира центърът на масите на 
трите разглеждани масови точки (Paskalev & Chobanov, 1985). Според лема 3 
правите 2 3A A , 3 1A A  и 1 2A A  са допирателни към елипса k′  съответно в точ-
ките 1P′ , 2P′  и 3P′ .

Ако точките 1P , 2P  и 3P  са такива, че са изпълнени равенствата

( )1 	 2 1 3 1 2 3: :A P A P k k= − , 3 2 1 2 3 1: :A P A P k k= − , 1 3 2 3 1 2: :A P A P k k= − ,

в тях се намират масовите центрове съответно на двойките масови точки 
( )1

2 2,k A−  и ( )1
3 3,k A− , ( )1

3 3,k A−  и ( )1
1 1,k A−  и ( )1

1 1,k A−  и ( )1
2 2,k A− . Точките 

1P , 2P  и 3P  са симетрични съответно на 1P′ , 2P′  и 3P′  спрямо средите 1M , 
2M  и 3M  съответно на отсечките 2 3A A , 3 1A A  и 1 2A A  (фиг. 1). От равенства-

та ( )1  и теоремата на Чева следва, че правите 1 1A P , 2 2A P  и 3 3A P  се пресичат 
в една точка P , в която се намира центърът на масите за масовите точки 
( )1

1 1,k A− , ( )1
2 2,k A−  и ( )1

3 3,k A−  (фиг. 1). По този начин получаваме, че точки-
те P  и P′  са изотомично спрегнати спрямо 1 2 3A A A∆  (Paskalev & Chobanov, 
1985). Според лема 3 правите 2 3A A , 3 1A A  и 1 2A A  са допирателни към елипса 
k  съответно в точките 1P , 2P  и 3P  (фиг. 1). Ще покажем, че именно елипсата 
k  е свързващият елемент между корените на полином с кратни корени във 
върховете на 1 2 3A A A∆  и неговата производна.
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следва, че правите 1 1A P , 2 2A P  и 3 3A P  се пресичат в една точка P , в която се намира 
центърът на масите на трите разглеждани масови точки (Paskalev & Chobanov, 1985). 
Според лема 3 правите 2 3A A , 3 1A A  и 1 2A A  са допирателни към елипса k   съответно в 
точките 1P , 2P  и 3P . 

Ако точките 1P , 2P  и 3P  са такива, че са изпълнени равенствата 
 1  2 1 3 1 2 3: :A P A P k k  , 3 2 1 2 3 1: :A P A P k k  , 1 3 2 3 1 2: :A P A P k k  , 

в тях се намират масовите центрове съответно на двойките масови точки  1
2 2,k A  и 

 1
3 3,k A ,  1

3 3,k A  и  1
1 1,k A  и  1

1 1,k A  и  1
2 2,k A . Точките 1P , 2P  и 3P  са симетрични 

съответно на 1P , 2P  и 3P  спрямо средите 1M , 2M  и 3M  съответно на отсечките 2 3A A , 

3 1A A  и 1 2A A  (фиг. 1). От равенствата  1  и теоремата на Чева следва, че правите 1 1A P , 2 2A P  
и 3 3A P , се пресичат в една точка P , в която се намира центърът на масите за масовите 

точки  1
1 1,k A ,  1

2 2,k A  и  1
3 3,k A  (фиг. 1). По този начин получаваме, че точките P  и 

P  са изотомично спрегнати спрямо 1 2 3A A A  (Paskalev & Chobanov, 1985). Според лема 3 
правите 2 3A A , 3 1A A  и 1 2A A  са допирателни към елипса k  съответно в точките 1P , 2P  и 3P  
(фиг. 1). Ще покажем, че именно елипсата k  е свързващият елемент между корените на 
полином с кратни корени във върховете на 1 2 3A A A  и неговата производна. 

 
Нека елипсата k  има за фокус точката O , фокален параметър p  и числен 

ексцентрицитет e . Спрямо Гаусовата координатна система 0K  от фиг. 2, както е показано 
в (Nenkov, 1998), афиксите jp  и ja  на точките jP  и jA   1,2,3j   се изразяват съответно 
с формулите 

 2  1
1 1

2
. 2

pp
e t t e


 

, 2
2 2

2
. 2

pp
e t t e


  3

3 3

2
. 2

pp
e t t e


 

. 
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Нека елипсата k  има за фокус точката O , фокален параметър p  и чис-
лен ексцентрицитет e . Спрямо Гаусовата координатна система 0K  от фиг. 2, 
както е показано в (Nenkov, 1998), афиксите jp  и ja  на точките jP  и jA  
( )1,2,3j =  се изразяват съответно с формулите

( )2 	 1
1 1

2
. 2

pp
e t t e

=
+ +

, 2
2 2

2
. 2

pp
e t t e

=
+ + 3

3 3

2
. 2

pp
e t t e

=
+ +

.

( )3 	 1
2 3 2 3

2 pa
et t t t e

=
+ + +

, 2
3 1 3 1

2 pa
et t t t e

=
+ + +

, 3
1 2 1 2

2 pa
et t t t e

=
+ + +

,

където 1 2 3 1t t t= = = .
Сега ще намерим зависимости между разглежданите величини, така 

че да бъдат изпълнени равенствата ( )1 . Тъй като простото отношение на 
произволни три точки kA , lA  и jP  от една права се изразява с равенство-

то k j k j

l jl j

A P a p
a pA P
−

=
−

, от ( )2  и ( )3  след несложни пресмятания се получават 

равенствата

( )4 	 3 12 1 2

2 1 33 1

.t tA P a
t t aA P
−

=
−

, 3 2 31 2

3 2 11 2

.A P at t
t t aA P
−

=
−

, 1 3 2 3 1

1 3 22 3

.A P t t a
t t aA P
−

=
−

.

От второто и третото равенство в ( )4  и ( )1  следват равенствата

( )5 	 3 22
2 1

1 3 1

. .t tka a
k t t

−
= −

−
, 3 2 3

3 1
1 2 1

. .k t ta a
k t t

−
= −

−
.
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От равенствата (5)  непосредствено се получава и равенството
( )6 	 1 2 3 2 3 1 3 1 2 0k a a k a a k a a+ + = .

Сега да разгледаме нормирания полином ( )
0P z  на комплексна променли-

ва с комплексни коефициенти от степен 1 2 3n k k k= + + , който има jk -кратен 
корен във върха jA  ( )1,2,3j =  на 1 2 3A A A∆ . От лема 2 и равенството ( )6  
следва, че коефициентът пред z  има стойност 0 . Затова производната ( )

0P z′  
има корен 0z = . Това всъщност на геометричен език означава, че ( )

0P z′  има 
корен във фокуса O  на елипсата k . Следователно, според лема 1 и бележката 
към нея, се получава, че производната ( )P z′  на произволен полином ( )P z  
със свойствата на ( )

0P z  има корен в точката O .
Аналогично, ако разгледаме координатна система с център в другия фокус 

F  на k , получаваме, че ( )P z′  има корен и в точката F . По този начин до-
казахме следната

Теорема. Ако един полином ( )P z  от степен 1 2 3n k k k= + +  на ком-
плексна променлива с комплексни коефициенти има jk -кратен корен във 
върха jA  ( )1,2,3j =  на 1 2 3A A A∆ , то производната ( )P z′  на ( )P z  има 
корени във фокусите на елипсата k , допираща се до правите 2 3A A , 3 1A A  и 

1 2A A  съответно в точките 1P , 2P  и 3P , за които са изпълнени равенствата 

2 1 3 1 2 3: :A P A P k k= − , 3 2 1 2 3 1: :A P A P k k= − , 1 3 2 3 1 2: :A P A P k k= − .
Полиномът ( )P z′  има ( kj – 1) -кратен корен във върха jA  ( )1,2,3j =  

(Genov, Mihovski & Molov, 1991), а останалите два корена се описват от току-
що доказаната теорема. По този начин получаваме пълна геометрична карти-
на на корените на ( )P z′ .

От теоремата непосредствено се получава следното
Следствие.  Ако един полином ( )P z  от степен n = 3.m на комплекс-

на променлива с комплексни коефициенти има m-кратен корен във върха jA  
( )1,2,3j =  на 1 2 3A A A∆ , то производната ( )P z′  на ( )P z  има корени във 
фокусите на елипсата k , допираща се до отсечките 2 3A A , 3 1A A  и 1 2A A  в 
техните среди.

По този начин се получава едно обобщение на теоремата, доказана в 
(Nenkov, 2010).
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Полиноми с кратни корени...производната  P z  на  P z  има корени във фокусите на елипсата k , допираща се до 
отсечките 2 3A A , 3 1A A  и 1 2A A  в техните среди. 

По този начин се получава едно обобщение на теоремата доказана в (Nenkov, 2010). 

 
Ако    P z P x  е полином с реални коефициенти на реална променлива, можем 

да представим някои геометрични интерпретации на доказаната теорема и нейното 
следствие. На фиг. 3 е показан полином  P x  с двукратен реален корен в 1A  и два прости 
комплексно спрегнати корена в 2A  и 3A . Производната  P x  има три прости реални 
корена, съответните точки на които са върхът 1A  и фокусите 1F  и 2F  на елипсата k . На 
фиг. 4 е представен полином  P x  с прост реален корен в 1A  и два двукратни комплексно 
спрегнати корена в 2A  и 3A . Производната  P x  има два прости реални корена, 
съответните точки на които са фокусите 1F  и 2F  на елипсата k . 
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Ако ( ) ( )P z P x=  е полином с реални коефициенти на реална променли-
ва, можем да представим някои геометрични интерпретации на доказаната 
теорема и нейното следствие. На фиг. 3 е показан полином ( )P x  с двукратен 
реален корен в 1A  и два прости комплексно спрегнати корена в 2A  и 3A . 
Производната ( )P x′  има три прости реални корена, съответните точки на 
които са върхът 1A  и фокусите 1F  и 2F  на елипсата k . На фиг. 4 е представен 
полином ( )P x  с прост реален корен в 1A  и два двукратни комплексно спрег-
нати корена в 2A  и 3A . Производната ( )P x′  има два прости реални корена, 
съответните точки на които са фокусите 1F  и 2F  на елипсата k .

 
Полиноми, които съответстват на следствието, са показани на фиг. 5, 6 и 7. Тези 

полиноми имат съответно прости, двукратни и трикратни корени във върховете на 
1 2 3A A A , т.е. те се получават при 1m  , 2m   и 3m  . 

 
На фиг. 8 полиномът  P x  има трикратен реален корен в 1A  и два прости 

комплексно спрегнати корена в 2A  и 3A . Графиката на производната  P x  не минава през 
фокусите 1F  и 2F  на елипсата k , тъй като те отговарят на два комплексно спрегнати 
корена на  P x . 
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Полиноми, които съответстват на следствието, са показани на фиг. 5, 6 и 7. 
Тези полиноми имат съответно прости, двукратни и трикратни корени във 
върховете на 1 2 3A A A∆ , т.е. те се получават при 1m = , 2m =  и 3m = .

 
Полиноми, които съответстват на следствието, са показани на фиг. 5, 6 и 7. Тези 

полиноми имат съответно прости, двукратни и трикратни корени във върховете на 
1 2 3A A A , т.е. те се получават при 1m  , 2m   и 3m  . 

 
На фиг. 8 полиномът  P x  има трикратен реален корен в 1A  и два прости 

комплексно спрегнати корена в 2A  и 3A . Графиката на производната  P x  не минава през 
фокусите 1F  и 2F  на елипсата k , тъй като те отговарят на два комплексно спрегнати 
корена на  P x . 
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На фиг. 8 полиномът ( )P x  има трикратен реален корен в 1A  и два прости 
комплексно спрегнати корена в 2A  и 3A . Графиката на производната ( )P x′  
не минава през фокусите  1F  и 2F  на елипсата k , тъй като те отговарят на два 
комплексно спрегнати корена на ( )P x′ .
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POLYNOMIALS WITH MULTIPLE ROOTS  
IN THE VERTICES OF A TRIANGLE

Abstract. It is considered a geometric relation between the roots of a polynomial 
and the roots of its derivative, when all roots of the polynomial are in three non-
collinear points. This relation is realized through the focuses of a special ellipse, 
which is determined by the multiplicities of the polynomial roots.
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