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Abstract. The paper proposes a comprehensive student academic performance 
prediction approach by integrating machine learning with metaheuristic optimization. 
Initial models (Logistic Regression, Decision Tree, Random Forest, MLP) were refined 
using boosting techniques (Gradient Boosting, XGBoost, LightGBM), with XGBoost 
achieving 95.59% accuracy. Eight modern optimization algorithms were applied for 
feature selection to enhance model efficiency and interpretability, with the Grey Wolf 
Optimizer and the Heap-Based Optimizer outperforming others in key metrics. Support 
Vector Machine algorithms applied after feature selection strengthened the predictive 
capability of the selected feature subsets. The research outcomes demonstrate that uniting 
boosting approaches with feature selection algorithms enables the creation of reliable and 
scalable predictive models that detect student success and failure earlier. 

Keywords: Machine Learning; Optimization Algorithms; Educational Data 
Mining; Ensemble Models; Boosting Algorithms.  

1. Introduction 
Student dropout rates significantly challenge higher education's role in 

fostering employment, social equity, and economic growth. Inconsistent 
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definitions and varied calculation methods (Xu & Kim, 2024) lead to 
reporting discrepancies, complicating efforts to implement effective student 
retention strategies. Higher education institutions (HEIs) use several 
monitoring techniques to assess student performance by tracking course 
advancement and analyzing academic standing each semester (Chen et al., 
2014). 

Technological advancements and increased data availability have 
established Educational Data Mining (EDM) as a specialized research field 
(Apriyadi & Rini, 2023). EDM uses data mining techniques to find 
actionable patterns in educational data. Its predictive models analyze 
student performance to help HEIs address dropout risks. However, standard 
predictive techniques still face challenges related to interpretability, 
scalability, and computational efficiency (Shekhar et al., 2020). 

Data preprocessing, specifically feature selection, is crucial for optimizing 
data mining systems by removing redundant and noisy data. This process 
improves algorithm performance and enables classifiers to achieve higher 
accuracy. The two main types of feature selection are: filter methods, which 
are computationally efficient but cannot detect feature dependencies, and 
wrapper methods, like Linear Discriminant Analysis (LDA) and K-Nearest 
Neighbor (KNN), which are more effective at identifying complex 
dependencies but are computationally intensive and thus limited to smaller 
datasets. Identifying the optimal feature subset remains a challenge, as 
efficient search mechanisms (complete, random, or heuristic) risk 
overlooking optimal solutions (Hussain et al., 2020; Farissi et al., 2022; 
Punitha & Devaki, 2024; Ajibade et al., 2019). Heuristic search mechanisms 
offer an effective and efficient framework for problem-solving. Specifically, 
metaheuristic algorithms like Particle Swarm Optimization (PSO) and Ant 
Colony Optimization (ACO) demonstrate exceptional capability in feature 
selection. By replicating natural processes and employing probabilistic rules, 
these algorithms efficiently navigate large parameter spaces and escape local 
optima, making them well-suited for complex, high-dimensional datasets. 
This enables improved feature selection quality and more effective predictive 
models, particularly in applications like student performance prediction 
(Kukkar et al., 2023; Kukkar et al., 2024). 
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Using data to boost student retention is a key goal for university 
administrators. However, the sheer volume of student data can be 
overwhelming, requiring advanced tools to identify and help at-risk students 
proactively. 

This study presents an integrated solution combining Machine Learning 
(ML) and metaheuristic methods to predict student academic performance. 
It equips teachers, administrators, and policymakers with a predictive tool 
for tracking at-risk students and implementing effective interventions. Such 
a tool transforms large-scale student data into actionable intelligence, 
enabling the strategic allocation of support services and the timely 
implementation of targeted interventions designed to improve student 
outcomes and reduce attrition. The proposed EDM approach addresses 
current deficiencies, providing a comprehensive framework for fostering 
academic success and reducing dropout rates in HEIs. To achieve this, the 
research focused on developing an accurate predictive analytics model using 
historical academic and demographic data; applying advanced data 
preprocessing techniques for improved data quality; implementing a range 
of advanced ML algorithms (Logistic Regression (LR), Decision Tree (DT), 
Random Forest (RF), XGBoost, LightGBM) and metaheuristic techniques 
(Mud Ring Algorithm (MRA), Archimedes Optimization (AO), Jellyfish 
Search (JS), Ant Lion Optimizer (ALO), Grey Wolf Optimizer (GWO), 
Whale Optimization Algorithm (WOA), Heap-Based Optimizer (HO), 
Equilibrium Optimizer (EO)) to enhance prediction accuracy, conducting 
feature selection and importance analysis using RF; identifying 12th-grade 
percentage, CGPA, and gender as key predictors; performing a comparative 
analysis of boosting versus optimization techniques for feature selection to 
improve classifier efficiency and predictive accuracy; utilizing data 
visualization (histograms, heatmaps) to analyze patterns and relationships; 
statistically validating findings through cross-validation and comparisons 
with state-of-the-art methods; ensuring the model is computationally 
efficient and scalable for diverse educational datasets; providing data-driven 
insights for targeted interventions to improve learning outcomes. 
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The paper's structure includes Related Work (Section 2), Proposed 
Methodology (Section 3), Experimental Results (Section 4), Discussion 
(Section 5), and Conclusion (Section 6). 

2. Related work  
Ma (2024) enhanced student performance prediction by optimizing an 

RF Classifier with Electric Charged Particles Optimization (ECPO) and 
Artificial Rabbits Optimization. Analyzing 4,424 student records, their 
optimized model demonstrated higher predictive precision and better 
alignment with actual values, proving bio-inspired algorithms effective for 
educational decision-making. 

Thaher et al. (2021) developed a Student Performance Predictive model 
using an enhanced WOA (EWOA) for automatic feature selection. Their 
approach integrated the Sine Cosine Algorithm, a Logistic Chaotic Map, 
and an Adaptive Synthetic Sampling to address data imbalances. This 
method, particularly with LDA, showed superior reliability and enhanced 
prediction accuracy compared to other classifiers and feature selection 
methods on real educational datasets. 

Hasheminejad & Sarvmili (2019) introduced S3PSO, a discrete PSO 
method for forecasting student outcomes via rule-based prediction. Using 
Support, Confidence, and Comprehensibility metrics, S3PSO generated 
understandable rules from the Moodle dataset, achieving a 31% fitness 
improvement over standard methods like CART, C4.5, and ID3. It also 
outperformed benchmark algorithms (Support Vector Machine (SVM), 
KNN, Naive Bayes (NB), Neural Networks (NN), APSO) by 9% in student 
performance forecasting accuracy. 

Turabieh et al. (2021) developed HHO-based dynamic controllers with 
KNN clustering to overcome early stagnation and local minima in student 
performance feature selection. Their HHO-enhanced model, particularly 
with Layered Recurrent NN and Artificial NN (ANN), achieved the highest 
accuracy on UCI data for early prediction of student outcomes. 

Song (2024) integrated KNN with Honey Badger Optimization (HBO) 
and the Arithmetic Optimization Algorithm (AOA) to create the KNHB 
prediction system. This model excelled in both prediction and classification 
tasks for G1 and G3 datasets, demonstrating high accuracy (0.921) and 
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precision (0.92) for G3. The KNHB model also demonstrated exceptional 
precision as a G1 value forecaster, with accuracy and precision scores of 
0.899 and 0.90, respectively, in the prediction phase. 

Ren & He (2024) enhanced a NB model for student performance 
prediction using Leader Harris Hawk’s Optimization and Alibaba and the 
Forty Thieves Algorithm. Their model achieved 0.891 accuracy and 
substantial precision, recall, and F1-scores, outperforming other tested 
models and improving student support. The improvement in prediction 
precision achieved through these methods helps educational institutions 
deliver better student support and improve academic results. 

Hai & Wang (2024) improved Multilayer Perceptron Classification 
(MLPC) for student performance prediction by combining the Pelican 
Optimization Algorithm and the Crystal Structure Algorithm. Their 
MLPO2 approach, using appropriate fine-tuning and preprocessing, 
achieved a 95.78% success rate and effectively handled class imbalance and 
high dimensionality. 

Li & He (2024) applied ML dimensionality reduction and optimized an 
Extra-Trees Classifier with Gorilla Troops Optimizer and Reptile Search 
Algorithm for student success prediction. Their ETRS model achieved 97.5% 
accuracy in G1 mathematics course prediction, demonstrating the promise 
of bio-inspired optimization for educational outcomes. 

Goran et al. (2024) used metaheuristic optimization with a modified Sinh 
Cosh Optimizer to enhance Adaptive Boosting (AdaBoost) and XGBoost 
for student dropout risk prediction. Their approach demonstrated superior 
performance on real-world binary and multi-class datasets, with SHAP and 
SAGE explainability methods identifying key dropout triggers for targeted 
retention programs. 

Cheng et al. (2024) evaluated various ML techniques (RF, DT, KNN, 
MLP, XGBoost) and ANNs for student performance prediction. Their 
SVM–SMOTE data- balancing process significantly improved results, with 
an Enhanced Artificial Ecosystem-Based Optimization + XGBoost hybrid 
model achieving 0.9417 accuracy and a 0.9413 F1-score, confirming the 
success of combining ML with metaheuristics for precise student 
performance prediction. 
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Figure 1. Percentage Distribution of the Identified Research Gaps 

 
Previous studies often neglected student demographic and socioeconomic 

factors, used limited datasets, and inadequately addressed missing values, 
outliers, and feature engineering (see Fig. 1). In contrast, the current study 
utilizes a diverse dataset encompassing enrollment, 10th/12th-grade scores, 
demographics (gender, caste), and specialized program information. To 
ensure strong model foundations, we establish a robust data preprocessing 
pipeline, including categorical encoding, missing-value imputation, and IQR-
based outlier detection. While prior research frequently employed NB, DT, 
RF, and some bio-inspired algorithms for optimization, our investigation 
specifically examines the predictive excellence of AdaBoost and Gradient 
Boosting. Furthermore, unlike studies using metaheuristic algorithms (e.g., 
ECPO, WO, ACO) for feature selection without explaining feature 
importance, this work utilizes Random Forest for feature importance 
analysis, identifying 12th-grade percentage, CGPA, and gender as the most 
influential predictors. The issue of imbalanced class distribution—often 
inadequately addressed in related works, leading to biased outcomes—is 
resolved in our method through SVM–SMOTE, improving recall and F1-
scores. Recognizing the computational intensity of some metaheuristic 
optimization techniques (e.g., Jellyfish Search, HBO) that limit their 
application to large datasets, our research prioritizes computational 
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efficiency and scalability through performance evaluation and training time 
measurements. Finally, while current models struggle to identify key 
performance factors and lack direct comparative analysis between popular 
ML and metaheuristic optimization techniques, our study performs an 
extensive comparative analysis. In essence, the research fills these gaps by 
integrating extensive datasets, advanced preprocessing, optimized ML 
models, metaheuristic-based feature selection and classification with class 
balancing, and efficiency checks. These enhancements yield predictive 
models with improved accuracy, interpretability, and scalability for student 
academic performance assessment. 

3. Proposed methodology 
This study develops a robust predictive model for student academic 

performance by integrating diverse historical academic and demographic 
data obtained from educational institutions. The process involves dataset 
description, data preprocessing, experimental setup, model development, 
performance evaluation, and comparative analysis. 

3.1. Dataset description 
The dataset, provided by multiple educational institutions, comprises 19 

numerical and 17 categorical features. It includes academic performance 
metrics like 10th and 12th standard examination scores and CGPA, 
alongside demographic details (gender, caste), program-specific data (major 
and minor subjects), and institutional identifiers (enrollment number, college 
name). Table 1 provides a detailed description of the attributes. 

Table 1. Feature descriptions 

Feature Description 
ENROLLMENT Unique enrollment number of each student. 

Programme The program the student is enrolled in, such as B.A. 
College Name The name of the college. 

MAJOR The major subject chosen by the student, such as 
Education. 

MINOR The minor subject chosen by the student, such as 
Sociology or Political Science. 

GENDER Gender of the student: MALE or FEMALE. 
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Feature Description 
AGE Age of the student, expressed in years, months, and days. 

CASTE The caste of the student: UR (Unreserved), ST (Scheduled 
Tribes), SC (Scheduled Castes), OBC (Other Backward 

Class)  
X PASSING 

YEAR 
The year the student passed their 10th standard 

examination. 
X 

PERCENTAGE 
Percentage scored in the 10th standard examination. 

XII PASSING 
YEAR 

The year the student passed their 12th standard 
examination. 

XII STREAM The stream chosen by the student in the 12th standard 
examination. 

XII MAXIMUM 
MARKS 

The maximum possible marks in the 12th standard 
examination. 

XII MARKS 
OBTAINED 

Marks obtained by the student in the 12th standard 
examination. 

XII 
PERCENTAGE 

The percentage scored in the 12th standard examination. 

XII SUB 1, MAX 
MARK 1, 

OBTAINED 
MARK 1 

Subject, maximum marks, and obtained marks for the first 
subject in the 12th standard. 

XII SUB 2, MAX 
MARK 2, 

OBTAINED 
MARK 2 

Subject, maximum marks, and obtained marks for the 
second subject in the 12th standard. 

XII SUB 3, MAX 
MARK 3, 

OBTAINED 
MARK 3 

Subject, maximum marks, and obtained marks for the 
third subject in the 12th standard. 

XII SUB 4, MAX 
MARK 4, 

OBTAINED 
MARK 4 

Subject, maximum marks, and obtained marks for the 
fourth subject in the 12th standard. 

XII SUB 5, MAX 
MARK 5, 

Subject, maximum marks, and obtained marks for the fifth 
subject in the 12th standard. 
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Feature Description 
OBTAINED 

MARK 5 
XII SUB 6, MAX 

MARK 6, 
OBTAINED 

MARK 6 

Subject, maximum marks, and obtained marks for the 
sixth subject in the 12th standard. 

CGPA Cumulative Grade Point Average of the student. 
STATUS Status of the student, which can be 1, 2, or 3. 

Status 1 means dropout 2 means at-risk students, and 3 
means passed students. 

3.2. Data Preprocessing 
The accuracy of predictions depends heavily on maintaining data quality. 

The preprocessing steps include: 
– Handling Missing Values: The imputation method was used to 
handle missing values while preserving the complete dataset structure. 
– Categorical Encoding: Variables such as gender and caste were 
transformed using One-Hot Encoding to convert them into a numerical 
format suitable for machine learning algorithms. 
– Outlier Detection and Adjustment: Outliers were identified using the 
Interquartile Range (IQR) method. Data points with zeros or 
unusually high values (e.g., in “XII MAXIMUM MARKS” or CGPA) 
were carefully reviewed and adjusted to mitigate the effects of data 
entry errors. 
– Feature Engineering: New attributes (e.g., average subject marks) 
were generated to help the model capture a more holistic view of a 
student's academic performance beyond individual grades. 

In addition to creating new attributes, the process also involved 
standardizing existing numerical features to ensure they are on a comparable 
scale for the machine learning algorithms and numerical features were 
standardized using techniques such as StandardScaler. Fig. 2 depicts a 
feature importance plot. 
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Figure 2. Feature Importance Plot 

3.3. Data Visualisation and Reporting 
To support interpretability and assess model performance, various 

visualization techniques were utilized.  
A Confusion Matrix illustrates true versus false classifications for the 

best-performing models. In a multi-class problem like this one (with classes: 
Dropout, At-Risk, Passed), the matrix is an n × n table, where 'n' is the 
number of classes. Typically, each row represents the actual class, while each 
column represents the predicted class. The cells along the main diagonal 
show the number of correct predictions, where the predicted class matches 
the actual class. The cells off the diagonal show the errors or 
misclassifications. 

To calculate performance metrics for a multi-class model, each class is 
typically evaluated in a “one-vs-all” manner. For any given class, we can 
define four basic outcomes: True Positive (TP), True Negative (TN), 
False Positive (FP), and False Negative (FN). These four outcomes 
are used to calculate several key metrics that measure a model's performance 
from different perspectives: Accuracy (measures the proportion of all 
predictions that the model got right – calculated as the sum of all correct 
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predictions (the diagonal) divided by the total number of predictions), 
Precision (measures the accuracy of the positive predictions - Precision = 
TP / (TP + FP)), Recall (measures the model's ability to find all relevant 
instances of a class – Recall = TP / (TP + FN)), F1-Score (provides a 
single score that balances both precision and recall - F1-Score = 2 * 
(Precision * Recall) / (Precision + Recall)), Geometric Mean (useful for 
imbalanced datasets because it measures the balance between the 
classification performance on both the majority and minority classes – 
calculated as the root of the product of the sensitivity (recall) of each class), 
Matthews Correlation Coefficient (MCC) (considered a very reliable 
evaluation metric because it produces a high score only if the prediction did 
well in all four categories (TP, TN, FP, FN) – its value ranges from −1 to 
+1, where +1 indicates a perfect prediction, 0 represents a random 
prediction, and −1 indicates a total disagreement between prediction and 
observation), Log Loss (measures the difference between the predicted 
probabilities and the actual outcomes, penalizing the model more heavily for 
being confident in an incorrect prediction - for this metric, a lower value is 
better, with a perfect model having a log loss of 0).  

ROC Curves evaluate the trade-offs between sensitivity and specificity. 
Training and Validation Graphs allow monitoring model convergence 

over epochs or iterations. 
Comparison Tables visually represent the impact of each model compared 

to other techniques. 

4. Experimental setup and model development 
To ensure a robust evaluation of the predictive models, the experimental 

process was divided into two main phases. 
4.1. Experiment 1: Evaluation of baseline Machine Learning 

algorithms 
We implemented LR, DT, RF, and Multi-Layer Perceptron as baseline 

models for comparative analysis and robust results. Ten-fold cross-validation 
ensured reliability, while RF-based feature importance analysis identified 
12th-grade percentage, CGPA, and gender as key predictors of student 
performance. These predictors serve as key indicators that can help 
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institutions identify students who may be at risk of falling behind. Detailed 
results are presented in Figs. 3–6. 

Accuracy: 60.43% 
Classification Report: 

 precision recall F1-
score 

support 

1.0 0.59 0.01 0.02 1883 
2.0 0.57 0.81 0.67 3501 
3.0 0.65 0.73 0.69 3252 

accuracy   0.60 8636 
macro avg  0.61 0.52 0.46 8636 
weighted 

avg 
0.61 0.60 0.53 8636 

 

 

Figure 3. Evaluation metrics and confusion matrix  
related to logistic regression 

The experimental process comprised three main phases, with Experiment 
1 dedicated to evaluating baseline models. Ten-fold cross-validation was 
meticulously employed to ensure robust results and a reliable model 
evaluation framework. 

Accuracy: 88.83% 
Classification Report: 

 precision recall F1-
score 

support 

1.0 0.73 0.77 0.75 1883 
2.0 0.94 0.93 0.93 3501 
3.0 0.93 0.92 0.92 3252 

Accuracy   0.89 8636 
macro avg  0.87 0.87 0.87 8636 
weighted 

avg 
0.89 0.89 0.89 8636 

 

 

Figure 4. Evaluation metrics and confusion matrix related  
to the decision tree 

One of the noteworthy outcomes of this study was the identification of 
influential predictors of student performance through feature importance 
analysis, particularly using the Random Forest (RF) algorithm. The feature 
importance analysis, using RF, revealed 12th-grade percentage, CGPA, and 
gender as key predictors of student performance, highlighting their 
significance for predictive models. We evaluated LR, DT, RF Classifier, and 
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Multi-Layer Perceptron: while LR and DT offered interpretability, RF and 
Multi-Layer Perceptron achieved higher predictive accuracy. This study 
underscores the importance of selecting optimal algorithms and feature 
combinations for accurate student performance evaluation in educational 
predictive modeling. 

 
Accuracy: 91.15% 
Classification Report: 

 precision recall F1-
score 

support 

1.0 0.88 0.68 0.77 1883 
2.0 0.94 1.00 0.97 3501 
3.0 0.89 0.95 0.92 3252 

accuracy   0.91 8636 
macro avg 0.91 0.88 0.89 8636 
weighted 

avg 
0.91 0.91 0.91 8636 

 

 

Figure 5. Evaluation metrics and confusion matrix related  
to Random Forest 

Accuracy: 91.67% 
Classification Report: 

 precisio
n 

recal
l 

F1-score suppor
t 

1.0 0.93 0.67 0.78 1883 
2.0 0.94 1.00 0.97 3501 
3.0 0.89 0.97 0.93 3252 

accuracy   0.92 8636 
macro avg  0.92 0.88 0.89 8636 
weighted 

avg 
0.92 0.92 0.91 8636 

 

 

Figure 6. Evaluation metrics and confusion matrix related to MLP 

4.2. Experiment 2: Evaluation of Boosting Algorithms 
To establish optimal baseline performance, we assessed four boosting 

algorithms in the first phase: Gradient Boosting Classifier (GBC), XGBoost, 
and LightGBM. These models collectively demonstrated high performance 
with an average Accuracy of 92.86%, Precision of 93.31%, Recall of 92.99%, 
and F1 Score of 92.55%. 
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Accuracy: 92.86% 
Classification Report: 

 precision recall F1-
score 

support 

1.0 0.96 0.70 0.81 1883 
2.0 0.94 1.00 0.97 3501 
3.0 0.90 0.99 0.94 3252 
Accuracy   0.93 8636 
macro avg  0.94 0.89 0.91 8636 
weighted 
avg 

0.93 0.93 0.92 8636 

 

Figure 7. Evaluation metrics and confusion matrix related to GBC 

Accuracy: 95.59% 
Classification Report: 

 precision recall F1-
score 

support 

1.0 0.99 0.80 0.89 1883 
2.0 0.94 1.00 0.97 3501 
3.0 0.96 1.00 0.98 3252 

accuracy   0.96 8636 
macro avg  0.96 0.93 0.94 8636 
weighted 

avg 
0.96 0.96 0.95 8636 

 
 

 

Figure 8. Evaluation metrics and confusion matrix related to XGBoost 

 
Figure 9. XGBoost Log Loss 
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Accuracy: 93.86% 
Classification Report: 

 precision recall F1-
score 

support 

1.0 0.97 0.74 0.84 1883 
2.0 0.94 1.00 0.97 3501 
3.0 0.93 0.99 0.96 3252 

accuracy   0.94 8636 
macro avg  0.94 0.91 0.92 8636 
weighted 

avg 
0.94 0.94 0.94 8636 

 

 

Figure 10. Evaluation metrics and confusion matrix related to LightGBM 

  
Figure 11. Learning Curve and ROC Curve for LightGBM 

 
Figure 12. Confusion Matrix for LightGBM 
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Table 2. Comparison of outcome of different boosting algorithms based 
on their evaluation metrics 

Model Accuracy% Precision% Recall% F1 
Score% 

Gradient Boosting 92.99 93.31 92.99 92.55 
XGBoost Model 95.59 0.96 0.96 0.95 
Tuned Lightgbm 94.19 94.45 94.20 93.90 
 
The XGBoost model (see Table 2), with a 96% precision and recall, 

effectively identifies student statuses (Dropout, At-Risk, Passed). Its high 
precision means that when the model predicts a status, it's correct 96% of 
the time, leading to a low false positive rate. The 96% recall signifies it finds 
96% of all students in each category, resulting in a low false negative rate. 
An F1-score of 95% indicates a strong, reliable balance between these two 
metrics, making the model a highly effective tool for identifying student 
statuses. 

Experiment 2 analyzed the baseline performance of Gradient Boosting 
Classifier (GBC), XGBoost, and LightGBM in predictive modeling. 
Performance was assessed using accuracy, precision, recall, and F1-score 
(Figs. 7, 8, 10), with XGBoost log loss shown in Fig. 9, and LightGBM's 
learning curve, ROC curve, and confusion matrix in Figs. 11-12. Table 2 
provides a detailed comparison. GBC demonstrated exceptional results, 
achieving 92.99% accuracy, 0.9255 F1-score, 93.31% precision, and 92.99% 
recall. Its strong Kappa (0.8898) and MCC (0.8940) values confirmed 
reliability and competence with imbalanced data, with a training time of 
48.4370 seconds. XGBoost and tuned LightGBM also showed impressive 
performance, with F1 scores of 95.59% and 95% respectively, and the tuned 
LightGBM reaching 94.19% accuracy and 0.9390 F1-score. This 
demonstrates the effectiveness of GBC, XGBoost, and LightGBM in 
predictive modeling, each exhibiting distinct strengths across various 
metrics. Experiment 2's results underscore that optimal boosting algorithm 
selection depends on specific task requirements and performance objectives 
in classification tasks. 
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4.3. Experiment 3: Optimization-Based Feature Selection 
Followed by Classification 

The second stage involved optimizing model performance by selecting the 
best possible features. Eight modern optimization techniques identified the 
most important features from training data for selection purposes. The 
methods used include MRA, AOA, JS, ALO, GWO, WOA, HBO and EO. 
The Feature selection process includes: Binary Encoding (each candidate 
solution is represented as a binary array where “1” indicates the feature is 
selected and “0” indicates exclusion), Fitness Evaluation (the f_measure of 
each candidate is computed to assess the quality of the selected feature 
subset) and Data Splitting (the dataset is segmented into training, 
validation, and testing sets). The training set produces candidate solutions 
while the validation set determines convergence, and the testing set provides 
final evaluation. 

After optimal feature subset identification, SVM with an RBF kernel was 
used for classification, ensuring consistent performance comparison before 
and after feature selection. Among the optimization methods evaluated 
(metrics: accuracy, F-measure, geometric mean, sensitivity, specificity, 
precision), GWO and HBO showed superior performance, with GWO 
achieving 94.5% accuracy and strong F-measure and geometric mean scores. 

5. Comparative analysis and discussion 
Tables 3 and 4 present the performance of two distinct strategies for 

student performance prediction: Boosting-Based Models (Experiment 2) and 
Modern Optimization Methods (Experiment 3). 

Boosting-Based Models (Experiment 2), particularly the GBC, excel in 
overall predictive accuracy and have been extensively validated using cross-
validation. However, their computational efficiency varies, with AdaBoost 
offering a faster training time at a marginal cost to accuracy. 

Experiment 3 (Modern optimization methods) focused on using 
optimization methods for feature selection, aiming to identify the most 
suitable feature subset from student datasets to enhance prediction 
capabilities. This process involved comparing the proposed method against 
contemporary optimization algorithms (MRA, AOA, JS, ALO, GWO, 
WOA, HBO, EO); implementing binary encoding for feature selection, where 
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“ones” denote included features and “zeros” represent excluded ones; 
evaluating individual fitness within optimization methods using the 
f_measure; segmenting the dataset into training, validation, and testing 
subsets, with optimization methods searching for the best feature subset on 
the training set and validating on the validation set until termination criteria 
are met; classifying the identified optimal subset using an SVM with an RBF 
kernel to ensure fair comparison of performance gains post-feature selection. 

Table 3. Comparison of the outcome of different optimization algorithms 

Method Accuracy F_Measure Gmean German_Features 
Or 74.67 0.73 75.79 360 

MRA 91.25 91.32 91.25 177 
AOA 60.5 62.02 60.37 255 
JS 62 65.77 61.02 275 

ALO 93.5 93.33 93.47 181 
GWO 94.5 94.27 94.42 159 
WOA 89.25 89.49 89.22 266 
HBO 94 93.78 93.93 186 
EO 91.25 91.23 91.25 188 

Table 4. Comparison of outcome of different optimization algorithms 
based on sensitivity, specificity and precision 

Method Sensitivity Specificity Precision 
Or 76.92 74.67 0.36 

MRA 92 90.5 90.64 
AOA 64.5 56.5 59.72 
JS 73 51 59.84 

ALO 91 96 95.79 
GWO 90.5 98.5 98.37 
WOA 91.5 87 87.56 
HBO 90.5 97.5 97.31 
EO 91 91.5 91.46 

 
The optimization methods were assessed based on accuracy, F-measure, 

geometric mean, sensitivity, specificity, and precision. The Grey Wolf 
Optimizer (GWO) and Heap-Based Optimizer (HBO) demonstrated superior 
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performance in identifying optimal feature subsets, significantly boosting 
model performance. GWO achieved 94.5% accuracy along with exceptional 
F-measure (94.27) and geometric mean (94.42) scores. HBO reached 94% 
accuracy with outstanding F-measure and geometric mean values. Both 
methods also effectively minimized false positives, with HBO showing 90.5% 
sensitivity and 97.5% specificity, and GWO demonstrating 98.5% specificity. 

This research highlights that while boosting algorithms like Gradient 
Boosting and AdaBoost offer high accuracy and precision for overall 
prediction, optimization methods like GWO and HBO provide unique 
approaches to feature selection that significantly enhance model performance 
across different scenarios. The integration of a unified classifier (SVM with 
an RBF kernel) post-feature selection ensures a fair comparison of 
performance gains attributable to feature optimization. Ultimately, the 
choice of an appropriate method depends on the specific task requirements 
and performance objectives. 

This study systematically evaluated machine learning and optimization 
strategies across three experiments to predict student achievement. 
Experiment 1 assessed baseline machine learning algorithms (LR, DT, RF, 
Multi-Layer Perceptron), revealing 12th-grade percentage, CGPA, and 
gender as key performance predictors through cross-validation and feature 
importance analysis. Experiment 2 utilized boosting algorithms (GBC, 
XGBoost, LightGBM). GBC achieved particularly impressive classification 
metrics, while XGBoost and tuned LightGBM also demonstrated excellent 
accuracy and F1 scores, underscoring the importance of task-specific 
boosting method selection. Experiment 3 applied modern optimization 
methods for feature selection, notably GWO and HBO, which proved highly 
effective in identifying crucial features. These methods delivered superior 
accuracy and F-measure when combined with an SVM (RBF kernel) 
classifier after feature selection, significantly enhancing model predictions. 
Overall, the experiments demonstrate the successful application of both 
machine learning algorithms and optimization techniques. While boosting 
algorithms deliver enhanced predictive accuracy, optimization-based feature 
selection provides additional gains by identifying the most influential 
features. Based on experimental findings, the most optimal strategy to 
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predict student performance is a combination of boosting algorithms for 
precise predictions and optimization-based feature selection methods. This 
integrated approach empowers researchers to build stronger, more accurate 
predictive models for student outcomes. 

6. Implications for Administrative Practice and 
Institutional Policy 

The XGBoost and GWO-enhanced predictive models are valuable 
strategic tools for higher education. They enable a shift from reactive to 
proactive, data-driven student support, improving retention and 
institutional effectiveness. 

The models function as a data-driven triage system, accurately 
identifying "at-risk" students and allowing for the proactive allocation of 
limited resources like advising and tutoring. This system circumvents the 
issue of students being unlikely to seek help themselves. By using objective 
data, the models also promote equity, flagging struggling students based on 
need rather than social or cultural factors. 

Beyond individual student support, these models act as a diagnostic 
tool for the institution. Aggregated “at-risk” data can reveal systemic 
issues, like “hot spots” in specific courses or programs. This empirical 
evidence allows administrators to make fact-based decisions about curricular 
reform, faculty development, and policy changes, fostering a dynamic 
feedback loop for continuous improvement. 

Finally, the models serve as a catalyst for coordinated intervention. 
An "at-risk" flag can trigger a multi-departmental workflow, breaking down 
institutional silos. This creates a holistic, wraparound support network 
where academic advisors, financial aid officers, and student services can work 
together to address a student's needs simultaneously, creating a more 
responsive and adequate infrastructure for student success. 

7. Conclusion 
Hybrid machine learning solutions are crucial for accurate student 

performance prediction. Our research, spanning multiple experimental 
phases, found that XGBoost and similar boosting algorithms deliver superior 
accuracy, further optimized by intelligent feature selection techniques like 
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GWO and HBO for effective data dimension reduction. The consistent use 
of SVM as a classifier facilitated fair performance comparisons. These 
findings offer practical insights for educational institutions to identify and 
support vulnerable students proactively. Future predictive model 
advancements will require integrating real-time student data and ensemble-
based optimization to foster data-driven education. 
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