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Abstract. The paper proposes a comprehensive student academic performance
prediction approach by integrating machine learning with metaheuristic optimization.
Initial models (Logistic Regression, Decision Tree, Random Forest, MLP) were refined
using boosting techniques (Gradient Boosting, XGBoost, LightGBM), with XGBoost
achieving 95.59% accuracy. Eight modern optimization algorithms were applied for
feature selection to enhance model efficiency and interpretability, with the Grey Wolf
Optimizer and the Heap-Based Optimizer outperforming others in key metrics. Support
Vector Machine algorithms applied after feature selection strengthened the predictive
capability of the selected feature subsets. The research outcomes demonstrate that uniting
boosting approaches with feature selection algorithms enables the creation of reliable and
scalable predictive models that detect student success and failure earlier.

Keywords: Machine Learning; Optimization Algorithms; Educational Data
Mining; Ensemble Models; Boosting Algorithms.

1. Introduction
Student dropout rates significantly challenge higher education's role in
fostering employment, social equity, and economic growth. Inconsistent
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definitions and varied calculation methods (Xu & Kim, 2024) lead to
reporting discrepancies, complicating efforts to implement effective student
retention strategies. Higher education institutions (HEIs) use several
monitoring techniques to assess student performance by tracking course
advancement and analyzing academic standing each semester (Chen et al.,
2014).

Technological advancements and increased data availability have
established Educational Data Mining (EDM) as a specialized research field
(Apriyadi & Rini, 2023). EDM uses data mining techniques to find
actionable patterns in educational data. Its predictive models analyze
student performance to help HEIs address dropout risks. However, standard
predictive techniques still face challenges related to interpretability,
scalability, and computational efficiency (Shekhar et al., 2020).

Data preprocessing, specifically feature selection, is crucial for optimizing
data mining systems by removing redundant and noisy data. This process
improves algorithm performance and enables classifiers to achieve higher
accuracy. The two main types of feature selection are: filter methods, which
are computationally efficient but cannot detect feature dependencies, and
wrapper methods, like Linear Discriminant Analysis (LDA) and K-Nearest
Neighbor (KNN), which are more effective at identifying complex
dependencies but are computationally intensive and thus limited to smaller
datasets. Identifying the optimal feature subset remains a challenge, as
efficient search mechanisms (complete, random, or heuristic) risk
overlooking optimal solutions (Hussain et al., 2020; Farissi et al., 2022;
Punitha & Devaki, 2024; Ajibade et al., 2019). Heuristic search mechanisms
offer an effective and efficient framework for problem-solving. Specifically,
metaheuristic algorithms like Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ACO) demonstrate exceptional capability in feature
selection. By replicating natural processes and employing probabilistic rules,
these algorithms efficiently navigate large parameter spaces and escape local
optima, making them well-suited for complex, high-dimensional datasets.
This enables improved feature selection quality and more effective predictive
models, particularly in applications like student performance prediction
(Kukkar et al., 2023; Kukkar et al., 2024).

555



Paul, Mohamed, Canatalay, Kukkar, Hussain, Baruah, Hazarika, Gaftandzhieva, Mahareek, Desuky, Doneva

Using data to boost student retention is a key goal for university
administrators. However, the sheer volume of student data can be
overwhelming, requiring advanced tools to identify and help at-risk students
proactively.

This study presents an integrated solution combining Machine Learning
(ML) and metaheuristic methods to predict student academic performance.
It equips teachers, administrators, and policymakers with a predictive tool
for tracking at-risk students and implementing effective interventions. Such
a tool transforms large-scale student data into actionable intelligence,
enabling the strategic allocation of support services and the timely
implementation of targeted interventions designed to improve student
outcomes and reduce attrition. The proposed EDM approach addresses
current deficiencies, providing a comprehensive framework for fostering
academic success and reducing dropout rates in HEIs. To achieve this, the
research focused on developing an accurate predictive analytics model using
historical academic and demographic data; applying advanced data
preprocessing techniques for improved data quality; implementing a range
of advanced ML algorithms (Logistic Regression (LR), Decision Tree (DT),
Random Forest (RF), XGBoost, Light GBM) and metaheuristic techniques
(Mud Ring Algorithm (MRA), Archimedes Optimization (AO), Jellyfish
Search (JS), Ant Lion Optimizer (ALO), Grey Wolf Optimizer (GWO),
Whale Optimization Algorithm (WOA), Heap-Based Optimizer (HO),
Equilibrium Optimizer (EO)) to enhance prediction accuracy, conducting
feature selection and importance analysis using RF; identifying 12th-grade
percentage, CGPA, and gender as key predictors; performing a comparative
analysis of boosting versus optimization techniques for feature selection to
improve classifier efficiency and predictive accuracy; utilizing data
visualization (histograms, heatmaps) to analyze patterns and relationships;
statistically validating findings through cross-validation and comparisons
with state-of-the-art methods; ensuring the model is computationally
efficient and scalable for diverse educational datasets; providing data-driven
insights for targeted interventions to improve learning outcomes.
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The paper's structure includes Related Work (Section 2), Proposed
Methodology (Section 3), Experimental Results (Section 4), Discussion
(Section 5), and Conclusion (Section 6).

2. Related work

Ma (2024) enhanced student performance prediction by optimizing an
RF Classifier with Electric Charged Particles Optimization (ECPO) and
Artificial Rabbits Optimization. Analyzing 4,424 student records, their
optimized model demonstrated higher predictive precision and better
alignment with actual values, proving bio-inspired algorithms effective for
educational decision-making.

Thaher et al. (2021) developed a Student Performance Predictive model
using an enhanced WOA (EWOA) for automatic feature selection. Their
approach integrated the Sine Cosine Algorithm, a Logistic Chaotic Map,
and an Adaptive Synthetic Sampling to address data imbalances. This
method, particularly with LDA, showed superior reliability and enhanced
prediction accuracy compared to other classifiers and feature selection
methods on real educational datasets.

Hasheminejad & Sarvmili (2019) introduced S3PSO, a discrete PSO
method for forecasting student outcomes via rule-based prediction. Using
Support, Confidence, and Comprehensibility metrics, S3PSO generated
understandable rules from the Moodle dataset, achieving a 31% fitness
improvement over standard methods like CART, C4.5, and ID3. It also
outperformed benchmark algorithms (Support Vector Machine (SVM),
KNN, Naive Bayes (NB), Neural Networks (NN), APSO) by 9% in student
performance forecasting accuracy.

Turabieh et al. (2021) developed HHO-based dynamic controllers with
KNN clustering to overcome early stagnation and local minima in student
performance feature selection. Their HHO-enhanced model, particularly
with Layered Recurrent NN and Artificial NN (ANN), achieved the highest
accuracy on UCI data for early prediction of student outcomes.

Song (2024) integrated KNN with Honey Badger Optimization (HBO)
and the Arithmetic Optimization Algorithm (AOA) to create the KNHB
prediction system. This model excelled in both prediction and classification
tasks for G1 and G3 datasets, demonstrating high accuracy (0.921) and
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precision (0.92) for G3. The KNHB model also demonstrated exceptional
precision as a G1 value forecaster, with accuracy and precision scores of
0.899 and 0.90, respectively, in the prediction phase.

Ren & He (2024) enhanced a NB model for student performance
prediction using Leader Harris Hawk’s Optimization and Alibaba and the
Forty Thieves Algorithm. Their model achieved 0.891 accuracy and
substantial precision, recall, and F1l-scores, outperforming other tested
models and improving student support. The improvement in prediction
precision achieved through these methods helps educational institutions
deliver better student support and improve academic results.

Hai & Wang (2024) improved Multilayer Perceptron Classification
(MLPC) for student performance prediction by combining the Pelican
Optimization Algorithm and the Crystal Structure Algorithm. Their
MLPO2 approach, using appropriate fine-tuning and preprocessing,
achieved a 95.78% success rate and effectively handled class imbalance and
high dimensionality.

Li & He (2024) applied ML dimensionality reduction and optimized an
Extra-Trees Classifier with Gorilla Troops Optimizer and Reptile Search
Algorithm for student success prediction. Their ETRS model achieved 97.5%
accuracy in G1 mathematics course prediction, demonstrating the promise
of bio-inspired optimization for educational outcomes.

Goran et al. (2024) used metaheuristic optimization with a modified Sinh
Cosh Optimizer to enhance Adaptive Boosting (AdaBoost) and XGBoost
for student dropout risk prediction. Their approach demonstrated superior
performance on real-world binary and multi-class datasets, with SHAP and
SAGE explainability methods identifying key dropout triggers for targeted
retention programs.

Cheng et al. (2024) evaluated various ML techniques (RF, DT, KNN,
MLP, XGBoost) and ANNs for student performance prediction. Their
SVM-SMOTE data- balancing process significantly improved results, with
an Enhanced Artificial Ecosystem-Based Optimization + XGBoost hybrid
model achieving 0.9417 accuracy and a 0.9413 Fl-score, confirming the
success of combining ML with metaheuristics for precise student
performance prediction.
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Limited Comparison Between Boosting & Traditional ML Limited Model Interpretability
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Insufficient Data Preprocessing
Lack of Explainability in Feature Selection

Over-Reliance on Traditional ML
Figure 1. Percentage Distribution of the Identified Research Gaps

Previous studies often neglected student demographic and socioeconomic
factors, used limited datasets, and inadequately addressed missing values,
outliers, and feature engineering (see Fig. 1). In contrast, the current study
utilizes a diverse dataset encompassing enrollment, 10th/12th-grade scores,
demographics (gender, caste), and specialized program information. To
ensure strong model foundations, we establish a robust data preprocessing
pipeline, including categorical encoding, missing-value imputation, and IQR-
based outlier detection. While prior research frequently employed NB, DT,
RF, and some bio-inspired algorithms for optimization, our investigation
specifically examines the predictive excellence of AdaBoost and Gradient
Boosting. Furthermore, unlike studies using metaheuristic algorithms (e.g.,
ECPO, WO, ACO) for feature selection without explaining feature
importance, this work utilizes Random Forest for feature importance
analysis, identifying 12th-grade percentage, CGPA, and gender as the most
influential predictors. The issue of imbalanced class distribution—often
inadequately addressed in related works, leading to biased outcomes—is
resolved in our method through SVM-SMOTE, improving recall and F1-
scores. Recognizing the computational intensity of some metaheuristic
optimization techniques (e.g., Jellyfish Search, HBO) that limit their
application to large datasets, our research prioritizes computational
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efficiency and scalability through performance evaluation and training time
measurements. Finally, while current models struggle to identify key
performance factors and lack direct comparative analysis between popular
ML and metaheuristic optimization techniques, our study performs an
extensive comparative analysis. In essence, the research fills these gaps by
integrating extensive datasets, advanced preprocessing, optimized ML
models, metaheuristic-based feature selection and classification with class
balancing, and efficiency checks. These enhancements yield predictive
models with improved accuracy, interpretability, and scalability for student
academic performance assessment.

3. Proposed methodology

This study develops a robust predictive model for student academic
performance by integrating diverse historical academic and demographic
data obtained from educational institutions. The process involves dataset
description, data preprocessing, experimental setup, model development,
performance evaluation, and comparative analysis.

3.1. Dataset description

The dataset, provided by multiple educational institutions, comprises 19
numerical and 17 categorical features. It includes academic performance
metrics like 10th and 12th standard examination scores and CGPA,
alongside demographic details (gender, caste), program-specific data (major
and minor subjects), and institutional identifiers (enrollment number, college
name). Table 1 provides a detailed description of the attributes.

Table 1. Feature descriptions

Feature Description
ENROLLMENT Unique enrollment number of each student.
Programme The program the student is enrolled in, such as B.A.
College Name The name of the college.
MAJOR The major subject chosen by the student, such as
Education.
MINOR The minor subject chosen by the student, such as
Sociology or Political Science.
GENDER Gender of the student: MALE or FEMALE.
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Feature Description
AGE Age of the student, expressed in years, months, and days.
CASTE The caste of the student: UR (Unreserved), ST (Scheduled
Tribes), SC (Scheduled Castes), OBC (Other Backward
Class)
X PASSING The year the student passed their 10th standard
YEAR examination.
X Percentage scored in the 10th standard examination.
PERCENTAGE
XII PASSING The year the student passed their 12th standard
YEAR examination.
XII STREAM The stream chosen by the student in the 12th standard
examination.

XII MAXIMUM
MARKS
XII MARKS
OBTAINED
XII
PERCENTAGE
XII SUB 1, MAX
MARK 1,
OBTAINED
MARK 1
XII SUB 2, MAX
MARK 2,
OBTAINED
MARK 2
XII SUB 3, MAX
MARK 3,
OBTAINED
MARK 3
XII SUB 4, MAX
MARK 4,
OBTAINED
MARK 4
XII SUB 5, MAX
MARK 5,

The maximum possible marks in the 12th standard
examination.
Marks obtained by the student in the 12th standard
examination.
The percentage scored in the 12th standard examination.

Subject, maximum marks, and obtained marks for the first
subject in the 12th standard.

Subject, maximum marks, and obtained marks for the
second subject in the 12th standard.

Subject, maximum marks, and obtained marks for the
third subject in the 12th standard.

Subject, maximum marks, and obtained marks for the
fourth subject in the 12th standard.

Subject, maximum marks, and obtained marks for the fifth
subject in the 12th standard.
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Feature Description
OBTAINED
MARK 5
XII SUB 6, MAX Subject, maximum marks, and obtained marks for the
MARK 6, sixth subject in the 12th standard.
OBTAINED
MARK 6
CGPA Cumulative Grade Point Average of the student.
STATUS Status of the student, which can be 1, 2, or 3.

Status 1 means dropout 2 means at-risk students, and 3
means passed students.

3.2. Data Preprocessing

The accuracy of predictions depends heavily on maintaining data quality.
The preprocessing steps include:

— Handling Missing Values: The imputation method was used to
handle missing values while preserving the complete dataset structure.
— Categorical Encoding: Variables such as gender and caste were
transformed using One-Hot Encoding to convert them into a numerical
format suitable for machine learning algorithms.

— Qutlier Detection and Adjustment: Outliers were identified using the
Interquartile Range (IQR) method. Data points with zeros or
unusually high values (e.g., in “XII MAXIMUM MARKS” or CGPA)
were carefully reviewed and adjusted to mitigate the effects of data
entry errors.

— Feature Engineering: New attributes (e.g., average subject marks)
were generated to help the model capture a more holistic view of a
student's academic performance beyond individual grades.

In addition to creating new attributes, the process also involved
standardizing existing numerical features to ensure they are on a comparable
scale for the machine learning algorithms and numerical features were
standardized using techniques such as StandardScaler. Fig. 2 depicts a
feature importance plot.
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Figure 2. Feature Importance Plot

3.3. Data Visualisation and Reporting

To support interpretability and assess model performance, various
visualization techniques were utilized.

A Confusion Matriz illustrates true versus false classifications for the
best-performing models. In a multi-class problem like this one (with classes:
Dropout, At-Risk, Passed), the matrix is an n x n table, where 'n' is the
number of classes. Typically, each row represents the actual class, while each
column represents the predicted class. The cells along the main diagonal
show the number of correct predictions, where the predicted class matches
the actual class. The cells off the diagonal show the errors or
misclassifications.

To calculate performance metrics for a multi-class model, each class is
typically evaluated in a “one-vs-all” manner. For any given class, we can
define four basic outcomes: True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). These four outcomes
are used to calculate several key metrics that measure a model's performance
from different perspectives: Accuracy (measures the proportion of all
predictions that the model got right — calculated as the sum of all correct
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predictions (the diagonal) divided by the total number of predictions),
Precision (measures the accuracy of the positive predictions - Precision =
TP / (TP + FP)), Recall (measures the model's ability to find all relevant
instances of a class — Recall = TP / (TP + FN)), F1-Score (provides a
single score that balances both precision and recall - F1-Score = 2 *
(Precision * Recall) / (Precision + Recall)), Geometric Mean (useful for
imbalanced datasets because it measures the balance between the
classification performance on both the majority and minority classes —
calculated as the root of the product of the sensitivity (recall) of each class),
Matthews Correlation Coefficient (MCC) (considered a very reliable
evaluation metric because it produces a high score only if the prediction did
well in all four categories (TP, TN, FP, FN) — its value ranges from —1 to
+1, where +1 indicates a perfect prediction, 0 represents a random
prediction, and —1 indicates a total disagreement between prediction and
observation), Log Loss (measures the difference between the predicted
probabilities and the actual outcomes, penalizing the model more heavily for
being confident in an incorrect prediction - for this metric, a lower value is
better, with a perfect model having a log loss of 0).

ROC Curves evaluate the trade-offs between sensitivity and specificity.

Training and Validation Graphs allow monitoring model convergence
over epochs or iterations.

Comparison Tables visually represent the impact of each model compared
to other techniques.

4. Experimental setup and model development

To ensure a robust evaluation of the predictive models, the experimental
process was divided into two main phases.

4.1. Experiment 1: Fvaluation of baseline Machine Learning
algorithms

We implemented LR, DT, RF, and Multi-Layer Perceptron as baseline
models for comparative analysis and robust results. Ten-fold cross-validation
ensured reliability, while RF-based feature importance analysis identified
12th-grade percentage, CGPA, and gender as key predictors of student
performance. These predictors serve as key indicators that can help
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institutions identify students who may be at risk of falling behind. Detailed
results are presented in Figs. 3-6.

Accuracy: 60.43% 2500
Classification Report: =] = B =
precision recall F1- support 2000
score o 8 667 j~1300
1.0 0.59 0.01 0.02 1883 = 1000
2.0 0.57 0.81 0.67 3501
2 7 874 -500
3.0 0.65 0.73 0.69 3252 m
1.0 20 3.0
accuracy 0.60 8636 Predicted
macro avg  0.61 0.52 0.46 8636
weighted  0.61 0.60 0.53 8636
avg

Figure 3. Evaluation metrics and confusion matrix

related to logistic regression

The experimental process comprised three main phases, with Experiment

1 dedicated to evaluating baseline models. Ten-fold cross-validation was

meticulously employed to ensure robust

evaluation framework.

results and a reliable model

Accuracy: 88.83% 3000
Classification Report: = 1448 209 226 5500
precision recall F1- support
2000
score ® o
1.0 0.73 0.77 0.75 1883 R i St o 1300
2.0 094 0.93 0.93 3501 1000
3.0 0.93 0.92 0.92 3252 < 268 0 2984 500
Accuracy 0.89 8636 10 20 3.0 e
macro avg  0.87 0.87  0.87 8636 Predicted
weighted  0.89 0.89 0.89 8636
avg

Figure 4. Evaluation metrics and confusion matrix related
to the decision tree

One of the noteworthy outcomes of this study was the identification of
influential predictors of student performance through feature importance
analysis, particularly using the Random Forest (RF) algorithm. The feature
importance analysis, using RF, revealed 12th-grade percentage, CGPA, and
highlighting their
significance for predictive models. We evaluated LR, DT, RF Classifier, and

gender as key predictors of student performance,
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Multi-Layer Perceptron: while LR and DT offered interpretability, RF and
Multi-Layer Perceptron achieved higher predictive accuracy. This study
underscores the importance of selecting optimal algorithms and feature
combinations for accurate student performance evaluation in educational
predictive modeling.

Accuracy: 91.15%
Classification Report: = 1289 228 366 =008
precision recall F1- support 2300
score - 2000
1.0 0.88 0.68 0.77 1883 = - 1500
2.0 094 1.00 0.97 3501 - 1000
3.0 0.89 0.95  0.92 3252 = 154 | 500
accuracy 0.91 8636 10 a0 2 e
macro avg  0.91 0.88 0.89 8636
weighted  0.91 0.91 0.91 8636
avg

Figure 5. Evaluation metrics and confusion matrix related
to Random Forest
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macro avg  0.92 0.88  0.89 8636 1.0 20 3.0
weighted  0.92 092 091 8636 Predicted
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Figure 6. Evaluation metrics and confusion matrix related to MLP

4.2. Experiment 2: Evaluation of Boosting Algorithms

To establish optimal baseline performance, we assessed four boosting
algorithms in the first phase: Gradient Boosting Classifier (GBC), XGBoost,
and Light GBM. These models collectively demonstrated high performance
with an average Accuracy of 92.86%, Precision of 93.31%, Recall of 92.99%,
and F1 Score of 92.55%.

566



Optimization vs Boosting: Comparison of Strategies on Educational Datasets...

Accuracy: 92.86%
Classification Report:

1.0

2.0

3.0

Accuracy

macro avg

weighted
avg

precision

0.96
0.94
0.90

0.94
0.93

recall

0.70
1.00
0.99

0.89
0.93

F1-
score
0.81
0.97
0.94
0.93
0.91
0.92

support

1883
3501
3252
8636
8636
8636

True
20

30

1314 229 340

10 20 10
Predicted

Figure 7. Evaluation metrics and confusion matrix related to GBC
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Figure 8. Evaluation metrics and confusion matrix related to XGBoost
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Figure 10. Evaluation metrics and confusion matrix related to Light GBM
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Table 2. Comparison of outcome of different boosting algorithms based
on their evaluation metrics

Model Accuracy% | Precision% | Recall% | F1
Score%
Gradient Boosting 92.99 93.31 92.99 92.55
XGBoost Model 95.59 0.96 0.96 0.95
Tuned Lightgbm 94.19 94.45 94.20 93.90

The XGBoost model (see Table 2), with a 96% precision and recall,
effectively identifies student statuses (Dropout, At-Risk, Passed). Its high
precision means that when the model predicts a status, it's correct 96% of
the time, leading to a low false positive rate. The 96% recall signifies it finds
96% of all students in each category, resulting in a low false negative rate.
An Fl-score of 95% indicates a strong, reliable balance between these two
metrics, making the model a highly effective tool for identifying student
statuses.

Experiment 2 analyzed the baseline performance of Gradient Boosting
Classifier (GBC), XGBoost, and LightGBM in predictive modeling.
Performance was assessed using accuracy, precision, recall, and F1-score
(Figs. 7, 8, 10), with XGBoost log loss shown in Fig. 9, and LightGBM's
learning curve, ROC curve, and confusion matrix in Figs. 11-12. Table 2
provides a detailed comparison. GBC demonstrated exceptional results,
achieving 92.99% accuracy, 0.9255 Fl-score, 93.31% precision, and 92.99%
recall. Its strong Kappa (0.8898) and MCC (0.8940) values confirmed
reliability and competence with imbalanced data, with a training time of
48.4370 seconds. XGBoost and tuned LightGBM also showed impressive
performance, with F1 scores of 95.59% and 95% respectively, and the tuned
LightGBM reaching 94.19% accuracy and 0.9390 Fl-score. This
demonstrates the effectiveness of GBC, XGBoost, and LightGBM in
predictive modeling, each exhibiting distinct strengths across various
metrics. Experiment 2's results underscore that optimal boosting algorithm
selection depends on specific task requirements and performance objectives
in classification tasks.
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4.3. Experiment 3: Optimization-Based Feature Selection
Followed by Classification

The second stage involved optimizing model performance by selecting the
best possible features. Eight modern optimization techniques identified the
most important features from training data for selection purposes. The
methods used include MRA, AOA, JS, ALO, GWO, WOA, HBO and EO.
The Feature selection process includes: Binary Encoding (each candidate
solution is represented as a binary array where “1” indicates the feature is
selected and “0” indicates exclusion), Fitness Fvaluation (the f measure of
each candidate is computed to assess the quality of the selected feature
subset) and Data Splitting (the dataset is segmented into training,
validation, and testing sets). The training set produces candidate solutions
while the validation set determines convergence, and the testing set provides
final evaluation.

After optimal feature subset identification, SVM with an RBF kernel was
used for classification, ensuring consistent performance comparison before
and after feature selection. Among the optimization methods evaluated
(metrics: accuracy, F-measure, geometric mean, sensitivity, specificity,
precision), GWO and HBO showed superior performance, with GWO
achieving 94.5% accuracy and strong F-measure and geometric mean scores.

5. Comparative analysis and discussion

Tables 3 and 4 present the performance of two distinct strategies for
student performance prediction: Boosting-Based Models (Experiment 2) and
Modern Optimization Methods (Experiment 3).

Boosting-Based Models (Experiment 2), particularly the GBC, excel in
overall predictive accuracy and have been extensively validated using cross-
validation. However, their computational efficiency varies, with AdaBoost
offering a faster training time at a marginal cost to accuracy.

Experiment 3 (Modern optimization methods) focused on using
optimization methods for feature selection, aiming to identify the most
suitable feature subset from student datasets to enhance prediction
capabilities. This process involved comparing the proposed method against
contemporary optimization algorithms (MRA, AOA, JS, ALO, GWO,
WOA, HBO, EO); implementing binary encoding for feature selection, where
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“ones” denote included features and “zeros” represent excluded ones;
evaluating individual fitness within optimization methods using the

f measure; segmenting the dataset into training, validation, and testing

subsets, with optimization methods searching for the best feature subset on

the training set and validating on the validation set until termination criteria

are met; classifying the identified optimal subset using an SVM with an RBF

kernel to ensure fair comparison of performance gains post-feature selection.

Table 3. Comparison of the outcome of different optimization algorithms

Method Accuracy | F_Measure Gmean | German_ Features

Or 74.67 0.73 75.79 360
MRA 91.25 91.32 91.25 177
AOA 60.5 62.02 60.37 255

JS 62 65.77 61.02 275
ALO 93.5 93.33 93.47 181
GWO 94.5 94.27 94.42 159
WOA 89.25 89.49 89.22 266
HBO 94 93.78 93.93 186

EO 91.25 91.23 91.25 188

Table 4. Comparison of outcome of different optimization algorithms

based on sensitivity, specificity and precision

Method Sensitivity Specificity Precision

Or 76.92 74.67 0.36
MRA 92 90.5 90.64
AOA 64.5 56.5 59.72

JS 73 51 59.84
ALO 91 96 95.79
GWO 90.5 98.5 98.37
WOA 91.5 87 87.56
HBO 90.5 97.5 97.31

EO 91 91.5 91.46

The optimization methods were assessed based on accuracy, F-measure,

geometric mean, sensitivity, specificity, and precision. The Grey Wolf
Optimizer (GWO) and Heap-Based Optimizer (HBO) demonstrated superior
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performance in identifying optimal feature subsets, significantly boosting
model performance. GWO achieved 94.5% accuracy along with exceptional
F-measure (94.27) and geometric mean (94.42) scores. HBO reached 94%
accuracy with outstanding F-measure and geometric mean values. Both
methods also effectively minimized false positives, with HBO showing 90.5%
sensitivity and 97.5% specificity, and GWO demonstrating 98.5% specificity.

This research highlights that while boosting algorithms like Gradient
Boosting and AdaBoost offer high accuracy and precision for overall
prediction, optimization methods like GWO and HBO provide unique
approaches to feature selection that significantly enhance model performance
across different scenarios. The integration of a unified classifier (SVM with
an RBF kernel) post-feature selection ensures a fair comparison of
performance gains attributable to feature optimization. Ultimately, the
choice of an appropriate method depends on the specific task requirements
and performance objectives.

This study systematically evaluated machine learning and optimization
strategies across three experiments to predict student achievement.
Experiment 1 assessed baseline machine learning algorithms (LR, DT, RF,
Multi-Layer Perceptron), revealing 12th-grade percentage, CGPA, and
gender as key performance predictors through cross-validation and feature
importance analysis. Experiment 2 utilized boosting algorithms (GBC,
XGBoost, Light GBM). GBC achieved particularly impressive classification
metrics, while XGBoost and tuned LightGBM also demonstrated excellent
accuracy and F1 scores, underscoring the importance of task-specific
boosting method selection. Experiment 3 applied modern optimization
methods for feature selection, notably GWO and HBO, which proved highly
effective in identifying crucial features. These methods delivered superior
accuracy and F-measure when combined with an SVM (RBF kernel)
classifier after feature selection, significantly enhancing model predictions.
Overall, the experiments demonstrate the successful application of both
machine learning algorithms and optimization techniques. While boosting
algorithms deliver enhanced predictive accuracy, optimization-based feature
selection provides additional gains by identifying the most influential
features. Based on experimental findings, the most optimal strategy to
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predict student performance is a combination of boosting algorithms for
precise predictions and optimization-based feature selection methods. This
integrated approach empowers researchers to build stronger, more accurate
predictive models for student outcomes.

6. Implications for Administrative Practice and
Institutional Policy

The XGBoost and GWO-enhanced predictive models are valuable
strategic tools for higher education. They enable a shift from reactive to
proactive, data-driven student support, improving retention and
institutional effectiveness.

The models function as a data-driven triage system, accurately
identifying "at-risk" students and allowing for the proactive allocation of
limited resources like advising and tutoring. This system circumvents the
issue of students being unlikely to seek help themselves. By using objective
data, the models also promote equity, flagging struggling students based on
need rather than social or cultural factors.

Beyond individual student support, these models act as a diagnostic
tool for the institution. Aggregated “at-risk” data can reveal systemic
issues, like “hot spots” in specific courses or programs. This empirical
evidence allows administrators to make fact-based decisions about curricular
reform, faculty development, and policy changes, fostering a dynamic
feedback loop for continuous improvement.

Finally, the models serve as a catalyst for coordinated intervention.
An "at-risk" flag can trigger a multi-departmental workflow, breaking down
institutional silos. This creates a holistic, wraparound support network
where academic advisors, financial aid officers, and student services can work
together to address a student's needs simultaneously, creating a more
responsive and adequate infrastructure for student success.

7. Conclusion

Hybrid machine learning solutions are crucial for accurate student
performance prediction. Our research, spanning multiple experimental
phases, found that XGBoost and similar boosting algorithms deliver superior
accuracy, further optimized by intelligent feature selection techniques like
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GWO and HBO for effective data dimension reduction. The consistent use
of SVM as a classifier facilitated fair performance comparisons. These
findings offer practical insights for educational institutions to identify and
support vulnerable students proactively. Future predictive model
advancements will require integrating real-time student data and ensemble-
based optimization to foster data-driven education.
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