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2Технически колеж – Ловеч

Резюме. В настоящата статия е представено обобщение на забележителната 
теорема на Грифитс от геометрията на триъгълника. Това обобщение съдържа 
специалното обобщение на теоремата на Грифитс, получено от авторите в (Grozdev 
& Nenkov, 2015).
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1. Въведение. В (Grozdev & Nenkov, 2015) е показано едно обобщение на 
следната:

Теорема на Грифитс. Ако една точка се движи по права, минаваща през цен-
търа на описаната около DABC окръжност, то педалната окръжност на тази 
точка спрямо DABC минава през постоянна точка от Ойлеровата окръжност 
на DABC.

Споменатото обобщение се изразява със следната:
Теорема 1. Ако една точка се движи по права, минаваща през центъра O на 

описаното около DABC конично сечение k(O), то педалната крива на тази точ-
ка спрямо DABC минава през постоянна точка от Ойлеровата крива на DABC, 
асоциирана с k(O).

В доказателството на Теорема 1, описано в (Grozdev & Nenkov, 2015), от из-
ключително голямо значение са пресечните точки на правата през центъра O  на 
конично сечение k(O) (диаметър на k(O)) със самата крива k(O). Но когато k(O) е 
хипербола, не всеки диаметър има общи точки с k(O). Затова този вид хиперболи 
не се обхващат от доказателството в (Grozdev & Nenkov, 2015). Освен това дока-
зателството на Теорема 1 в (Grozdev & Nenkov, 2015) се отнася само за така наре-
чените Фойербахови конфигурации, които свързват k(O) със специални вписани 
за DABC конични сечения. От друга страна, съществуват описани хиперболи k(O) 
за DABC, които не определят Фойербахови конфигурации. Това означава, че даже 
ако една хипербола има общи точки с разглеждания диаметър, но не принадлежи 
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на Фойербахова конфигурация, тя също не се включва в споменатото доказателство 
на Теорема 1 (Grozdev & Nenkov, 2015). Така се получават два основни аргумента 
срещу присъствието на всички хиперболи в обобщението на теоремата на Грифитс, 
представено с Теорема 1. Това означава, че в Теорема 1 трябва да отхвърлим едно 
обширно множество от хиперболи. Оказва се обаче, че верността на Теорема 1 
не се влияе нито от съществуването на пресечни точки на диаметъра с k(O), нито 
от обвързването на k(O) с вписани за DABC криви. Следователно е необходимо 
да приведем ново доказателство, което обхваща и отбелязаните случаи, невключ-
ващи се в доказателството на Теорема 1, приведено в (Grozdev & Nenkov, 2015). 
За да извършим това, ще използваме, че понятието педална крива по отношение 
на централно конично сечение може да се определи с едно свойство, което не е 
показано (Гроздев & Ненков, 2014).

Разглеждаме произволен триъгълник ABC. Спрямо DABC ще използваме ба-
рицентрични координати, като A(1,0,0), B(0,1,0) и C(0,0,1) (Паскалев & Чобанов, 

1985). Средите на страните BC, CA и AB означаваме съответно с 1 10, ,
2 2aM  

  
, 

1 1,0,
2 2bM  

  
 и 1 1, ,0

2 2cM  
  

, а с 1 1 1, ,
3 3 3

G  
  

 – медицентъра DABC. В равнината на 

DABC ще разглеждаме произволно конично сечение k(O) с център O(x0, y0, z0). За 
пълнота ще разгледаме всички възможности за k(O) в зависимост от положението 
на центъра й O в равнината на DABC.

2. Ойлерова крива, асоциирана с описана за триъгълника крива. Забележи-
телната за триъгълника окръжност на Ойлер може да се обобщи спрямо произволна 
описана за DABC крива в зависимост от положението на центъра O, както това е 
описано в разгледаните по-долу случаи.

2.1. Описана крива, центърът на която не лежи върху страна на триъгъл-
ника. Определяме правите ha, hb и hc като минаващи съответно през върховете A, 
B и C и успоредни съответно на правите OMa, OMb и OMc. Тези прави се пресичат 
в една точка ( )0 0 01 2 ,1 2 ,1 2H x y z- - - , която се получава от O посредством равен-
ството 1

2
GH GO=
 

. Ако 1ah BC A∩ = , 1bh CA B∩ =  и 1ch AB C∩ = , то точките A1, 

B1, C1, Ma, Mb и Mc лежат на едно конично сечение W, което наричаме Ойлерова 
крива, асоциирана с k(O). Уравнението на Ойлеровата крива може да се представи 
във вида:

( )1 ( ) :OΩ ( ) ( ) ( )
( )( ) ( )( ) ( )( ) ( )

0 0 0 0 0 0

0 0 0 0 0 0

4 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 0.

x x yz y y zx z z xy

y z x z x y x y z x y z

- + - + - -  
- - - + - - + - - + + =  
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2.2. Описана крива, центърът на която лежи върху страна на триъгълника. 
Нека O º Mc и C1 (l,m,0) (l + m = 1) е точка от правата AB. В този случай разглеж-
даме точката H като съвпадаща с C (равенството 1

2
GH GO=
 

 е изпълнено и в този 
случай). Точките Ma, Mb, Mc, C и C1 са различни и определят единствена крива 
от втора степен W(Mc, C1), която наричаме Ойлерова крива, асоциирана с k(O). 
Уравнението на Ойлеровата крива може да се представи във вида:

( )2              ( )1, :cM CΩ ( ) ( )( )2 0lyz mzx xy mx ly x y z+ + - + + + = .

Случаите, когато O º Ma и O º Mb са аналогични.
2.3. Описана крива с безкраен център. Определяме правите ha, hb и hc 

като минаващи съответно през върховете A, B и C и колинеарна с вектора 
( ) ( )0 0 0 0 0 0, , , ,O x y z O x y z≡



. В този случай разглеждаме точката H като съвпадаща 
с O. Ако 1ah BC A∩ = , 1bh CA B∩ =  и 1ch AB C∩ = , то точките A1, B1, C1, Ma, Mb и 
Mc лежат на една парабола ( )OΩ



, която наричаме Ойлерова крива или Ойлерова 
парабола, асоциирана с k(O). Уравнението на Ойлеровата крива може да се пред-
стави във вида:

( )3       ( )OΩ


:

 2   1, :cM C     2 0lyz mzx xy mx ly x y z       . 

Случаите, когато aO M  и bO M  са аналогични. 

2.3. Описана крива с безкраен център. Определяме правите ah , bh  и ch  като 
минаващи съответно през върховете A , B  и C  и колинеарна с вектора 
   0 0 0 0 0 0, , , ,O x y z O x y z . В този случай разглеждаме точката H  като съвпадаща с O . 

Ако 1ah BC A  , 1bh CA B   и 1ch AB C  , то точките 1A , 1B , 1C , aM , bM  и cM  лежат 

на една парабола  O , която наричаме Ойлерова крива или Ойлерова парабола, 
асоциирана с  k O . Уравнението на Ойлеровата крива може да се представи във вида: 
 3   O : .02

0
2
0

2
0

2
00

2
00

2
00  xyzzxyyzxzyxyxzxzy  

Тъй като точката H  във всички случаи е аналог на ортоцентъра, ще я наричаме 
ортоид на ABC , определен от описаната крива  k O . 

3. Спрегнати точки и педални криви. Двойките изогонално спрегнати точки 
спрямо ABC  имат обща педална окръжност, спрямо центъра на която двете точки са 
симетрични. Ще използваме този факт, за да определим двойките спрегнати спрямо 
централно коничното сечение  k O . Тъй като свойствата на точките от  k O  и връзката 
им с Теорема 1 са разгледани в (Ненков, 2007), (Гроздев & Ненков, 2012) и (Grozdev & 
Nenkov, 2015), тук няма да разглеждаме такива точки. 

3.1. Описана крива, центърът на която не лежи върху страна на триъгълника. 
За координатите на центъра  0 0 0, ,O x y z  е изпълнено равенството 0 0 0 1x y z   , а 

координатите на точките от  k O  удовлетворяват уравнението 
 4    :k O      0 0 0 0 0 0 0 0 0 0 0 0 0x y z x yz x y z y zx x y z z xy          . 

Нека  , ,P P PP x y z   1P P Px y z    е точка от равнината на ABC , а правите ap , 

bp  и cp  минават през P  и са съответно успоредни на aOM , bOM  и cOM , като 

a aP p BC  , b bP p CA   и c cP p AB  . Координатите на точките aP , bP  и cP  са 
следните 

 5  

   

   

   

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0

2 2
0, , ,

2 2

2 2
,0, ,

2 2

2 2
, ,0 .

2 2

P P P P
a

P P P P
b

P P P P
c

x y z x x y x y z x x z
P

x x

x y z y y x x y z y y z
P

y y

x y z z z x x y z z z y
P

z z

      
 
 
       

 
 
       

 
 

 

Тъй като точката H  във всички случаи е аналог на ортоцентъра, ще я наричаме 
ортоид на DABC, определен от описаната крива k(O).

3. Спрегнати точки и педални криви. Двойките изогонално спрегнати точки 
спрямо DABC имат обща педална окръжност, спрямо центъра на която двете точки 
са симетрични. Ще използваме този факт, за да определим двойките спрегнати 
спрямо централно коничното сечение k(O). Тъй като свойствата на точките от k(O) 
и връзката им с Теорема 1 са разгледани в (Ненков, 2007), (Гроздев & Ненков, 2012) 
и (Grozdev & Nenkov, 2015), тук няма да разглеждаме такива точки.

3.1. Описана крива, центърът на която не лежи върху страна на триъгълни-
ка. За координатите на центъра O (x0, y0, z0) е изпълнено равенството x0 + y0 + z0 = 1, 
а координатите на точките от k(O) удовлетворяват уравнението

( )4    k(O): ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 0 0 0x y z x yz x y z y zx x y z z xy- + + + - + + + - = .

Нека ( ), ,P P PP x y z  ( )1P P Px y z+ + =  е точка от равнината на DABC, а правите 
pa, pb и pc минават през P и са съответно успоредни на OMa, OMb и OMc, като 

a aP p BC= ∩ , b bP p CA= ∩  и c cP p AB= ∩ . Координатите на точките Pa, Pb и Pc са 
следните
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( )5            

( ) ( )

( ) ( )

( ) ( )

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0

2 2
0, , ,

2 2

2 2
,0, ,

2 2

2 2
, ,0 .

2 2

P P P P
a

P P P P
b

P P P P
c

x y z x x y x y z x x z
P

x x

x y z y y x x y z y y z
P

y y

x y z z z x x y z z z y
P

z z

- + + + - + 
 
 

- + + + + - + 
 
 

- + + + - + + 
 
 

Ако sa, sb и sc са правите, които минават съответно през средите на отсечките 
PbPc, PcPa и PaPb, така че да са спрегнати съответно с правите PbPc, PcPa и PaPb 
спрямо k(O), от (4) и (5) намираме параметричните им уравнения във вида:

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0 0 0 0 0 0
0 0 0 0

0 0

0 0
0 0

0

0 0
0 0

0

4 1 2 1 2
1 2 1 2 ,

4
2 1 2

: 1 2 ,
4

1 2 2
1 2 ,

4

P P P
P P a

P P
a P a

P P
P a

y z x x z y x y z
x y y z z z y t

y z
z y y z

s y y y z t
z

z y y z
z z z y t

y

+ - + -
= + - + -   


 + - = - -

 - +
 = - -


( ) ( )

( ) ( )

( ) ( )

( ) ( )

0 0
0 0

0

0 0 0 0 0 0
0 0 0 0

0 0

0 0
0 0

0

2 1 2
1 2 ,

4
1 2 4 1 2

: 1 2 1 2 ,
4

1 2 2
1 2 ,

4

P P
P b

P P P
b P P b

P P
P b

z x x z
x x x z t

z
y z x z x y y x z

s y x x z z z x t
z x

z x x z
z z z x t

x

+ -
= - -


 - + + - = + - + -   

 - +
 = - -


( ) ( )

( ) ( )

( ) ( ) ( ) ( )

0 0
0 0

0

0 0
0 0

0

0 0 0 0 0 0
0 0 0 0

0 0

2 1 2
1 2 ,

4
1 2 2

: 1 2 ,
4

1 2 1 2 4
1 2 1 2 .

4

P P
P c

P P
c P c

P P P
P P c

y x x y
x x x y t

y
y x x y

s y y y x t
x

z y x z x y x y z
z x x y y y x t

x y

+ -
= - -


 - + = - -

 - + - +
 = + - + -  
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След известни пресмятания от последните уравнения се вижда, че правите sa, 
sb и sc се пресичат в точката W, която има следните координати

( )6                                

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

0 0

0 0

0 0

1 2
,

2

1 2
,

2

1 2
,

2

P P P
W

P P P
W

P P P
W

P x x x y z
x

P

P y y y z x
y

P

P z z z x y
z

P

ϑ
ϑ

ϑ
ϑ

ϑ
ϑ

+ -
=

+ -
=

+ -
=

където

( )7   ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 0 0P P P P P PP x y z x y z x y z y z x x y z z x yϑ = - + + + - + + + - .

Нека Q(xQ, yQ, zQ) е точката, симетрична на P спрямо W. От (6) за координатите 
на Q се получават равенствата:

( )8 	 ( )
( )

0 0 0 0 P P
Q

x y z x y z
x

Pϑ
- + +

= , ( )
( )

0 0 0 0 P P
Q

x y z y z x
y

Pϑ
- +

= ,

	 ( )
( )

0 0 0 0 P P
Q

x y z z x y
z

Pϑ
+ -

= ,

където ( )Pϑ  се изразява с равенството (7).

Точката Q ще наричаме спрегната на P спрямо k(O).
Нека през спрегнатата точка Q са построени правите qa, qb и qc, които са успоред-

ни съответно на OMa, OMb и OMc, като Qa = qa Ç BC, Qb = qb Ç CA и Qc = qc Ç AB. 
Координатите на точките Qa, Qb и Qc са следните:

( )9

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2 2
0, , ,

2 2
2 2

,0, ,
2 2

2
,

2

P P P P P P
a

P P P P P P
b

P P P
c

x y z x y z y y x z x y z x y z z z x y
Q

P P
x y z x y z x x y z x y z x y z z z y x

Q
P P

x y z x y z x x z y x y
Q

P

ϑ ϑ

ϑ ϑ

ϑ

 - + - + + + + - - + + +       
 
 - + + - + + + - - + +       
 

- + + + - + -   ( ) ( )
( )

0 0 0 0 0 02
,0 ,

2
P P Pz x y z y y z x

Pϑ
 + + - +   
 
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където ( )Pϑ  се изразява с равенството (7). От (5) и (9) установяваме, че координа-
тите на шестте точки Pa, Pb, Pc, Qa, Qb и Qc удовлетворяват уравнението

(10) p (P,Q) : 
( ) ( ) ( ) ( )

( )( )
0 0 0 0 0 0 0 0 0 0 0 0

11 22 33

4

0,

P x y z x yz x y z y zx x y z z xy

a x a y a z x y z

ϑ - + + + - + + + - -  
- + + + + =

където

( )( ) ( ) ( )11 0 0 0 0 0 0 0 0 0 0 0 0 0 02 2P P P P Pa x y z x y z x y z z z y x y z y y z x= - + + - - + + + - +       ,

( )( ) ( ) ( )22 0 0 0 0 0 0 0 0 0 0 0 0 0 02 2P P P P Pa x y z x y z x y z z z x x y z x x z y= + - - + + - + + + + - +       ,

( )( ) ( ) ( )33 0 0 0 0 0 0 0 0 0 0 0 0 0 02 2P P P P Pa x y z x y z x y z x x y x y z y y x z= - + + - + - + + - + + +       ,

а ( )Pϑ  се изразява с равенството (7).
Кривата p (P,Q), определена с уравнението (10), ще наричаме педална крива 

на P и Q спрямо описаната крива k(O). Педалната крива p (P,Q) е елипса или 
хипербола съответно когато k(O) е елипса или хипербола (Гроздев & Ненков, 
2014). Освен това, ако k(O) и p (P,Q) са хиперболи, те имат успоредни асимптоти 
(Гроздев & Ненков, 2014). Като се използва изразяването на координатите на цен-
търа на крива чрез коефициентите на уравнението й (Гроздев & Ненков, 2015), се 
вижда, че точката W, чиито координати се изразяват с равенствата (6), е център на 
педалната крива p (P,Q).

3.2. Описана крива, центърът на която лежи върху страна на триъгълни-

ка. Ако ( )0 0 0
1 1, , , ,0
2 2cO x y z M  ≡   

 и ( )1 , ,0C l m  ( )1l m+ =  е точка от правата AB, 

уравнението на описаната крива ( ) ( )1,ck O k M C≡  може да се представи във вида:

(11)                       ( )1, : 0ck M C lyz mzx xy+ + = , ( )1l m+ = .

Нека ( ), ,P P PP x y z  ( )1P P Px y z+ + =  е точка от равнината на DABC, а правите 
pa, pb и pc минават през P и са съответно успоредни на McMa, McMb и CC1, като 

a aP p BC= ∩ , b bP p CA= ∩  и c cP p AB= ∩ . Координатите на точките Pa, Pb и Pc са 
следните:

( )12         ( )0, ,a P P PP y z x+ , ( ),0,b P P PP x z y+ , ( ), ,0c P P P PP lz x mz y+ + .

Ако sa, sb и sc са правите, които минават съответно през средите на отсечките 
PbPc, PcPa и PaPb, така че да са спрегнати съответно с правите PbPc, PcPa и PaPb  
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спрямо k (Mc,C1), от (11) и (12), както в предишния случай (когато O не е среда на 
страна на DABC), намираме, че правите sa, sb и sc се пресичат в точката W, която 
има следните координати:

( )13  ( )
( )

1,
2

P P P
W

P C x ly z
x

P
ϑ

ϑ
+

= , ( )
( )

1,
2

P P P
W

P C y mz x
y

P
ϑ

ϑ
+

= , ( )
( )

1,
2

P P P
W

P C z x y
z

P
ϑ

ϑ
+

= ,

където

( )14                             ( )1, P P P P P PP C ly z mz x x yϑ = + + .

Нека Q(xQ, yQ, zQ) е точката, симетрична на P спрямо W. От (13) за координатите 
на Q се получават равенствата:

( )15                    
( )1,

P P
Q

ly zx
P Cϑ

= , 
( )1,

P P
Q

mz xy
P Cϑ

= , 
( )1,

P P
Q

x yz
P Cϑ

= ,

а ( )1,P Cϑ  се изразява с равенството (14).
Точката Q ще наричаме спрегната на P спрямо k (Mc,C1).
Нека през спрегнатата точка Q са построени правите qa, qb и qc, които са успоред-

ни съответно на OMa, OMb и OMc, като Qa = qa Ç BC,  Qb = qb Ç CA и Qc = qc Ç AB. 
Координатите на точките Qa, Qb и Qc са следните:

( )16                             

( )
( )
( )

( )
( )

( )
( )
( )

( )
( )

1 1

1 1

1 1

0, , ,
, ,

,0, ,
, ,

, ,0 ,
, ,

P P PP P
a

P P PP P
b

P P P P P P
c

y lz xmz xQ
P C P C

x mz ylz yQ
P C P C

ly z x mx z y
Q

P C P C

ϑ ϑ

ϑ ϑ

ϑ ϑ

+ 
 
 

+ 
 
 

+ + 
 
 

където ( )1,P Cϑ  се изразява с равенството (14). От (12) и (16) установяваме, че 
координатите на шестте точки Pa, Pb, Pc, Qa, Qb и Qc удовлетворяват уравнението

( )17   ( ), :P Qπ ( ) ( ) ( )( )1 11 22 33, . 0P C lyz mzx xy a x a y a z x y zϑ + + - + + + + = ,

където

( )( )11 P P P P Pa m mz y y z x= + + , ( )( )22 P P P P Pa l lz x x z y= + + , 33 P P Pa lmx y z= ,
а ( )1,P Cϑ  се изразява с равенството (14).
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Кривата p (P,Q), определена с уравнението (17), ще наричаме педална крива 
на P и Q спрямо описаната крива k (Mc,C1). Педалната крива p (P,Q) е елипса или 
хипербола, съответно когато k(O) е елипса или хипербола. Освен това, ако k(O) и 
p (P,Q) са хиперболи, те имат успоредни асимптоти. Като се използва изразява-
нето на координатите на центъра на крива чрез коефициентите на уравнението й 
(Гроздев & Ненков, 2015), се вижда, че точката W, чиито координати се изразяват 
с равенствата (13), е център на педалната крива p (P,Q).

3.3. Описана крива с безкраен център. За координатите на центъра ( )0 0 0, ,O x y z  
(или все едно на вектора ( )0 0 0, ,O x y z



) е изпълнено равенството 0 0 0 0x y z+ + = , а 
координатите на точките от параболата ( ) ( )k O k O≡



 удовлетворяват уравнението

( )18                                ( ) :k O
 2 2 2

0 0 0 0x yz y zx z xy+ + = .

Уравнението (18) се получава от (4), като се вземе предвид, че в този случай е 
изпълнено равенството 0 0 0 0x y z+ + = .

Ако ( ), ,P P PP x y z  ( )1P P Px y z+ + =  е точка от равнината на DABC, техниката, 
използвана в предишните два случая (когато k(O) не е парабола), не е подходяща 
за геометрично определяне на точка Q, която да наречем спрегната на P. Затова 
ще използваме елементи от идеите, развити в (Гроздев & Ненков, 2012), за да 
покажем геометрична конструкция на желаната точка Q, а оттам и намирането на 
нейните координати.

Нека правата a, минаваща през върха A и колинеарна с вектора ( )0 0 0, ,O x y z


, 
има спрямо правите AB и AC спрегната права a0. Аналогично през върховете B и 
C построяваме двойките прави b, b0 и c, c0. От извършената конструкция следва, 
че правите a, b и c минават през безкрайната точка ( )0 0 0, ,O x y z . Ако 0 0 0A b c= ∩  , 

0 0 0B c a= ∩  и 0 0 0C a b= ∩ , то 0 0 0A B C  се нарича спрегнат триъгълник на точката 

( )0 0 0, ,O x y z . Координатите на точките A0, B0 и C0 са следните: 0 0
0

0 0

1 , ,
2 2 2

y zA
x x

 - - 
   

, 

0 0
0

0 0

1, ,
2 2 2
x zB
y y

 - - 
 

, 0 0
0

0 0

1, ,
2 2 2
x yC
z z

 - - 
 

. Сега въвеждаме означенията A1 = APÇBC, 

B1 = BPÇCA и C1 = CPÇAB. Нека AA2 (A2ÎBC) е хармонично спрегната на AA1 спря-
мо a и B0C0, BB2 (B2ÎCA) е хармонично спрегната на BB1 спрямо b и C0A0 и CC2 
(C2ÎAB) е хармонично спрегната на CC1 спрямо c и A0B0. Правите AA2, BB2 и CC2 
минават през една точка Q(xQ, yQ, zQ), чиито координати се изразяват с равенствата
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( )19                 
( )

2
0 P P

Q
x y zx

Pπϑ
= , 

( )
2
0 P P

Q
y z xy

Pπϑ
= , 

( )
2
0 P P

Q
z x yz

Pπϑ
= ,

където

( )20                       ( ) 2 2 2
0 0 0P P P P P PP x y z y z x z x yπϑ = + + .

Равенствата (19) и (20) се получават съответно от (8) и (7) при x0 + y0 + z0 = 0. 
Така получената точка Q наричаме спрегната на P спрямо параболата k(O).

Нека сега p е правата, минаваща през P и колинеарна с вектора ( )0 0 0, ,O x y z


 , като 

aP p BC= ∩ , bP p CA= ∩  и cP p AB= ∩ . Уравнението на правата p  и координатите 
на точките Pa, Pb и Pc са следните:

( )21           :p ( ) ( ) ( )0 0 0 0 0 0 0P P P P P Py z z y x z x x z y x y y z z- + - + - = ,

( )22                           

0 0 0 0

0 0

0 0 0 0

0 0

0 0 0 0

0 0

0, , ,

,0, ,

, ,0 .

P P P P
a

P P P P
b

P P P P
c

x y y x x z z xP
x x

y x x y y z z yP
y y

z x x z z y y zP
z z

- - 
 
 

- - 
 
 

- - 
 
 

Ако q е правата, минаваща през Q и колинеарна с вектора ( )0 0 0, ,O x y z


, а 
aQ q BC= ∩ , bQ q CA= ∩  и cQ q AB= ∩ , то уравнението на q и координатите на 

точките Qa, Qb и Qc са следните:

( )23  :q ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 0 0 0P P P P P P P P Px y z y z z y x y z x z x x z y z x y x y y z z- + - + - = ,

( )24                      

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0, , ,

,0, ,

, ,0 ,

P P P P P P
a

P P P P P P
b

P P P P P P
c

y z y x x y z y z x x z
Q

P P

x z x y y x z x z y y z
Q

P P

x y x z z x y x y z z y
Q

P P

π π

π π

π π

ϑ ϑ

ϑ ϑ

ϑ ϑ

- - 
 
 

- - 
 
 

- - 
 
 

където ( )Pπϑ  се изразява с равенството ( )20 .
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Лесно се забелязва, че след използване на равенството 0 0 0 0x y z+ + =  в (5) и (9), 
се получават координатите, изразени съответно с (22) и (24). Освен това, като се 

използва равенството 0 0 0 0x y z+ + = , уравнението (10) се преобразува в следното:

( )( )
( ) ( ) ( ) ( )

2 2 2 2 2 2
0 0 0 0 0 0

2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0.

P P P P P P

P P P P P P P P P

x y z y z x z x y x yz y zx z xy

x y z y z z y x y z x z x x z y z x y x y y x z x y z

+ + + + +

 + - + - + - + + = 
Последното уравнение може да се представи във вид на произведение по след-

ния начин:

( ) ( ) ( )
( ) ( ) ( )

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.
P P P P P P

P P P P P P P P P

y z z y x z x x z y x y y z z

x y z y z z y x y z x z x x z y z x y x y y z z

- + - + - ×  
× - + - + - =  

Като вземем предвид уравненията (21) и (22), виждаме, че това уравнение се 
разпада на уравненията на правите p и q. Забелязаните следствия от равенството  
x0 + y0 + z0 = 0 ни дават основание под педална крива p (P, Q) на P и Q спрямо 
параболата k(O) да разбираме двойката успоредни или съвпадащи прави p и q.

Интересно е да разберем кога правите p и q съвпадат, т.е. кога педалната кри-
ва p (P, Q) е двойна права. Правите p и q съвпадат тогава и само тогава, когато 

( )
( )

( )
( )

0 0 0 0 0 00 0 0 0

0 0

0, , 0, ,P P P P P PP P P P
a a

y z y x x y z y z x x zx y y x x z z xP Q
x x P Pπ πϑ ϑ

- - - -  ≡   
     

. Сле-

дователно ( )
( )

0 0 00 0

0

P P PP P y z y x x yx y y x
x Pπϑ

-- = . Ако 0 0 0P Py x x y- = , то aP C≡  и bP C≡ . 

Оттук се получават съответно равенствата 0 0

0

1P Px z z x
x
- =  и 0 0

0

1P Py z z y
y
- = . Тогава 

0 0
1

0 0

, ,0c
x yP C
z z

 ≡ - - 
 

 е общата точка на Ойлеровата крива Ω  и правата AB. Така 

получаваме, че 1p q CC≡ ≡ . Ако 0 0 0P Py x x y- ≠ , то ( )
0 0 PP x y zπϑ = . От (20) след 

известни преобразувания се получава равенството ( )( )0 0 0 0 0P P P Pz x x z y z z y- - = . От-
тук 0 0 0P Pz x x z- =  или 0 0 0P Py z z y- = . Тези случаи водят съответно до 1p q AA≡ ≡  
и 1p q BB≡ ≡ . Окончателно получаваме, че педалната крива p (P, Q) е двойна 
права тогава и само тогава, когато точката P лежи върху някоя от правите 
AA1, BB1  и CC1.

Трябва да се отбележи, че когато точката P лежи върху страна на DABC, нейната 
спрегната точка е върхът, лежащ срещу тази страна. Ако P Î AB (P¹A, P¹B), нейната 
спрегната точка е върхът C, а педалната крива p (P, Q) е напълно определена от 
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точките P, Pa, Pb, C и C1. Центърът на p (P, Q) е средата на отсечката PC. Накрая 
ще отбележим, че във всички възможни случаи за описаната крива k(O) педалната 
крива на ортоида H е Ойлеровата крива W.

4. Една крива от втора степен, получаваща се като геометрично място на 
спрегнати точки. Нека d е диаметър на описаната крива k(O), колинеарен с вектора 

( ), ,d α β ɣ


 ( )0α β ɣ+ + = , а ( ), ,U U UU x y z  е точка от d. Ще определим геометрич-
ното място kd, което описва спрегнатата точка V (x, y, z), когато U се движи по 
диаметъра d. Тъй като двете точки са взаимно заменяеми, ще разглеждаме точката 
U като спрегната на V. Тогава координатите xU, yU и zU на точката U се определят 
чрез координатите x, y и z на V с равенствата (8), (15) или (19) в различните случаи. 
Както преди, ще разгледаме трите случая поотделно.

4.1. Описана крива, центърът на която не лежи върху страна на триъгъл-
ника. Определяме диаметъра d с параметричните му уравнения:

( )25                      0Ux x tα= + , 0Uy y tβ= + , 0Uz z tɣ= + .

Като заместим координатите на P от (8) в първите две уравнения на (25), по-
лучаваме равенствата:

( )
( ) ( ) ( )

0 0
0

0 0 0 0 0 0

1 2
1 2 1 2 1 2

x x yz
x t

x x yz y y zx z z xy
α

-
= +

- + - + -
,

( )
( ) ( ) ( )

0 0
0

0 0 0 0 0 0

1 2
1 2 1 2 1 2

y y zx
y t

x x yz y y zx z z xy
β

-
= +

- + - + -
.

След елиминиране на параметъра t от последните равенства се получава след-
ното уравнение:

( )26  :dk ( )( ) ( )( ) ( )( )0 0 0 0 0 0 0 0 0 0 0 01 2 1 2 1 2 0z y x x yz x z y y zx y x z z xyβ ɣ ɣ α α β- - + - - + - - = .

Кривата от втора степен, с уравнение (26), е търсеното геометрично място kd. 
Тази крива минава през върховете на DABC, т.е. kd е описана за DABC. Освен това 
координатите на ортоида ( )0 0 01 2 ,1 2 ,1 2H x y z- - -  удовлетворяват уравнението на 
kd. Следователно H е точка от kd. По-нататък е интересно да определим вида на 
кривата kd . За целта намираме броя на общите точки на kd с безкрайната права, 
която има уравнение x + y + z = 0. След заместване на z от последното равенство в 
(26) и извършване на някои елементарни преобразувания получаваме
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( )( ) ( ) ( ) ( )( )2 2
0 0 0 0 0 0 0 0 0 0 0 01 2 2 1 2 1 2 1 2 0x z y y x x y y x xy z y x x yɣ α α β β ɣ- - + - - - + - - =   .

Дискриминантата на последното уравнение е следната:

( )27       ( ) ( ) ( )0 0 0 0 0 0 0 0 01 2 1 2 1 2D x y z x x y y z zβɣ ɣα αβ′ = - - + - + -   .

П ъ р в о ,  д а  о т б е л е ж и м ,  ч е  ко г ат о  е  и з п ъ л н е н о  р а в е н с т в о т о 
( ) ( ) ( )0 0 0 0 0 01 2 1 2 1 2 0x x y y z zβɣ ɣα αβ- + - + - = , векторът d



 е асимптотичен за 
k(O) (Grozdev & Nenkov, 2015). Следователно 0D′ =  тогава и само тогава, когато 

d


 е асимптотичен за k(O). Това означава, че kd е парабола тогава и само тогава, 
когато k(O) е хипербола и d е нейна асимптота. Освен това, когато k(O) е хипербо-
ла, има точно две криви kd, които са параболи с оси, успоредни на асимптотите на 
k(O). Когато k(O) е хипербола, педалните криви са хиперболи, чиито асимптоти 
са успоредни на асимптотите на k(O). От друга страна, е известно, че Ойлеровата 
крива W и описаната крива k(O) са хомотетични (Гроздев & Ненков, 2014,3). Затова 
оста на параболата kd е успоредна с асимптота на Ойлеровата крива W. По друг 
начин казано, центърът на параболата kd (нейната безкрайна точка) лежи върху 
Ойлеровата крива W (съвпада с някоя от двете безкрайни точки на W).

Сега ще разгледаме останалите възможности за знака на израза D¢. Общите 
точки на диаметъра d с k(O) са общите решения на уравненията (4) и (25). Тези 
уравнения водят до равенството

( ) ( ) ( ) 2
0 0 0 0 0 0 0 0 01 2 1 2 1 2 0x x y y z z t x y zβɣ ɣα αβ- + - + - + =   .

Последното уравнение по отношение на t има две решения, когато изразът D¢ 
е положителен, и няма нито едно решение, когато изразът D¢ е отрицателен. Сле-
дователно кривата kd е хипербола, когато диаметърът d пресича k(O), и е елипса, 
когато d няма общи точки с k(O). Случаят на елипса е възможен само когато k(O)  
е хипербола. Когато геометричното място kd е хипербола, Симсъновите прави на 
точките (Ненков, 2007), в които d пресича k(O), са асимптотите на kd. Доказател-
ството на този факт се получава по същия начин, както това е направено в (Grozdev 
& Nenkov, 2015).

Координатите на центъра ( ), ,T T TT x y z  определяме чрез коефициентите на kd 
по начина, показан в (Гроздев & Ненков, 2015). Получаваме равенствата
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( )28               

( )( ) ( ) ( )
( )

( )( ) ( ) ( )
( )

( )( ) ( ) ( )
( )

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 2 1 2 1 2
,

2
1 2 1 2 1 2

,
2

1 2 1 2 1 2
,

2

T

T

T

x z y z y
x

s d
y x z x z

y
s d

z y x y x
z

s d

β ɣ β ɣ

ɣ α ɣ α

α β α β

- - - - -  = -

- - - - -  = -

- - - - -  = -
където
( )29             ( ) ( ) ( ) ( )0 0 0 0 0 01 2 1 2 1 2s d x x y y z zβɣ ɣα αβ= - + - + - .

След извършване на известни пресмятания установяваме, че координатите  (28) 
удовлетворяват уравнението (1). Следователно T лежи върху Ойлеровата крива W.

Остана да обърнем внимание на случая, когато геометричното място kd е разпа-
даща се крива. Това се случва само когато някой от коефициентите в (26) е равен 
на нула. Ако например е изпълнено равенството 0 0 0y xα β- = , от (26) следва, че 
кривата kd има следното уравнение ( ) ( )0 01 2 1 2 0y x x y z- - - =   . Първият мно-
жител води до уравнението на правата ch CH≡ , а вторият – до уравнението на 
правата AB. Въпреки че се нарушава еднозначността, за удобство ще предпола-
гаме, че всяка точка от правата AB е спрегнат образ на върха C (в обратна посока 
това вече беше определено). Така получаваме, че в този случай кривата kd  пред-
ставлява две реални пресичащи се прави CH и AB. Тази разпадаща се крива се 
състои от спрегнатите точки на точките от диаметъра CO и има за център точката 

0 0
1

0 0

1 2 1 2, ,0
2 2

x yCH AB C
z z

 - -∩ =  
 

. Координатите на C1 се получават и по формулите 

(28). Освен това C1 лежи върху Ойлеровата крива Ω .

4.2. Описана крива, центърът на която лежи върху страна на триъгълни-

ка. Нека ( )0 0 0
1 1, , , ,0
2 2cO x y z M  ≡   

 и ( )1 , ,0C l m  ( )1l m+ = . Първо ще разгледаме 

случая, когато диаметърът d е различен от AB. Параметричните уравнения на d 
са следните:

( )30                          1
2Ux tα= + , 1

2Uy tβ= + , Uz tɣ= .

Като заместим координатите на P от (15) в първите две уравнения на (30), по-
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лучаваме равенствата: 
1
2

lyz t
lyz mzx xy

α= +
+ +

, 1
2

mzx t
lyz mzx xy

β= +
+ +

. След елими-

ниране на параметъра t  от последните равенства се получава следното уравнение:

( )31                               :dk ( ) 0l yz m zx xyɣ ɣ β α- + - = .

Кривата от втора степен с уравнение (26) е търсеното геометрично място kd. 
Тази крива минава през върховете на DABC, т.е. kd е описана за DABC. Освен това, 
тъй като HºC(0,0,1), то ортоидът H е точка от kd. По-нататък определяме вида на 
кривата kd след заместване на z = -x-y в (31). Получаваме уравнението

( )( ) ( ) ( ) ( )( )2 2
0 0 0 0 0 0 0 0 0 0 0 01 2 2 1 2 1 2 1 2 0x z y y x x y y x xy z y x x yɣ α α β β ɣ- - + - - - + - - =    
Дискриминантата на последното уравнение е следната

( )32                                       ( )D lyz mzx xy′′ = - + + .

Първо да отбележим, че равенството D¢¢ = 0 е изпълнено тогава и само тогава, 
когато векторът d



 е асимптотичен за k(O) (Grozdev & Nenkov, 2015). Това означава, 
че kd  е парабола тогава и само тогава, когато k(O) е хипербола и d е нейна асимптота. 
Освен това, когато k(O) е хипербола, има точно две криви kd, които са параболи с 
оси, успоредни на асимптотите на k(O). Когато k(O) е хипербола, педалните криви 
са хиперболи, чиито асимптоти са успоредни на асимптотите на k(O). От друга 
страна, Ойлеровата крива W и описаната крива k(O) са хомотетични. Затова оста 
на параболата kd е успоредна с асимптота на Ойлеровата крива W. По друг начин 
казано, центърът на параболата kd (нейната безкрайна точка) лежи върху Ойлеро-
вата крива W (съвпада с някоя от двете безкрайни точки на W).

Сега ще разгледаме останалите възможности за знака на израза D¢¢. Общите 
точки на диаметъра d с k(O) са общите решения на уравненията (11) и (30). Тези 

уравнения водят до равенството ( ) 2 1 0
4

lyz mzx xy t+ + + = . Последното уравнение 

по отношение на t има две решения, когато изразът D¢¢ е положителен, и няма 
нито едно решение, когато изразът D¢¢ е отрицателен. Следователно кривата kd  
е хипербола, когато диаметърът d пресича k(O), и е елипса, когато d няма общи 
точки с k(O). Случаят на елипса е възможен само когато k(O) е хипербола. Когато 
геометричното място kd  е хипербола, Симсъновите прави на точките (Ненков, 
2007), в които d пресича k(O), са асимптотите на kd. Доказателството на този факт 
се получава по същия начин, както това е направено в (Grozdev & Nenkov, 2015).
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Координатите на центъра T (xT, yT, zT) определяме чрез коефициентите на kd по 
начина, показан в (Гроздев & Ненков, 2015). Получаваме равенствата

( )33   
( )2T

lx
l m

βɣ
βɣ ɣα αβ

=
+ +

, 
( )2T

my
l m

ɣα
βɣ ɣα αβ

=
+ +

, 
( )

2
2T
l mz

l m
βɣ ɣα αβ

βɣ ɣα αβ
+ +=

+ +
.

След извършване на известни пресмятания установяваме, че координатите (33) 
удовлетворяват уравнението (2). Следователно T лежи върху Ойлеровата крива W.

Да обърнем внимание на случая, когато геометричното място kd е разпадаща 
се крива. Това се случва само когато някой от коефициентите в (31) е равен на 
нула. Единствената възможност е да бъде изпълнено равенството a - b = 0. Зато-
ва можем да считаме, че a = 1, b = 1 и g = -2 2ɣ = -  са координатите на вектора 
d


 . Следователно d º CMc. От (31) следва, че кривата kd има следното уравнение  
(mx - ly) z = 0.  Първият множител води до уравнението на правата CC1, а втори-
ят – до уравнението на правата  AB. Тук отново ще предполагаме, че всяка точка от 
правата AB е спрегнат образ на върха C. Така получаваме, че в този случай кривата 
kd представлява две реални пресичащи се прави CC1 и AB. Тази разпадаща се кри-
ва се състои от спрегнатите точки на точките от диаметъра CMc и има за център 
точката C1 (l, m, 0). Координатите на центъра C1 се получават и по формулите (33). 
Освен това C1 лежи върху Ойлеровата крива W.

Нека сега d º AB. Тогава върхът C е спрегната точка на всяка точка U от d. Сле-
дователно търсеното геометрично място kd е точката C, която също лежи върху 
Ойлеровата крива W. Тук можем да разглеждаме kd като две комплексно спрегнати 
пресичащи се прави през реалната точка C. „В някакъв смисъл всяка комплексна 
точка е оторизирала върха C да я представлява като нейна реална спрегната на точка 
от правата AB“. По този начин геометричното kd можем също да разглеждаме като 
крива от втора степен с център C, лежащ върху Ойлеровата крива W.

4.3. Описана крива с безкраен център. Тъй като за координатите на центъра 
( )0 0 0, ,O x y z  е изпълнено равенството 0 0 0 0x y z+ + = , диаметърът d е напълно 

определен от точка ( ), ,P P PP x y z  ( )1P P Px y z+ + =  и вектора ( )0 0 0, ,O x y z


. Пара-
метричните уравнения на диаметъра d са следните:

( )34                      0U Px x x t= + , 0U Py y y t= + , 0U Pz z z t= + .

Като заместим координатите на P от (19) в първите две уравнения на (34), 

получаваме равенствата: 
2
0

02 2 2
0 0 0

P
x yz x x t

x yz y zx z xy
= +

+ +
,

2
0

02 2 2
0 0 0

P
y yz y y t

x yz y zx z xy
= +

+ +  
. 
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След елиминиране на параметъра t от последните равенства се получава следното 
уравнение:

( )35       :dk ( ) ( ) ( )2 2 2
0 0 0 0 0 0 0 0 0 0P P P P P Py z z y x yz z x x z y zx x y y x z xy- + - + - = .

Кривата от втора степен с уравнение (35) е търсеното геометрично място kd. 
Тази крива минава през върховете на DABC, т.е. kd е описана за DABC. Освен това, 
тъй като H º O(x0, y0, z0), то ортоидът H е точка от kd. Следователно H е точка от 
kd. По-нататък ще определим вида на кривата kd. Броят на общите точки на kd с 
безкрайната права се определя от уравнението

( ) ( ) ( ) ( )2 2 2 2
0 0 0 0 0 0 0 0 0 01 2 1 2 0P P P P P Pz x x z y x x y x y y x xy y z z y x y- + - - - + - =   .

От последното уравнение намираме, че безкрайните точки на kd са O(x0, y0, z0) 
и ( ) ( ) ( )( )0 0 0 0 0 0 0 0 0, ,P P P P P PS y z z y x z x x z y x y y x z- - - . Следователно кривата kd е 
хипербола. 

Координатите на центъра T (xT, yT, zT) определяме чрез коефициентите на kd по 
начина, показан в (Гроздев & Ненков, 2015). Получаваме равенствата

( )36                                   

( )

( )

( )

0 0 0

0 0

0 0 0

0 0

0 0 0

0 0

2
,

2
,

2
,

P P
T

P P
T

P P
T

y z z y x
x

y z
z x x z y

y
z x

x y y x z
z

x y

π

π

π

ϑ

ϑ

ϑ

+ +
= -

+ +
= -

+ +
= -

където πϑ  се изразява с равенството (20).
Тъй като правата p º d, минаваща през P, е колинеарна с вектора ( )0 0 0, ,O x y z



, 
то разглежданият диаметър принадлежи на едното асимптотично направление за 
хиперболата kd. Освен това от (21) и (36) следва, че центърът T на kd лежи върху 
правата p º d. Следователно диаметърът d е асимптота на kd. Нека сега M е сре-
дата на отсечката, определена от спрегнатите точки U и V. Лесно се проверява, че 
когато точката U описва диаметъра d, точката M описва правата

( )37   :m ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0P P P P P Py z z y x x z x x z y y x y y z z z+ + + + + = .

Правата m е колинеарна с вектора 

( ) ( ) ( )( )0 0 0 0 0 0 0 0 0, ,P P P P P PS y z z y x z x x z y x y y x z- - -


.
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Следователно втората асимптота на kd е успоредна на правата m.
След извършване на известни пресмятания установяваме, че координатите (36) 

удовлетворяват уравнението (3). Следователно T  лежи върху Ойлеровата крива W.
Остана да обърнем внимание на случая, когато геометричното място kd е 

разпадаща се крива. Това се случва само когато някой от коефициентите в (35) 
е равен на нула. Ако например е изпълнено равенството 0 0 0P Py x x y- = , от (36) 
следва, че кривата kd има следното уравнение ( )0 0 0y x x y z- = . Първият множител 
води до уравнението на правата 1ch CC≡ , а вторият – до уравнението на правата 
AB. Тук отново ще предполагаме, че всяка точка от правата AB е спрегнат образ 
на върха C. Така получаваме, че в този случай кривата kd представлява две реални 
пресичащи се прави CC1 и AB. Тази разпадаща се крива се състои от спрегнатите 

точки на точките от диаметъра CO и има за център точката 0 0
1

0 0

, ,0c
x yP C
z z

 ≡ - - 
 

. 

Координатите на C1 се получават и по формулите (36). Освен това C1 лежи върху 
Ойлеровата крива W. Този случай се получава, когато педалната крива е двойната 
права CC1.

Получените резултати, отнасящи се за геометричното място kd, което описва 
точката, спрегната на точката, движеща се по диаметър, можем да обобщим по 
следния начин:

Теорема 2. Ако d е диаметър на описаната за DABC крива k(O), то геомет-
ричното място kd е крива от втора степен, която е описана около DABC, минава 
през ортоида H и има за център точка от Ойлеровата крива W, асоциирана с 
k(O).

5. Доказателство на обобщената теорема на Грифитс. Нека d е диаметър на 
k(O), а P произволна точка от d. Ако d е асимптота за k(O), педалната крива на 
всяка точка P от диаметъра d е хипербола, една от безкрайните точки на която е 
центърът на параболата kd, т.е. безкрайната точка на d, която е безкрайна точка 
и на Ойлеровата крива W. Ако d не е асимптота и не съвпада с никоя от правите 
BC, CA и AB, след извършване на несложни пресмятания се установява, че ко-
ординатите (28) и (33) удовлетворяват съответно уравненията (10) и (17). Следо-
вателно центърът T на кривата kd лежи върху педалната крива на всяка точка P 
от диаметъра d. Освен това според Теорема 2 точката T лежи върху Ойлеровата 
крива W. Следователно педалните криви на точките от диаметъра d пресичат 
Ойлеровата крива W в постоянна точка T. Ако d º AB, педалната крива на всяка 
точка P от AB минава през върха C. Освен това Ойлеровата крива W също минава 
през C. Така отново получаваме, че всички педални криви и Ойлеровата крива 
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W имат обща точка. По този начин Теорема 1 е доказана за всички диаметри на 
всички централни криви.

Нека сега k(O) е парабола. Диаметърът d º p е асимптота на хиперболата kd и ми-
нава през центъра й T. Освен това според Теорема 2 точката T лежи върху Ойлеровата 
крива W. Следователно T е обща точка на Ойлеровата крива W и диаметъра d, който 
е общ елемент на всички педални криви, определени от точките на диаметъра d. По 
този начин получаваме, че Теорема 1 е изпълнена и в случай, че k(O) е парабола.

6. Заключение. Проведеното доказателство на Теорема 1 обхваща както про-
пуснатите в (Grozdev & Nenkov, 2015) случаи, така и разгледаните на същото място 
Фойербахови конфигурации. Въпреки че педалните криви изглеждат по-екзотично, 
когато описаната крива е парабола, проведеното тук доказателство придава смисъл 
на обобщена теорема на Грифитс и за параболи. Трябва обаче да се отбележи, че 
проведеното в (Grozdev & Nenkov, 2015) доказателство на Теорема 1 съдържа до-
пълнителни геометрични характеристики на обширния клас от криви, образуван от 
Фойербахови конфигурации. Накрая ще обърнем внимание, че описаните резултати 
за централни криви обобщават тези, които са получени в (Гроздев & Ненков, 2012) 
и (Гроздев & Ненков, 2014, 2). Резултатите за параболи съвпадат с тези в (Гроздев & 
Ненков, 2012) и (Гроздев & Ненков, 2014,2), но са записани по друг начин.
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FULL GENARIZATION 
OF THE GRIFFITS THEOREM WITH CONICS

Abstract. The present paper considers a generalization of the remarkable Griffits 
theorem from the geometry of triangle. This generalization contains the special one, 
obtained by the authors in (Grozdev & Nenkov, 2015).
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