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Резюме. Разгледана е геометрична връзка между полином с колинеарни ко-
рени и корените на неговата производна посредством една специална елипса, 
породена от корените на полинома.

Keywords: polynomial of third degree; derivative; equilateral triangle; ellipse; 
circle; vertices; centroid

Увод. Известна е една геометрична връзка между корените на полиномите 
от трета степен с неколинеарни корени и корените на съответните им произ-
водни. Според тази връзка, ако корените на полином от трета степен са разпо-
ложени във върховете на триъгълник, то корените на неговата производна се 
намират във фокусите на елипсата, допираща се до страните на триъгълника 
в техните среди (Nenkov, 2010). Освен това съществуват полиноми от трета 
степен с корени, разположени в точки, които лежат върху една права. Затова 
възниква въпросът за възможността да съществуват геометрични връзки между 
корените на този вид полиноми и корените на техните производни посредством 
подходящи елипси. Оказва се, че подобни геометрични връзки съществуват, но 
с по-различна геометрична структура от разгледаните в (Nenkov, 2010).

Специална елипса и специална окръжност, определени от три коли-
неарни точки. Разкриването на геометричните връзки между полиноми от 
трета степен и съответните им производни ще проведем в последователност 
от няколко помощни твърдения. Тези твърдения се отнасят до криви от втора 
степен, определени от равностранни триъгълници с колинеарни върхове.
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Увод. Известна е една геометрична връзка между корените на полиномите 
от трета степен с неколинеарни корени и корените на съответните им производни. 
Според тази връзка, ако корените на полином от трета степен са разположени във 
върховете на триъгълник, то корените на неговата производна се намират във 
фокусите на елипсата, допираща се до страните на триъгълника в техните среди 
(Nenkov, 2010). Освен това съществуват полиноми от трета степен с корени, 
разположени в точки, които лежат върху една права. Затова възниква въпросът за 
възможността да съществуват геометрични връзки между корените на този вид 
полиноми и корените на техните производни посредством подходящи елипси. 
Оказва се, че подобни геометрични връзки съществуват, но с по-различна 
геометрична структура от разгледаните в (Nenkov, 2010). 

Специална елипса и специална окръжност, определени от три 
колинеарни точки. Разкриването на геометричните връзки между полиноми от 
трета степен и съответните им производни ще проведем в последователност от 
няколко помощни твърдения. Тези твърдения се отнасят до криви от втора степен, 
определени от равностранни триъгълници с колинеарни върхове. 

Лема 1. Ако точките 1A , 2A  и 3A  лежат на една права l , а точките jP  и 

jP   1,2,3j   са такива, че триъгълниците 2 3 1A A P , 2 3 1A A P , 3 1 2A AP , 3 1 2A AP , 

1 2 3A A P  и 1 2 3A A P  са равностранни, то точките jP  и jP   1,2,3j   лежат на една 

елипса k . 
Доказателство. Разглеждаме координатна система с абсцисна ос по правата 

l  и координатно начало в центъра на тежестта G  на точките 1A , 2A  и 3A . Нека 

спрямо въведената координатна система абсцисите на точките 1A , 2A  и 3A  са 

съответно 1a , 2a  и 3a . Тъй като G  е център на координатната система, то 

Доказателство. Разглеждаме координатна система с абсцисна ос по права-
та l  и координатно начало в центъра на тежестта G  на точките 1A , 2A  и 3A . 
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Нека спрямо въведената координатна система абсцисите на точките A1, A2 и  A3 
са съответно 1a , 2a  и 3a . Тъй като G  е център на координатната система, то 

1 2 3 0a a a+ + = . От последното равенство лесно се вижда, че са изпълнени 
равенствата

( )1 	 2 2 2 2
1 2 3 2 3 1 3 1 2 3a a a a a a a a a R− = − = − = ,

където R  е реално положително число.
Координатите на точките jP′  и jP′′  ( )1,2,3j =  се изразяват по следния 

начин:

( )2
2 3 3 1 1 22 3 3 1 1 2

1 2 3

2 3 3 1 1 22 3 3 1 1 2
1 2 3

3 3 3
, , , , , ,

2 2 2 2 2 2
3 3 3

, , , , , .
2 2 2 2 2 2

a a a a a aa a a a a aP P P

a a a a a aa a a a a aP P P

                
     

                  
     

 

1 2 3 0a a a   . От последното равенство лесно се вижда, че са изпълнени 
равенствата 
 1  2 2 2 2

1 2 3 2 3 1 3 1 2 3a a a a a a a a a R      , 
където R  е реално положително число. 

Координатите на точките jP  и jP   1,2,3j   се изразяват по следния начин: 

 

 2  

2 3 3 1 1 22 3 3 1 1 2
1 2 3

2 3 3 1 1 22 3 3 1 1 2
1 2 3

3 3 3
, , , , , ,

2 2 2 2 2 2
3 3 3

, , , , , .
2 2 2 2 2 2

a a a a a aa a a a a aP P P

a a a a a aa a a a a aP P P

                
     

                  
     

 

 

 
От  1  и  2  лесно се вижда, че точките jP  и jP   1,2,3j   лежат на 

елипсата k , определена с уравнението 

 3  
2 2

2 2: 1
9

x yk
R R

  . 

С това лемата е доказана. 
Лема 2. Ако точките 1A , 2A  и 3A  лежат на една права l , а точките jG  и 

jG  1,2,3j   са центровете на равностранните триъгълници 2 3 1A A P , 2 3 1A A P , 

3 1 2A AP , 3 1 2A AP , 1 2 3A A P  и 1 2 3A A P , то точките jG  и jG   1,2,3j   лежат на една 

окръжност C . 

Фигура 
1 
Фигура 1

От ( )1  и ( )2  лесно се вижда, че точките jP   и jP   (j = 1, 2, 3) лежат на 
елипсата k, определена с уравнението
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( )3
	

2 2

2 2: 1
9

x yk
R R

+ = .

С това лемата е доказана.
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 1  2 2 2 2
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От  1  и  2  лесно се вижда, че точките jP  и jP   1,2,3j   лежат на 

елипсата k , определена с уравнението 

 3  
2 2

2 2: 1
9

x yk
R R

  . 

С това лемата е доказана. 
Лема 2. Ако точките 1A , 2A  и 3A  лежат на една права l , а точките jG  и 

jG  1,2,3j   са центровете на равностранните триъгълници 2 3 1A A P , 2 3 1A A P , 

3 1 2A AP , 3 1 2A AP , 1 2 3A A P  и 1 2 3A A P , то точките jG  и jG   1,2,3j   лежат на една 

окръжност C . 

Фигура 
1 

Доказателство. Разглеждаме същата координатна система, както в доказа-
телството на лема 1. Координатите на точките jG′  и jG′′  ( )1,2,3j =  се изра-
зяват по следния начин:

( )4 	

2 3 3 1 1 22 3 3 1 1 2
1 2 3

2 3 3 1 1 22 3 3 1 1 2
1 2 3

3 3 3
, , , , , ,

2 6 2 6 2 6

3 3 3
, , , , , .

2 6 2 6 2 6

a a a a a aa a a a a aG G G

a a a a a aa a a a a aG G G

     − − −+ + +′ ′ ′     
     

     − − −+ + +′′ ′′ ′′− − −     
     

От ( )1  и ( )4  лесно се вижда, че точките jG′  и jG′′  ( )1,2,3j =  лежат на 
окръжността C , определена с уравнението

( )5 	 2 2 2:C x y R+ = .
С това лемата е доказана.
От равенствата ( )3  и ( )5  се получава, че единствените общи точки на 

елипсата k  и окръжността C  са ( )1 ,0V R−  и ( )2 ,0V R . Следователно те са 
върхове на k . По този начин доказахме и следната:

Лема 3. Окръжността C  и елипсата k  се допират във върховете 1V  и V2 ,  
лежащи върху малката ос на k .

Забележка. Поради симетрията е ясно, че двете шесторки точки jP′ , jP′′  
и jG′ , jG′′  ( )1,2,3j =  лежат на криви от втора степен. Лема 1 уточнява, 
че точките jP′ , jP′′  лежат на елипса, а лема 2 уточнява, че точките jG′ , jG′′  
( )1,2,3j =  лежат на една окръжност.

3. Връзка между корените на производната на полином от трета сте-
пен с колинеарни корени и върховете от малката ос на една специална 
елипса. Сега ще покажем, че върховете 1V  и 2V  на k  са търсената връзка 
между споменатите в началото полиноми и техните производни. По-точно, в 
сила е следната:

Теорема. Ако един полином ( )P z  от трета степен на комплексна 
променлива с комплексни коефициенти има корени в три различни точки  

1A , 2A  и 3A  от една права l , то производната ( )P z′  на ( )P z  има ко-
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рени във върховете от малката ос на елипсата k , определена от вър-
ховете на равностранните триъгълници, построени върху отсечките  

1 2A A , 2 3A A  и 3 1A A .
Доказателство. Разглеждаме Гаусова координатна система с реална ос по 

правата l . Спрямо тази координатна система афиксите 1a , 2a  и 3a , съответ-
но на точките 1A , 2A  и 3A , са реални числа, а точките от окръжността C  се 
определят с уравнението

( )6 	 ( ) ( )1 2 3 1 2 3 1 2 2 3 3 1: 3 0C zz a a a z a a a z a a a a a a− + + − + + + + + = .

От ( )6  следва, че пресечните точки на окръжността C  с реалната ос l , 
която има уравнение z z= , удовлетворяват равенството

( )7 	 ( )2
1 2 3 1 2 2 3 3 13 2 0z a a a z a a a a a a− + + + + + = .

Нека сега ( )P z  е нормиран полином от трета степен с корени в точките 
1A , 2A  и 3A . От формулите на Виет следва, че ( )P z  и неговата производна 
( )P z′  се представят по следния начин:

( )8 	      3 2
1 2 3 1 2 2 3 3 1 1 2 3 0P z z a a a z a a a a a a z a a a          ,

( )9 ( ) ( )2
1 2 3 1 2 2 3 3 13 2 0P z z a a a z a a a a a a′ = − + + + + + = .

От ( )7  и ( )9  следва, че корените на ( )P z′  съвпадат с пресечните точки 
на окръжността C  с правата l . Сега от лема 3 следва, че теоремата е в сила 
за разглеждания полином ( )P z . Тъй като всеки полином от трета степен с 
колинеарни и различни корени може да се приведе в положение подобно, на 
( )P z , то теоремата е в сила за всички полиноми от разглеждания вид.
Доказаната теорема има смисъл и когато две от точките съвпадат. Пър-

во ще покажем, че елипсата k  е напълно определена. Нека 1 2A A≡ . Тогава 
1 2P P M     , 1 2P P M′′ ′′ ′′≡ ≡ , 3 3 1P P A′ ′′≡ ≡ , 1 2G G G′ ′ ′≡ ≡ , 1 2G G G′′ ′′ ′′≡ ≡  и 
3 3 1G G A′ ′′≡ ≡ . Окръжността C  е напълно определена от точките G′ , G′′  и 1A . 

Пресечните точки на C  и l  са 1A  и 2V . Следователно върховете на търсената 
елипса k  са 1 1V A≡  и 2V . Освен това правата , която минава през 1A  и е 
перпендикулярна на l , е обща допирателна за C  и k . Сега k  е напълно оп-
ределена от точките 2V , M ′ , M ′′ , 1 1A V≡  и допирателна t  в 1A . По-нататък е 
ясно, че полиномът ( )P z  с двоен корен в точката 1A  и прост корен в точката 

3A  има производна ( )P z′ , корените на която съвпадат с върховете 1 1V A≡  и 
2V  на елипсата k . Случаите, когато ( ) ( )P z P x=  е полином с реални коефи-

циенти на реална променлива x , са демонстрирани на фиг. 2 и 3.
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POLYNOMIALS OF THIRD DEGREE  
WITH COLLINEAR ROOTS

Abstract. It is considered a geometric relation between a polynomial with 
collinear roots and the roots of its derivative by means of a special ellipse, which is 
generated by the roots of the polynomial.
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