
416

Математика и информатика Volume 59, Number 4, 2016 Mathematics and Informatics

ОТ СТРУКТУРНО
КЪМ ОБЕКТООРИЕНТИРАНО ПРОГРАМИРАНЕ

Христо Крушков
Пловдивски университет „Паисий Хилендарски"

Резюме. Възникнало в края на шестдесетте години на XX век, утвърди-
ло се през осемдесетте години и особено бурно развило се през последното
му десетилетие, обектоориентираното програмиране (ООП) се наложи като
водещ стил на програмиране в началото на новия век. И докато този стил на
програмиране е почти безалтернативен в масовото производство на софту-
ер, внедряването му в средношколската образователна практика закъснява.
В статията са анализирани причините за бавното навлизане на обектоориенти-
раното програмиране в средното училище и е представен подход за смяна на
стила на преподаване на дисциплината „Програмиране". Подходът е илюстри-
ран с примерно решение на задача от кандидатстудентски изпит по информа-
тика в ПУ „Паисий Хилендарски", използвайки С#.

Keywords: computer science education, object-oriented programming, teaching
programming, teaching methodology

Въведение
Обектоориентираното проектиране и програмиране поставиха нача-

лото на нова ера в създаването на софтуер. Успешното им съчетаване
с трите основни парадигми – процедурна, логическа и функционална,
както и със СУБД, е още едно свидетелство за това. Внедряването им
в средношколската образователна практика обаче закъснява. Анализ на
решения на задачи от кандидатстудентски изпит по информатика през
последните три години показва, че над 80% от кандидатите използват т.
нар. класически подход, в основата на който стои процедурното струк-
турно програмиране. Причините за бавното навлизане на обектоориен-
тираното програмиране в средното училище са както обективни, така и
субективни. Към обективните, на първо място, стои огромната инертност
на образователната система. Разработените през 2000 и актуализирани
през 2006 г. държавни образователни изисквания за учебно съдържание
по „Информатика" и „Информационни технологии" позволяват в обуче-
нието „да се прилага както класически, така и обектоориентиран под-
ход за създаване на програмни продукти". Като прибавим и малкия брой

Educational Technologies
Образователни технологии

417

От структурно към обектоориентирано програмиране

часове по информатика в учебния план за задължителна подготовка, се
вижда, че основната тежест за смяна на стила на преподаване на про-
грамиране – от структурен към обектоориентиран, пада върху учителя.
Това означава, че той трябва, на първо място, сам да овладее този стил
на програмиране, да подготви нови учебни материали и методика за пре-
подаването им. Мотивацията да се свърши този голям обем творческа
работа, е оставена в ръцете на училищните ръководства и ентусиазма
на учителите. Като отчетем нарастващата средна възраст на учителите и
намаляващия брой квалифицирани млади преподаватели, мотивирани да
преподават информатика, проблемът наистина е тежък.

Университетските преподаватели не можем да се похвалим с подго-
товката на учебници и помагала, подходящи за различни нива на под-
готовка по програмиране на база C# и Java. Единственият учебник по
информатика за IX – X клас, в който се поставят основите на обектоори-
ентираното програмиране със С#, е издаден през 2013 г. (Manev et al.,
2013). При обучение предимно се използват книгите на Светлин Наков и
колектив (Nakov et al., 2008; Nakov et al., 2009), които се разпространяват
и безплатно в електронен вариант.

Изискването на кандидатстудентски изпит по информатика в ПУ бе
програмата да се пише на един от езиците Pascal, C, C++, Basic. Едва от
2014 г. бяха добавени C# и Java. Изоставането по отношение на разши-
ряване възможностите за прилагане на ООП посредством новите ЕП е
очевидно. Авторът на тази статия също търпи критика за забавянето и се
надява с нея да стартира наваксването.

Смяна на стила на преподаване
Структурното програмиране заменя машинноориентирания стил на

създаване на програми, в който се използва активно операторът за без-
условен преход "goto". То създава удобства за проектиране „от горе на-
долу", модулност посредством използване на подпрограми и подходящи
управляващи конструкции. Този качествен скок се усеща от самите раз-
работчици на софтуер, улеснени в проектирането, създаването, тества-
нето и актуализирането на програмни продукти. Структурният стил на
програмиране е доминиращ почти до края на миналия век.

Както винаги, образованието изостава от съвременните тенденции и с
масовото навлизане на компютър „Правец" в България през осемдесетте
години голяма част от обучаемите усвоиха умения за работа с Бейсик и
писане на „спагети код". Впоследствие през деветдесетте се разви ус-
пешно навлизането на структурното програмиране в училище предимно
с използването на Turbo Pascal. Голяма част от учителите обаче продъл-
жиха да работят с Бейсик, но вече с по-нови версии на „Майкрософт". В

418

Христо Крушков

повечето случаи не се използваха главните предимства на структурното
програмиране, като основен недостатък беше липсата на модулност. Това
ясно проличаваше при решаване на задачите от конкурсния изпит по
програмиране в ПУ „Паисий Хилендарски". Кандидат-студентите обик-
новено събираха целия програмен текст в рамките на една главна про-
грама, въпреки че подусловията на задачата явно обособяваха отделните
програмни части. Научени на такъв стил на програмиране, вече станали
студенти, те трудно успяваха в първи курс да работят с подпрограми.
Изключение правеха подготвяните в кандидатстудентските курсове по
информатика бъдещи студенти, които усвояваха основите на структурно-
то програмиране по време на курса.

Наскоро представихме1) примерно решение на конкурсна задача по
информатика, решена в стил структурно програмиране със С/С++. В на-
стоящата статия ще решим същата задача в обектоориентиран стил със
С#. Ще покажем, че е възможен плавен преход между двата стила, като
основната разлика е в проектирането на основните компоненти на про-
грамата, докато използваните управляващи конструкции са максимално
близки и запазват императивния си характер.

Реалните предимства на ООП се проявяват при по-големите софтуер-
ни проекти. При по-малки задания, и особено при решаването на задача
от конкурсен изпит, тези предимства не могат да бъдат усетени. В учи-
лище също няма достатъчно време за големи проекти. Това е и главната
причина за бавното навлизане на ООП в учебната практика. Набляга се
на стандартни типове данни, операции с тях, библиотечни функции, уп-
равляващи конструкции и структури от данни. На това ниво няма особе-
но значение с какъв език и в какъв стил ще бъдат практикувани. Започва-
нето на обучението по програмиране в обектоориентиран стил обаче би
донесло една дисциплина на проектиране, която, добре усвоена в нача-
лото, бавно и полека ще носи дивиденти на обучаемите в изкачването на
стълбата на професионалното програмиране. Голяма част от проблемите
при смяна на стила на програмиране и преподаване са детайлно описани
в (Hristov, 2010; Hristov, 2011). Тук ще развием един практически подход,
илюстриран с три варианта на решение. Да си припомним условието на
задачата.

Условие: Да се състави компютърна програма, подпомагаща обработ-
ване на данни за резултатите от изпит по информатика в група от до 40
студенти. За целта:

1. За всеки студент да се въведе следната информация: факултетен
номер (знаков низ до 10 знака), име (знаков низ до 40 знака, съдържащ
трите имена на студента, разделени с точно един интервал), оценка от
изпита (цяло число), име на изпитващ преподавател (знаков низ до 40

419

От структурно към обектоориентирано програмиране

знака съдържащ трите имена на преподавателя разделени с точно един
интервал);

2. Да се изведе списък на всички студенти, съдържащ факултетен но-
мер, име на студент, оценка от изпита и име на изпитващ преподавател.
Списъкът да бъде подреден по факултетен номер (в нарастващ ред). По-
летата да бъдат разделени със запетая и един интервал, а името на препо-
давателя да излиза във вида инициали на името и презимето и фамилия.
Например:

0601261050, Иван Димов Колев, 5, Е. П. Гоцев

3. Да се изведе списък на всички студенти, съдържащи в името си
„Димо" или „димо". Списъкът да бъде подреден по оценка в низходящ
ред, а тези с една и съща оценка – по име на студент (в азбучен ред);

4. Да се въведе информация за три групи от студенти, като се контро-
лира броят на студентите във всяка група да не надхвърля 40. За всяка от
тях:

а) да се изведат справките от точки 2 и 3;
б) да се пресметне и изведе на екрана средният успех на студентите,

изпитвани от преподавател Е. П. Гоцев.
Да се намери и отпечата най-ниският от трите средни успеха.
Тази задача дава добра представа за нивото, което трябва да се покрие

от кандидат-студентите. Те трябва да покажат знания и умения за работа
със структури от данни и алгоритми, залегнали в учебните програми.
Задачата позволява да се използва както „класически", така и обектоори-
ентиран подход. Дава възможност за демонстрация на естествен преход
от единия към другия. Най-добре в началото да се представи решение,
което не използва всички предимства на ООП (като капсулиране напр.),
а да се наблегне на проектирането и реализирането на класове и обекти.
Така обучаемите ще успеят да осмислят превръщането на подпрограмите
в локални за класа методи. Ще забележат, че няма съществена разлика
при реализацията им, а само в параметрите. Обикновено методите на
класовете използват директно полетата на класа, а за подпрограмите тези
данни са параметри. Важно е също първоначално да разбере и ролята на
метода конструктор. Впоследствие може да се демонстрират капсулира-
нето, удобните методи за вградена сортировка, че даже и възможностите
за реализиране на заявки.

Примерни решения на С#
В решенията дефинираме два класа – студент и група от студенти. По-

летата на класа Student следват полетата на структурата от класическото

420

Христо Крушков

решение. Функцията за въвеждане на данни за един студент е заменена
от метод конструктор без параметри: Student(). Функцията за извеждане
на данни за един студент се заменя от метода OutStudent(). Разликата в
дефинициите на методите и функциите е обусловена единствено от раз-
ликата в синтаксиса за вход/изход при различните езици за програмира-
не. Класът Group има едно поле – масив от студенти (групата), конструк-
тор Group(), в който се въвежда действителният брой студенти с контрол
на стойността на този брой, методи за въвеждане и извеждане на данни
за групата студенти. Тези методи алгорит-мично са копия на функции-
те, реализирани на С/С++, само че нямат параметри. Масивът, който се
обработва, е поле на класа, а действителният брой студенти се извлича
динамично.

Ще представим три варианта на решение на задачата, тествани с
SharpDevelop, версия 3.2.1.6466. В първия вариант се използват публич-
ни полета, а главният метод последователно обработва трите групи. Този
вариант е най-подходящ за начинаещи. Тези, които имат представа от
структурно програмиране, ще го възприемат по-лесно.

using System;
namespace Izpit2014A // Вариант 1
{
	 class Student
	 {
	 public string fnom, // факултетен номер
	 ime, // име на студент
	 prep,// име на преподавател
	 iniprep;// име на преподавател с инициали
	 public int ocenka; // оценка
	 public Student()
	 {// Въвеждане на данни за един студент
	 	 Console.Write("Въведете ф.номер:"); fnom=Console.ReadLine();
	 	 Console.Write("Въведете име на студент:"); ime=Console.ReadLine();
	 	 Console.Write("Въведете оценка:");
	 	 ocenka=int.Parse(Console.ReadLine());
	 	 Console.Write("Въведете име на преподавател:");
 	 	 prep=Console.ReadLine();
	 	 int s1=prep.IndexOf(" "), // Индекс на първи интервал
	 	 s2=prep.LastIndexOf(" "); // Индекс на последен интервал
	 	 if (s1<0||s2<0) return;

421

От структурно към обектоориентирано програмиране

	 	 s1++; // s1 е индекс на първа буква на второ име
	 	 s2++; // s2 е индекс на първа буква на фамилия
	 	 iniprep=prep[0]+". "+prep[s1]+". "; // Инициали
	 	 iniprep=iniprep+prep.Substring(s2); // Долепя отдясно фамилията
	 } //Student
	 public void OutStudent()
	 { // Извеждане на данни за един студент
	 	 Console.WriteLine(fnom+", "+ime+", "+ocenka+", "+ iniprep);
	 } //OutStudent
	 };
	 class Group
	 {
		 Student[] a;
		 public Group()
		 { int br;
			 do
			 {
				 Console.Write("Въведете брой студенти:");
				 br=int.Parse(Console.ReadLine());
			 } while (br<=0||br>40);
			 a=new Student[br];
		 }
		 public void Input()
		 { // Въвеждане на масив от студенти
			 for (int i=0; i<a.Length; i++)
			 {
			 Console.WriteLine("Въведете данни за "+(i+1)+"-ия студент");
			 a[i] = new Student();
			 }
		 } //Input
		 public void Output()
		 { // Извеждане на масив от студенти
			 for (int i=0;i<a.Length;i++)
				 a[i].OutStudent();
		 } //Output}
		 public void SortFnom()
		 { // Възходяща сортировка по ф.номер
			 for (int i=1; i<a.Length; i++)

422

Христо Крушков

				 for (int j=a.Length-1; j>=i; j--)
					 if (String.Compare(a[j-1].fnom,a[j].fnom)>0)
					 {
						 Student pom=a[j];
						 a[j]=a[j-1];
						 a[j-1]=pom;
					 }
		 } //SortFnom
		 public void SortOc() // Низходяща сортировка по успех
		 { // При еднакъв успех, възходяща по име на студент
			 for (int i=1; i<a.Length; i++)
				 for (int j=a.Length-1; j>=i; j--)
					 if (a[j-1].ocenka<a[j].ocenka||
					 a[j-1].ocenka==a[j].ocenka&&
					 String.Compare(a[j-1].ime,a[j].ime)>0)
					 {
						 Student pom=a[j];
						 a[j]=a[j-1];
						 a[j-1]=pom;
					 }
		 } //SortOc		
		 public void Spravka2() // Извеждане на студенти с Димо/димо
		 {
			 for (int i=0;i<a.Length;i++)
				 if (a[i].ime.IndexOf("Димо")>=0||
				 a[i].ime.IndexOf("димо")>=0)
					 a[i].OutStudent();
		 } //Spravka2
		 public double Spravka3() //Изчисляване на среден успех при
		 { // "Е. П. Гоцев"
			 int count=0;double sum=0;
			 for (int i=0;i<a.Length;i++)
			 {
				 if (a[i].iniprep=="Е. П. Гоцев")
				 { sum+=a[i].ocenka; count++;}
			 }
			 if (count>0) return sum/count; else return 0;
		 } //Spravka3

423

От структурно към обектоориентирано програмиране

	 }
	 class Program
	 {
		 public static void Main(string[] args)
		 {
			 Group a = new Group();
			 a.Input();
			 Console.WriteLine("Списък на I група подреден по ф.номер");
			 a.SortFnom(); a.Output();
			 Console.WriteLine("Студенти от I група с Димо/димо в името");
			 a.SortOc();	 a.Spravka2();
			 Group b = new Group();
			 b.Input();
			 Console.WriteLine("Списък на II група подреден по ф.номер");
			 b.SortFnom(); b.Output();
			 Console.WriteLine("Студенти от II група с Димо/димо в името");
			 b.SortOc();	 b.Spravka2();	
			 Group c = new Group();
			 c.Input();
			 Console.WriteLine("Списък на III група подреден по ф.номер");
			 c.SortFnom(); c.Output();
			 Console.WriteLine("Студенти от III група с Димо/димо в името");
			 c.SortOc();	 c.Spravka2();			
			 double sr1=a.Spravka3();
			 Console.WriteLine("Ср.успех при Е. П. Гоцев на I група:"+sr1);
			 double sr2=b.Spravka3();
			 Console.WriteLine("Ср.успех при Е. П. Гоцев на II група:"+sr2);
			 double sr3=c.Spravka3();
			 Console.WriteLine("Ср.усп. при Е. П. Гоцев на III група:"+sr3);
			 double min=sr1;
			 if (sr2<min) min=sr2;
			 if (sr3<min) min=sr3;
			 Console.WriteLine("Минимален ср.успех при Е. П. Гоцев:"+min);
			 Console.Write("Натиснете клавиш . . . ");
			 Console.ReadKey(true);
		 }
	 }
}

424

Христо Крушков

Вторият вариант използва частни полета и публични методи-екстрак-
тори за извличане на стойностите на тези полета. Името с инициалите на
преподавателя не се съхранява постоянно като поле, а се извлича от мето-
да IniPrep(). Обхождането на всички елементи на масива е реализирано
посредством оператора foreach. За сортиране се използва методът Sort на
класа Array, като първи параметър е масивът, който се сортира, а втори –
т.нар. делегат (обект-метод), който е подобен на указател към функция в
C/C++. Делегатът сравнява два обекта по определени критерии и връща
подобно на метода String.Compare отрицателна, нулева или положител-
на целочислена стойност. Ако делегатът върне положителна стойност при
сравнение на двата обекта, то те са неправилно подредени и сортировката
трябва да смени местата им. Използването на вградени методи за сорти-
ране и делегати не е за препоръчване да се дава на начинаещи, но препо-
давателят винаги трябва да има възможност да представи повече варианти
на напредналите ученици. Последната разлика в това решение е добавяне-
то на поле grID-идентификатор на групата в класа Group. Инициализи-
ра се чрез входния параметър на конструктора Group: public Group(string
groupID). Това позволява в класа Program да се добави метод Run(Group
x), който реализира всички обработки на една група. В главния метод Run
се вика три пъти за всяка група.

using System;
namespace Izpit2014A2 // Вариант 2
{
	 class Student
	 {
	 string fnom, // факултетен номер
	 ime, // име на студент
	 prep;// име на преподавател
	 int ocenka; // оценка
	 public string GetFnom() {return fnom;}
	 public string GetIme() {return ime;}
	 public string GetPrep() {return prep;}
	 public int GetOcenka() {return ocenka;}
	 public Student()
	 {// Въвеждане на данни за един студент
	 	 Console.Write("Въведете ф.номер:"); fnom=Console.ReadLine();
	 	 Console.Write("Въведете име на студент:"); ime=Console.ReadLine();
	 	 Console.Write("Въведете оценка:");
	 	 ocenka=int.Parse(Console.ReadLine());
	 	 Console.Write("Въведете име на преподавател:");
	 	 prep=Console.ReadLine();
	 } //InStudent
	 public string IniPrep()
	 { // връща име на преподавател с инициали
	 	 int s1=prep.IndexOf(" "), // Индекс на първи интервал

425

От структурно към обектоориентирано програмиране

	 	 s2=prep.LastIndexOf(" "); // Индекс на последен интервал
	 	 if (s1<0||s2<0) return " ";
	 	 s1++; // s1 е индекс на първа буква на второ име
	 	 s2++; // s2 е индекс на първа буква на фамилия
	 	 string iniprep=prep[0]+". "+prep[s1]+". "; // Инициали
	 	 iniprep=iniprep+prep.Substring(s2); // Долепя отдясно фамилията
	 	 return iniprep;
	 } //IniPrep
	 public void OutStudent()
	 { // Извеждане на данни за един студент
	 	 Console.WriteLine(fnom+", "+ime+", "+ocenka+", "+ IniPrep());
	 } //OutStudent
	 };
	 class Group
	 {
		 Student[] a;
		 string grID;
		 public string GetGrID(){return grID;}
		 public Group(string groupID)
		 { int br;
		 do
		 {
		 	 Console.Write("Въведете брой студенти за "+groupID+" група:");
		 	 br=int.Parse(Console.ReadLine());
		 } while (br<=0||br>40);
		 a=new Student[br];
		 grID=groupID;
		 } //Group
		 public void Input(){...}// Същият като във вариант 1
		 public void Output()
		 { // Извеждане на масив от студенти
			 foreach (Student x in a)
				 x.OutStudent();
		 } //Output
		 public void SortFnom()
		 { // Възходяща сортировка по ф.номер
			 Array.Sort(a, delegate(Student x, Student y)
			 { return String.Compare(x.GetFnom(),y.GetFnom());});
		 } //SortFnom
		 public void SortOc() // Низходяща сортировка по успех
		 { // При еднакъв успех, възходяща по име на студент
			 Array.Sort(a, delegate(Student x, Student y)
			 { if (x.GetOcenka()!=y.GetOcenka())
			 		 return y.GetOcenka()-x.GetOcenka();
			 else return String.Compare(x.GetIme(),y.GetIme());});
		 } //SortOc
		 public void Spravka2()
		 { // Извеждане на студенти с Димо/димо
			 foreach (Student x in a)

426

Христо Крушков

				 if (x.GetIme().Contains("Димо") ||
				 x.GetIme().Contains("димо"))
					 x.OutStudent();
		 } //Spravka2
		 public double Spravka3()
		 { //Изчисляване на среден успех при "Е. П. Гоцев"
			 int count=0;double sum=0;
			 foreach (Student x in a)
			 {
				 if (String.Compare(x.IniPrep(),"Е. П. Гоцев")==0)
				 { sum+=x.GetOcenka(); count++;}
			 }
			 if (count>0) return sum/count; else return 0;
		 } //Spravka3
	 }
	 class Program
	 {
		 public static double Run(Group x)
		 {
			 x.Input();
			 Console.WriteLine("Списък на "
			 +x.GetGrID()+" група подреден по ф.номер");
			 x.SortFnom(); x.Output();
			 Console.WriteLine("Студенти от "+x.GetGrID()
			 +" гр. с Димо/димо в името");
			 x.SortOc();	 x.Spravka2();
			 double sr=x.Spravka3();
			 Console.WriteLine("Ср.успех при Е. П. Гоцев на "
			 +x.GetGrID()+" група:"+sr);
			 return sr;
		 } //Run
		 public static void Main(string[] args)
		 {
			 Group a=new Group("I"); double min=Run(a);
			 Group b=new Group("II"); double sr=Run(b);
			 if (sr<min) min=sr;
			 Group c=new Group("III"); sr=Run(c);
			 if (sr<min) min=sr;
			 Console.WriteLine("Минимален ср.успех при Е. П. Гоцев:"+min);
			 Console.Write("Натиснете клавиш . . . ");
			 Console.ReadKey(true);
		 } //Main
	 }

}
Третото решение демонстрира използването на възможностите на

интегрирания в С# език за заявки (Language-Integrated Query). Изисква
деклариране на използването на System.Linq: using System.Linq. За улес-

427

От структурно към обектоориентирано програмиране

нение при тестването данните могат да се четат от текстов файл, като
първият ред е число, показващо броя на студентите, а всяко поле е на
отделен ред. Текстовият файл се разполага в папката, където е изпъл-
нимият файл, и може да се разглежда и редактира отделно с редактор,
но трябва да се спазва съответният формат. Името на файла се форми-
ра автоматично от стринга „File" с долепен идентификатор на групата
и разширение txt. Декларацията за работа с файлове е using System.IO.
Добавен е втори конструктор, който чете полетата от текстовия файл:
public Student(StreamReader file), както и методи за четене от файла и
запис в него.

using System;
using System.Linq;
using System.IO;
namespace Izpit2014A3 // Вариант 3
{
	 class Student
	 {
	 string fnom, // факултетен номер
	 ime, // име на студент
	 prep;// име на преподавател
	 int ocenka; // оценка
	 public string GetFnom() {return fnom;}
	 public string GetIme() {return ime;}
	 public string GetPrep() {return prep;}
	 public int GetOcenka() {return ocenka;}
	 public Student() {...}// Същият като във вариант 2
	 public Student(StreamReader file)
	 { //Чете полетата от текстов файл
	 	 fnom=file.ReadLine();
	 	 ime=file.ReadLine();	 	
	 	 prep=file.ReadLine();
	 	 ocenka=int.Parse(file.ReadLine());
	 }
	 public string IniPrep() {...}// Същият като във вариант 2
	 public void OutStudent(){...}// Същият като във вариант 2
	 public void OutStudentInFile(StreamWriter file)
	 { // Извеждане на данни за един студент във файл
	 	 file.WriteLine(fnom+"\r\n"+ime+"\r\n"+prep+"\r\n"+ocenka);
	 } // OutStudentInFile
	 };
	 class Group
	 {
		 Student[] a;
		 string grID;
		 public string GetGrID(){return grID;}
		 public Group(string groupID)

428

Христо Крушков

		 { int br;
		 grID=groupID;
		 if (!File.Exists("File"+ grID +".txt"))
		 do
		 {
			 Console.Write("Въведете брой студенти за "+ grID +" група:");
			 br=int.Parse(Console.ReadLine());
		 } while (br<=0||br>40);
		 else
		 {
			 StreamReader file = new StreamReader("File"+ grID +".txt");
			 br=int.Parse(file.ReadLine());
			 file.Close();
		 }
		 a=new Student[br];
		 } //Group
		 public void Input() {...}// Същият като във вариант 2
		 public void InputFromFile()
		 { // Въвеждане на масив от студенти
			 StreamReader file = new StreamReader("File"+grID+".txt");
			 int br=int.Parse(file.ReadLine());
			 for (int i=0; i<a.Length; i++)
			 {
				 a[i] = new Student(file);
			 }
			 file.Close();
		 } //InputFromFile
		 public void OutputToFile()
		 { //Записва данните на студентите в текстов файл
			 StreamWriter file = new StreamWriter("File"+grID+".txt");
			 file.WriteLine(a.Length);//Записва броя студенти в първи ред
			 foreach (Student x in a)
				 x.OutStudentInFile(file);
			 file.Close();
		 } //OutputToFile
		 public void Spravka1()
		 { // Извеждане на всички студенти подредени по фак.номер
			 var queryFnom = from x in a
				 orderby x.GetFnom() ascending
				 select x;
			 foreach (Student x in queryFnom) x.OutStudent();
		 }//spravka1
		 public void Spravka2()
		 { // Извеждане на студенти с Димо/димо
			 // подредени по оценка низходящо
			 // а при равни оценки - по име възходящо
			 var queryDimo = from x in a
				 where x.GetIme().Contains("Димо") ||
 				 x.GetIme().Contains("димо")

429

От структурно към обектоориентирано програмиране

				 orderby x.GetOcenka() descending
				 orderby x.GetIme() ascending
				 select x;
			 foreach (Student x in queryDimo) x.OutStudent();
		 }//spravka2
		 public double Spravka3()
		 {	 //Изчисляване на среден успех при "Е. П. Гоцев"
			 var queryGocev = from x in a
				 where x.IniPrep() == "Е. П. Гоцев"
				 select x.GetOcenka();
			 if (queryGocev.Count()>0)
				 return queryGocev.Average();
			 else return 0;
		 }//spravka3
	 }
	 class Program
	 {
		 public static double Run(Group x)
		 {
			 if (File.Exists("File"+x.GetGrID()+".txt")) x.InputFromFile();
			 else { x.Input(); x.OutputToFile();}
			 Console.WriteLine("Списък на "+x.GetGrID()
			 +" група подреден по ф.номер");
			 x.Spravka1();
			 Console.WriteLine("Студенти от "+x.GetGrID()
			 +" гр. с Димо/димо в името");
			 x.Spravka2();
			 double sr=x.Spravka3();
			 Console.WriteLine("Ср.успех при Е. П. Гоцев на "
			 +x.GetGrID()+" група:"+sr);
			 return sr;
		 } //Run
		 public static void Main(string[] args) {...}// Kато във вариант 2
	 }
}

Заключение
Статията е предназначена предимно за учители, които трябва да сме-

нят стила на програмиране и преподаване при обучение на учениците.
Предложен е метод за активно обучение чрез практика – learning by doing
(Krushkova, 2014), като е използвана задачата от първия кандидатстудент-
ски изпит по информатика в ПУ „Паисий Хилендарски", когато е обявено
официално в указанията към задачата използването на C# и Java. Задачите
от този тип позволяват изписването на лист – едно от условията, на които
трябва да отговарят задачи от писмен конкурсен изпит, и въпреки малкия си
размер дават възможност да бъдат реализирани както с „класически", така
и с обектоориентиран подход. Трите варианта на решение свидетелстват за
разнообразните средства на C#. Решенията са възможно най-кратки и оп-

430

Христо Крушков

ростени, като целят да предложат на учителите средства за плавен преход
от структурно към обектоориентирано програмиране. Статията би могла да
подпомогне и ученици, които се интересуват от конкурсни задачи за канди-
датстудентски изпит по информатика и имат много добри базови знания по
програмиране.

На сайта на ФМИ при Пловдивския университет „Паисий Хилендар-
ски" могат да се видят всички конкурсни задачи2). Решения на задачите и
тестовете от конкурсните изпити по информатика са достъпни на уеб адрес
http://hristokrushkov.com след регистрация. За читателите на списанието е оси-
гурен специален достъп в сравнение с обикновен регистриран потребител по-
средством username: MatInf и парола: informatika. Там могат да намерят реше-
ния на конкурсни задачи както на С#, така и на други езици за програмиране.

NOTES / БЕЛЕЖКИ
1. Сп. „Математика и информатика", бр. 3/2016
2. http://fmi-plovdiv.org/index.jsp?id=324&ln=1

REFERENCES / ЛИТЕРАТУРА
Darzhavni obrazovatelni iziskvaniya za uchebno sadarzhanie po

Informatika i Informatsionni tehnologii. (2000, 13.06.). Darzhaven
vestnik. [Държавни образователни изисквания за учебно съдър-
жание по Информатика и Информационни технологии. (2000,
13.06.). Държавен вестник.]

Krushkova, M. (2014). Metodika za aktivno obuchenie po programirane
chrez izpolzvane na informatsionni i komunikatsionni tehnologii.
Disertatsionen trud za prisazhdane na obrazovatelnata i nauchna
stepen "doctor", Plovdiv. [Крушкова, М. (2014). Методика за
активно обучение по програмиране чрез използване на инфор-
мационни и комуникационни технологии. Дисертационен труд
за присъждане на образователната и научна степен „доктор",
Пловдив.]

Manev, Kr., Petrov, P., Hristova, V., Maneva, N., Yovcheva, B. & Petrov,
P. (2013). Informatika za zadalzhitelna podgotovka v IX – X klas.
Sofiya: Izkustva. [Манев, Кр., Петров, П., Христова, В., Манева,
Н., Йовчева, Б. & Петров, П. (2013). Информатика за задължи-
телна подготовка в IX – X клас. София: Изкуства.]

Nakov, Sv., Valkov, B., Kolev, V., Tsanev, V., Aleksiev, D., Bozhkov, L.,
... & Konov, Ts. (2008). Vavedenie v programiraneto s Java. Veliko
Tarnovo: Faber. [Наков, Св., Вълков, Б., Колев, В., Цанев, В., Алек-

431

От структурно към обектоориентирано програмиране

сиев, Д., Божков, Л., ... & Конов, Ц. (2008). Въведение в програми-
рането с Java. Велико Търново: Фабер.]

Nakov, Sv., Georgiev, V., Kolev, V., Dimitrov D., Murdanliev, I., Yosi-
fov, Y., ... &Konov, Ts. (2009). Vavedenie v programiraneto sas C#.
Veliko Tarnovo: Faber. [Наков, Св., Георгиев, В., Колев, В., Ди-
митров Д., Мурданлиев, И., Йосифов, Й., ... & Конов, Ц. (2009).
Въведение в програмирането със C#. Велико Търново: Фабер.]

Hristov, Hr. (2011). Trudnosti i resheniya pri smyana na paradigma-
ta. Prepodavane na obektoorientiran analiz, dizayn i programirane,
Dokladi na mezhdunarodna konferentsiya, Vzaimodeystvieto teoriya
– praktika: Klyuchovi problemi i resheniya, III, 303 – 310. [Христов,
Хр. (2011). Трудности и решения при смяна на парадигмата. Пре-
подаване на обектоориентиран анализ, дизайн и програмиране,
Доклади на международна конференция, Взаимодействието тео-
рия - практика: Ключови проблеми и решения, III, 303 – 310.]

Hristov, H. (2010). Review and Outlooks of the Means for Visualization
of Syntax Semantics and Source Code. Procedural and Object-
oriented Paradigm – Differences, In proceedings of the Anniversary
International Conference REMIA, Plovdiv, 443 – 451.

FROM STRUCTURED TO OBJECT-ORIENTED
PROGRAMMING

Abstract. Arose in the late sixties of the twentieth century, affirmed through the
eighties and especially booming in its last decade, object-oriented programming
has established itself as a leading style of programming at the beginning of the
new century. While this style of programming has almost no alternative in the mass
production of software, its imposition in secondary school educational practice is
delayed. The article analyses the reasons for the slow uptake of object-oriented
programming in secondary school and presents an approach to change the style of
teaching Programming. The approach is illustrated through a suggested solution of
an entrance exam task in Informatics at the University of Plovdiv using C#.

 Dr. Hristo Krushkov, Assoc. Prof.
Department of Software Engineering

Faculty of Mathematics and Informatics
University of Plovdiv

236, Bulgaria Blvd.
Plovdiv, Bulgaria

E-mail: hdk@uni-plovdiv.bg

