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ОЙЛЕРОВА ПРАВА И ОЙЛЕРОВА КРИВА 
НА ВПИСАН МНОГОЪГЪЛНИК В КОНИЧНО 

СЕЧЕНИЕ 
Веселин Ненков, Даниел Ангелов

Технически колеж – Ловеч

Резюме. В статията се проследява последователното развитие на идеята за 
определяне на понятията Ойлерова права и Ойлерова окръжност на вписан в 
окръжност многоъгълник, която по естествен начин води до конструкция на 
Ойлерова права и Ойлерова крива за вписан в конично сечение многоъгълник. 
Изследванията на различните конфигурации са подпомогнати с програмния 
продукт THE GEOMETER’S SKETCHPAD (GSP).

Keywords: conic, center of gravity, orthocenter, polygon, Euler line, Euler 
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1. Увод
Познатите Ойлерова права и Ойлерова окръжност на триъгълника прите-

жават много свойства, свързани с триъгълника, на който принадлежат, както 
и с други фигури вследствие фрагментирането им на триъгълници. Някои та-
кива свойства се изразяват с теоремата на Шифлер за конкурентност на Ойле-
рови прави, теоремата на Фойербах за допиране на Ойлеровата окръжност с 
вписаните в триъгълника окръжности и теоремата за конкурентност на Ойле-
ровите окръжности на четирите триъгълника, които се получават от страните 
и диагоналите на четириъгълник. Тези свойства, от своя страна, обогатяват 
геометрията на триъгълника и другите геометрични фигури, в които са вклю-
чени съответните Ойлерови прави и Ойлерови окръжности.

Ойлерова права и Ойлерова окръжност притежава и вписаният в окръж-
ност n -ъгълник ( )4n ≥ . Може би, тъй като не са известни много свойства на 
тези забележителни права и окръжност, те не са достатъчно популярни. Освен 
това конструирането на правата и окръжността на Ойлер при увеличаване на 
n  става все по-трудно за извършване с класическите инструменти линийка и 
пергел. С помощта на някои от съвременните компютърни софтуерни сред-
ства конструирането и изследването на по-сложни геометрични обекти може 
значително да се опрости и улесни. Такъв софтуерен продукт е например  
THE GEOMETER’S SKETCHPAD (GSP). С помощта на GSP могат не само да се 
построяват споменатите права и окръжност при различни стойности на 4n ≥ , 
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но те могат да се обобщят и в по-сложни конфигурации, получаващи се при 
замяна на описаната около n -ъгълника окръжност с описано конично сече-
ние. С помощта на динамичните възможности на GSP могат да се изследват 
получените конструкции и да се открият зависимости, които да подскажат 
идеи за доказване на наблюдаваните свойства.

Като използваме възможностите на GSP, в следващите редове ще покажем 
как понятията Ойлерова права и Ойлерова окръжност могат да се обобщят за 
вписан в конично сечение n -ъгълник ( )3n ≥ . Преди това обаче накратко ще 
припомним понятията Ойлерова права и Ойлерова окръжност за триъгълник. 
След това по аналогия ще определим основните понятия, необходими за кон-
струирането на Ойлерова права и Ойлерова окръжност на вписан в окръж-
ност n -ъгълник ( )4n ≥ .

2. Ойлерова права и Ойлерова окръжност на триъгълник. Нека 1 2 3A A A  
е произволен неравностранен триъгълник, а O , H  и G  са центърът на опи-
саната окръжност, ортоцентърът и центърът на тежестта на 1 2 3A A A∆ . Точките 
O , G  и H  лежат на една права, която се нарича права на Ойлер за 1 2 3A A A∆  
(фиг. 1). Освен това са изпълнени равенствата

( )1 	 ( )1 2 3
1
3

OG OA OA OA= + +
   

,

( )2 	 3.OH OG=
 

.
(Равенството ( )1  е изпълнено и когато O  е произволна точка в простран-

ството.)

лежат на една права, която се нарича права на Ойлер за 1 2 3A A A  (фиг. 1). Освен това са 
изпълнени равенствата 

 1   1 2 3
1
3

OG OA OA OA   , 

 2  3.OH OG . 
(Равенството  1  е изпълнено и когато O  е произволна точка в пространството.) 

 
Ако 12M , 23M  и 31M  са средите съответно на страните 1 2A A , 2 3A A  и 3 1A A , а 1H , 

2H  и 3H  са петите на височините съответно през върховете 1A , 2A  и 3A , то точките 

12M , 23M , 31M , 1A , 2A  и 3A  лежат на окръжност с център E , която се нарича 
окръжност на Ойлер за 1 2 3A A A  (фиг. 1). Освен това са изпълнени равенствата 

 3  1
2

GE GO  , 

 4  1
2

HE HO . 

От  3  и  4  следва, че центърът E  на Ойлеровата окръжност лежи върху правата на 
Ойлер. Освен това от  3  и  4  следва, че G  и H  са центрове на хомотетия за 
описаната и Ойлеровата окръжности. 
3. Ойлерова права и Ойлерова окръжност на вписан в окръжност многоъгълник. 
Преди да покажем по какъв начин се получават Ойлеровата права и Ойлеровата 
окръжност, е необходимо да определим понятията център на тежестта и ортоцентър на 
вписан многоъгълник като аналози на съответните понятия от геометрията на 
триъгълника. 

3.1. Център на тежестта. Центърът на тежестта G  на 1 2 3A A A  е пресечната 
точка на правите, свързващи върховете 1A , 2A  и 3A  с центровете на тежестта на 
съответните им срещуположни страни 2 3A A , 3 1A A  и 1 2A A . За G  е изпълнено 
равенството  1 . Аналогично, с помощта на GSP, можем да свържем върховете 1A , 2A , 

3A  и 4A  на четириъгълника 1 2 3 4A A A A  с центровете на тежестта 1G , 2G , 3G  и 4G  
съответно на триъгълниците 2 3 4A A A , 3 4 1A A A , 4 2 1A A A  и 1 2 3A A A  (фиг. 2). Установяваме, 
че правите 1 1AG , 2 2A G , 3 3A G  и 4 4A G  минават през една точка G . С помощта на  1  

Фигура 
1 

Фигура 1

Ако 12M , 23M  и 31M  са средите съответно на страните 1 2A A , 2 3A A  и 
3 1A A , а 1H , 2H  и 3H  са петите на височините съответно през върховете 1A , 
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A2 и A3, то точките M12, M23, M31, A1, A2  и A3 лежат на окръжност с център E,  
която се нарича окръжност на Ойлер за 1 2 3A A A∆  (фиг. 1). Освен това са из-
пълнени равенствата

( )3 	
1
2

GE GO= −
 

,

( )4 	
1
2

HE HO=
 

.

От ( )3  и ( )4  следва, че центърът E  на Ойлеровата окръжност лежи върху 
правата на Ойлер. Освен това от ( )3  и ( )4  следва, че G  и H  са центрове на 
хомотетия за описаната и за Ойлеровата окръжност.

3. Ойлерова права и Ойлерова окръжност на вписан в окръжност мно-
гоъгълник. Преди да покажем по какъв начин се получават Ойлеровата права 
и Ойлеровата окръжност, е необходимо да определим понятията център на 
тежестта и ортоцентър на вписан многоъгълник като аналози на съответните 
понятия от геометрията на триъгълника.

3.1. Център на тежестта. Центърът на тежестта G  на 1 2 3A A A∆  е пресеч- 
ната точка на правите, свързващи върховете 1A , 2A  и 3A  с центровете на те-
жестта на съответните им срещуположни страни 2 3A A , 3 1A A  и 1 2A A . За G  
е изпълнено равенството ( )1 . Аналогично с помощта на GSP можем да свър-
жем върховете 1A , 2A , 3A  и 4A  на четириъгълника 1 2 3 4A A A A  с центровете 
на тежестта 1G , 2G , 3G  и 4G  съответно на триъгълниците 2 3 4A A A , 3 4 1A A A , 

4 2 1A A A  и 1 2 3A A A  (фиг. 2). Установяваме, че правите 1 1AG , 2 2A G , 3 3A G  и 
4 4A G  минават през една точка G . С помощта на ( )1  получаваме и вектор-

ното равенство ( )1 2 3 4
1
4

OG OA OA OA OA= + + +
    

 при произволна точка O  
в пространството. Получената по този начин точка G  наричаме център на 
тежестта (медицентър) на четириъгълника 1 2 3 4A A A A  (фиг. 2).

получаваме и векторното равенство  1 2 3 4
1
4

OG OA OA OA OA     при произволна 

точка O  в пространството. Получената по този начин точка G  наричаме център на 
тежестта (медицентър) на четириъгълника 1 2 3 4A A A A  (фиг. 2). 

 
След това с помощта на GSP свързваме върховете 1A , 2A , 3A , 4A  и 5A  на 

петоъгълника 1 2 3 4 5A A A A A  с центровете на тежестта 1G , 2G , 3G , 4G  и 5G  съответно на 
четириъгълниците 2 3 4 5A A A A , 3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  и 1 2 3 4A A A A  (фиг. 3). 
Установяваме, че правите 1 1AG , 2 2A G , 3 3A G , 4 4A G  и 5 5A G  минават през една точка G , 

за която е изпълнено векторното равенство  1 2 3 4 5
1
5

OG OA OA OA OA OA      при 

произволна точка O  в пространството. Точката G  наричаме център на тежестта 
(медицентър) на петоъгълника 1 2 3 4 5A A A A A  (фиг. 3). До подобни изводи стигаме и при 
разглеждането на шестоъгълник 1 2 3 4 5 6A A A A A A  (фиг. 4). Така по индукция стигаме до 
извода, че ако 1 2 nA A A  е произволен n -ъгълник, правата, свързваща върха iA  с 
центъра на тежестта iG   1, ,i n  за 1n -ъгълника, образуван от останалите върхове, 
минават през една точка G , за която е изпълнено векторното равенство 

 5   1 2
1

nOG OA OA OA
n

     

при произволна точка O  в пространството. 
Равенството  5  по естествен начин обобщава  1  и еднозначно определя точка 

G , която се нарича център на тежестта (медицентър) за n -ъгълника 1 2 nA A A . Така 
за центъра на тежестта на n -ъгълника 1 2 nA A A  имаме индуктивна конструкция за 
построяване и аналитично представяне с  5 . 

3.2. Ортоцентър. За определяне на ортоцентър на вписан в окръжност 
многоъгълник можем да приложим два подхода, основани на аналогии с построяването 
на центъра на тежестта. Първо разглеждаме вписан в окръжност четириъгълник 

1 2 3 4A A A A . Аналогично на конструирането на центъра на тежестта G  на 1 2 3 4A A A A  
построяваме ортоцентровете 1H , 2H , 3H  и 4H  съответно на триъгълниците 2 3 4A A A , 

3 4 1A A A , 4 2 1A A A  и 1 2 3A A A . След това построяваме правите 1 1A H , 2 2A H , 3 3A H  и 4 4A H . 
Забелязваме, че тези прави се пресичат в една точка H  (фиг. 5). Нещо повече, 
четириъгълниците 1 2 3 4A A A A  и 1 2 3 4H H H H  са симетрични спрямо точката H  (фиг. 5). 

Фигура 
4 

Фигура 
3 

Фигура 
2 	 Фигура 2		    Фигура 3	         Фигура 4

След това с помощта на GSP свързваме върховете 1A , 2A , 3A , 4A  и 5A  на 
петоъгълника 1 2 3 4 5A A A A A  с центровете на тежестта 1G , 2G , 3G , 4G  и 5G  



67

Ойлерова права и Ойлерова крива...

съответно на четириъгълниците A2 A3 A4 A5,, A3 A4 A5 A1,  A4 A5 A2 A1, A5 A1 A2 A3,  
и 1 2 3 4A A A A  (фиг. 3). Установяваме, че правите 1 1AG , 2 2A G , 3 3A G , 4 4A G  и 

5 5A G  минават през една точка G , за която е изпълнено векторното равенство 

( )1 2 3 4 5
1
5

OG OA OA OA OA OA= + + + +
     

 при произволна точка O  в простран-
ството. Точката G  наричаме център на тежестта (медицентър) на петоъ-
гълника 1 2 3 4 5A A A A A  (фиг. 3). До подобни изводи стигаме и при разглеждането 
на шестоъгълник 1 2 3 4 5 6A A A A A A  (фиг. 4). Така по индукция стигаме до извода, 
че ако 1 2 nA A A  е произволен n -ъгълник, правата, свързваща върха iA  с цен-
търа на тежестта iG  ( )1, ,i n=   за 1n − -ъгълника, образуван от останалите 
върхове, минава през една точка G , за която е изпълнено векторното равенство

( )5 	 ( )1 2
1

nOG OA OA OA
n

= + + +
   



при произволна точка O  в пространството.
Равенството ( )5  по естествен начин обобщава ( )1  и еднозначно определя 

точка G , която се нарича център на тежестта (медицентър) за n -ъгълни-
ка 1 2 nA A A . Така за центъра на тежестта на n -ъгълника 1 2 nA A A  имаме 
индуктивна конструкция за построяване и аналитично представяне с ( )5 .

3.2. Ортоцентър. За определяне на ортоцентър на вписан в окръжност мно-
гоъгълник можем да приложим два подхода, основани на аналогии с постро-
яването на центъра на тежестта. Първо разглеждаме вписан в окръжност чети-
риъгълник 1 2 3 4A A A A . Аналогично на конструирането на центъра на тежестта 
G  на 1 2 3 4A A A A  построяваме ортоцентровете 1H , 2H , 3H  и 4H  съответно 
на триъгълниците 2 3 4A A A , 3 4 1A A A , 4 2 1A A A  и 1 2 3A A A . След това построява-
ме правите 1 1A H , 2 2A H , 3 3A H  и 4 4A H . Забелязваме, че тези прави се пре-
сичат в една точка H  (фиг. 5). Нещо повече, четириъгълниците 1 2 3 4A A A A  и 

1 2 3 4H H H H  са симетрични спрямо точката H  (фиг. 5). Това наблюдение мо-
жем да изразим с векторните равенства i iHH HA= −

 

 ( )1,2,3,4i = . По-ната-
тък да обърнем внимание, че ортоцентърът на 1 2 3A A A∆  лежи върху правата, 
която минава през центъра на тежестта на върха iA  (който съвпада с iA ) и е 
перпендикулярна на правата, определена от останалите два върха на 1 2 3A A A∆
. Това ни дава основание при 1 2 3 4A A A A  да построим през центъра на тежестта 
на всяка от шестте двойки върхове (средите на свързващите ги отсечки) перпен-
дикуляр към правата, определена от другата двойка върхове (фиг. 6). Оказва се, 
че получените шест прави се пресичат в същата точка H , получена при пре-
дишната конструкция (четириъгълниците 1 2 3 4A A A A  на фиг. 5 и 6 са еднакви). 
Получената по този начин точка H  наричаме ортоцентър на четириъгълника 

1 2 3 4A A A A  (фиг. 5, 6).
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Това наблюдение можем да изразим с векторните равенства i iHH HA    1,2,3,4i  . 
По-нататък да обърнем внимание, че ортоцентърът на 1 2 3A A A  лежи върху правата, 
която минава през центъра на тежестта на върха iA  (който съвпада с iA ) и е 
перпендикулярна на правата, определена от останалите два върха на 1 2 3A A A . Това ни 
дава основание при 1 2 3 4A A A A  да построим през центъра на тежестта на всяка от шестте 
двойки върхове (средите на свързващите ги отсечки) перпендикуляр към правата, 
определена от другата двойка върхове (фиг. 6). Оказва се, че получените шест прави се 
пресичат в същата точка H , получена при предишната конструкция (четириъгълниците 

1 2 3 4A A A A  на фиг. 5 и 6 са еднакви). Получената по този начин точка H  наричаме 
ортоцентър на четириъгълника 1 2 3 4A A A A  (фиг. 5, 6). 

 

 
По-нататък, следвайки опита от изследванията върху четириъгълника, 

разглеждаме вписан в окръжност петоъгълник 1 2 3 4 5A A A A A . Построяваме 
ортоцентровете 1H , 2H , 3H , 4H  и 5H  съответно на четириъгълниците 2 3 4 5A A A A , 

3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  и 1 2 3 4A A A A . Забелязваме, че правите 1 1A H , 2 2A H , 3 3A H , 

4 4A H  и 5 5A H  минават през една точка H  (фиг. 7). Освен това H  е център на 
хомотетия за петоъгълниците 1 2 3 4 5A A A A A  и 1 2 3 4 5H H H H H , като са изпълнени 

векторните равенства 1
2i iHH HA    1,2,3,4,5i  . Подходът с центровете на тежестта 

се състои в следното: построяваме през центъра на тежестта на всеки от десетте 

Фигура 
7 

Фигура 
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Това наблюдение можем да изразим с векторните равенства i iHH HA    1,2,3,4i  . 
По-нататък да обърнем внимание, че ортоцентърът на 1 2 3A A A  лежи върху правата, 
която минава през центъра на тежестта на върха iA  (който съвпада с iA ) и е 
перпендикулярна на правата, определена от останалите два върха на 1 2 3A A A . Това ни 
дава основание при 1 2 3 4A A A A  да построим през центъра на тежестта на всяка от шестте 
двойки върхове (средите на свързващите ги отсечки) перпендикуляр към правата, 
определена от другата двойка върхове (фиг. 6). Оказва се, че получените шест прави се 
пресичат в същата точка H , получена при предишната конструкция (четириъгълниците 

1 2 3 4A A A A  на фиг. 5 и 6 са еднакви). Получената по този начин точка H  наричаме 
ортоцентър на четириъгълника 1 2 3 4A A A A  (фиг. 5, 6). 

 

 
По-нататък, следвайки опита от изследванията върху четириъгълника, 

разглеждаме вписан в окръжност петоъгълник 1 2 3 4 5A A A A A . Построяваме 
ортоцентровете 1H , 2H , 3H , 4H  и 5H  съответно на четириъгълниците 2 3 4 5A A A A , 

3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  и 1 2 3 4A A A A . Забелязваме, че правите 1 1A H , 2 2A H , 3 3A H , 

4 4A H  и 5 5A H  минават през една точка H  (фиг. 7). Освен това H  е център на 
хомотетия за петоъгълниците 1 2 3 4 5A A A A A  и 1 2 3 4 5H H H H H , като са изпълнени 

векторните равенства 1
2i iHH HA    1,2,3,4,5i  . Подходът с центровете на тежестта 

се състои в следното: построяваме през центъра на тежестта на всеки от десетте 

Фигура 
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Фигура 
8 

Фигура 
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Фигура 
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	 Фигура 7	  Фигура 8

По-нататък, следвайки опита от изследванията върху четириъгълника, раз-
глеждаме вписан в окръжност петоъгълник 1 2 3 4 5A A A A A . Построяваме орто-
центровете 1H , 2H , 3H , 4H  и 5H  съответно на четириъгълниците 2 3 4 5A A A A , 

3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  и 1 2 3 4A A A A . Забелязваме, че правите 1 1A H , 
2 2A H , 3 3A H , 4 4A H  и 5 5A H  минават през една точка H  (фиг. 7). Освен това 

H  е център на хомотетия за петоъгълниците 1 2 3 4 5A A A A A  и 1 2 3 4 5H H H H H , 

като са изпълнени векторните равенства 
1
2i iHH HA= −

 

 ( )1,2,3,4,5i = . 
Подходът с центровете на тежестта се състои в следното: построяваме през 
центъра на тежестта на всеки от десетте триъгълника, образувани от върхове-
те на 1 2 3 4 5A A A A A , права, перпендикулярна на страната, съдържаща останали-
те два върха на 1 2 3 4 5A A A A A . Тези десет прави се пресичат в същата точка H  
(фиг. 8). Точката H  наричаме ортоцентър на 1 2 3 4 5A A A A A  (фиг. 7, 8).

По подобен начин разглеждаме и вписан в окръжност шестоъгълник 
1 2 3 4 5 6A A A A A A . Ако iH  е ортоцентърът на петоъгълника, образуван от върхо-
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вете на A1 A2 A3 A4 A5 A6 без Ai, правите AiHi (i = 1,2,3,4,5,6) се пресичат в точка 
H  (фиг. 9), която е център на хомотетия за шестоъгълниците 1 2 3 4 5 6A A A A A A  

и 1 2 3 4 5 6H H H H H H . Изпълнени са векторните равенства 
1
3i iHH HA= −

 

 

( )1,2,3,4,5,6i = . Освен това всяка от петнадесетте прави, минаваща през 
центъра на тежестта на четириъгълник, върховете на който са измежду точ-
ките 1A , 2A , 3A , 4A , 5A  и 6A , и перпендикулярна на страната, определена 
от останалите два върха, минава през същата точка H  (фиг. 10). Точката  
наричаме ортоцентър на 1 2 3 4 5 6A A A A A A  (фиг. 9, 10).

триъгълника, образувани от върховете на 1 2 3 4 5A A A A A , права, перпендикулярна на 
страната, съдържаща останалите два върха на 1 2 3 4 5A A A A A . Тези десет прави се пресичат 
в същата точка H  (фиг. 8). Точката H  наричаме ортоцентър на 1 2 3 4 5A A A A A  (фиг. 7, 8). 

По подобен начин разглеждаме и вписан в окръжност шестоъгълник 
1 2 3 4 5 6A A A A A A . Ако iH  е ортоцентърът на петоъгълника, образуван от върховете на 

1 2 3 4 5 6A A A A A A  без iA , правите i iA H   1,2,3,4,5,6i   се пресичат в точка H  (фиг. 9), 
която е център на хомотетия за шестоъгълниците 1 2 3 4 5 6A A A A A A  и 1 2 3 4 5 6H H H H H H . 

Изпълнени са векторните равенства 1
3i iHH HA    1,2,3,4,5,6i  . Освен това всяка от 

петнадесетте прави, минаваща през центъра на тежестта на четириъгълник, върховете 
на който са измежду точките 1A , 2A , 3A , 4A , 5A  и 6A , и перпендикулярна на страната, 
определена от останалите два върха, минава през същата точка H  (фиг. 10). Точката H  
наричаме ортоцентър на 1 2 3 4 5 6A A A A A A  (фиг. 9, 10). 

 
Така по индукция получаваме, че за вписания в окръжност n -ъгълник 1 2 nA A A  

съществува точка H , която притежава следните свойства: 
1) правите, минаващи през центровете на тежестта за 2n -ъгълниците, 

образувани от точките 1A , 2A , …, nA , които са перпендикулярни на правите, свързващи 
останалите два върха, се пресичат в една точка H ; 

2) ако iH  е ортоцентърът на 1n -ъгълника, образуван от точките 1A , 2A , …, nA  
с изключение на iA , то правите i iA H   1,2, ,i n  се пресичат в H ; 

3) изпълнени са векторните равенства 1
3i iHH HA

n
 


; 

4) многоъгълникът 1 2 nH H H  е хомотетичен на 1 2 nA A A . 
Ясно е, че 2) и 4) следват от 3). 
3.3. Ойлерова права и Ойлерова окръжност. Ако 1 2 nA A A  е многоъгълник, 

вписан в окръжност с център O , наблюденията с GSP показват, че точките H , G  и O  
лежат на една права, която се нарича права на Ойлер за 1 2 nA A A . На фиг. 11 са 
показани случаите при 4,5,6n  . По индукция се получава равенството 

 1 2
1

2 nOH OA OA OA
n

   


. От това равенство и  5  следва, че 

 6  
2

nOH OG
n




, 

Фигура  
9 

Фигура 
10 

	 Фигура 9               		       Фигура 10

Така по индукция получаваме, че за вписания в окръжност n -ъгълник 
1 2 nA A A  съществува точка H , която притежава следните свойства:

1) правите, минаващи през центровете на тежестта за 2n − -ъгълниците, 
образувани от точките 1A , 2A , …, nA , които са перпендикулярни на правите, 
свързващи останалите два върха, се пресичат в една точка H ;

2) ако iH  е ортоцентърът на 1n − -ъгълника, образуван от точките 1A , 2A , 
…, nA  с изключение на iA , то правите i iA H  ( )1,2, ,i n=   се пресичат в H ;

3) изпълнени са векторните равенства 
1

3i iHH HA
n

= −
−

 

;

4) многоъгълникът 1 2 nH H H  е хомотетичен на 1 2 nA A A .
Ясно е, че 2) и 4) следват от 3).
3.3. Ойлерова права и Ойлерова окръжност. Ако 1 2 nA A A  е много-

ъгълник, вписан в окръжност с център O , наблюденията с GSP показват, че 
точките H , G  и O  лежат на една права, която се нарича права на Ойлер за 

1 2 nA A A . На фиг. 11 са показани случаите при 4,5,6n = . По индукция се 
получава равенството ( )1 2

1
2 nOH OA OA OA

n
= + + +

−

   

 . От това равенство 
и ( )5  следва, че

( )6 	
2

nOH OG
n

=
−

 

,
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Това доказва, че точките H, G,  и O  лежат на една права. От (6)  при n = 3  
се получава ( )2 .

Това доказва, че точките H , G  и O  лежат на една права. От  6  при 3n   се получава 
 2 . 
 

 
Нека iG  е центърът на тежестта на 1n -ъгълника, образуван от точките 1A , 2A , 

…, nA  с изключение на iA   1,2, ,i n . Наблюденията с GSP показват, че точките iG  
 1,2, ,i n  лежат на окръжност, която се нарича окръжност на Ойлер за 1 2 nA A A . 
На фиг. 11 са показани случаите при 4,5,6n  . За центъра E  на Ойлеровата окръжност 

е изпълнено векторното равенство  1 2
1

1 nOE OA OA OA
n

   


. Оттук, векторното 

равенство за H  и  5  следват 

 7  1
1

HE HO
n




, 

 8  1
1

GE GO
n

 


. 

Равенствата  7  и  8  показват, че H  и G  са центрове на хомотетия за 
описаната и Ойлеровата окръжност. От  7  и  8  при 3n   се получават съответно  3  
и  4 . 
4. Ойлерова права и Ойлерова крива на триъгълник, зависещи от точка. 
Описаната за 1 2 3A A A  окръжност е само един елемент на безкрайното множество криви 
от конични сечения, описани около 1 2 3A A A . Нещо повече, ако O  е произволна точка, 
нележаща на никоя от правите 1 2A A , 2 3A A , 3 1A A , 23 31M M , 31 12M M  и 12 23M M  в 
равнината на 1 2 3A A A , то 1A , 2A  и 3A  и съответните им симетрични спрямо O  точки 

1A , 2A  и 3A  лежат на крива от втора степен  Ok  с център O  (фиг. 12). По този начин 
точката O  е аналог на центъра на описаната окръжност. По-нататък ще определим 
точка, която е аналог на ортоцентъра на 1 2 3A A A . Височините на 1 2 3A A A  са успоредни 
на правите, минаващи през центъра на описаната окръжност и точките 12M , 23M , 31M  
(фиг. 1). Това ни дава основание да построим в програмата GSP правите, минаващи 
през върховете 1A , 2A  и 3A  и успоредни съответно на правите 23OM , 31OM  и 12OM . 
Вижда се, че тези прави се пресичат в една точка H  (фиг. 12). Освен това, както и да 
променяме положението на O , разглежданите прави винаги се пресичат в една точка. 
По този начин получаваме една специална точка H , свързана с точката O , която 
наричаме ортоид на 1 2 3A A A , определен от центъра O  на  k O . Оказва се, че ортоидът 

Фигура 
11 

Фигура 11

Нека iG  е центърът на тежестта на 1n − -ъгълника, образуван от точки-
те 1A , 2A , …, nA  с изключение на iA  ( )1,2, ,i n=  . Наблюденията с GSP 
показват, че точките iG  ( )1,2, ,i n=   лежат на окръжност, която се нари-
ча окръжност на Ойлер за 1 2 nA A A . На фиг. 11 са показани случаите при 

4,5,6n = . За центъра E  на Ойлеровата окръжност е изпълнено векторното 

равенство ( )1 2
1

1 nOE OA OA OA
n

= + + +
−

   

 . Оттук, векторното равенство 

за H  и ( )5  следват
( )7 	

1
1

HE HO
n

=
−

 

,

( )8 	
1

1
GE GO

n
= −

−

 

.

Равенствата ( )7  и ( )8  показват, че H  и G  са центрове на хомотетия за 
описаната и за Ойлеровата окръжност. От ( )7  и ( )8  при 3n =  се получават 
съответно ( )3  и ( )4 .

4. Ойлерова права и Ойлерова крива на триъгълник, зависещи от точ-
ка. Описаната за 1 2 3A A A∆  окръжност е само един елемент на безкрайното 
множество криви от конични сечения, описани около 1 2 3A A A∆ . Нещо повече, 
ако O  е произволна точка, нележаща на никоя от правите 1 2A A , 2 3A A , 3 1A A , 

23 31M M , 31 12M M  и 12 23M M  в равнината на 1 2 3A A A∆ , то 1A , 2A  и 3A  и съ-
ответните им симетрични спрямо O  точки 1A′ , 2A′  и 3A′  лежат на крива от 
втора степен ( )Ok  с център O  (фиг. 12). По този начин точката O  е аналог 
на центъра на описаната окръжност. По-нататък ще определим точка, която 
е аналог на ортоцентъра на 1 2 3A A A∆ . Височините на 1 2 3A A A∆  са успоредни 
на правите, минаващи през центъра на описаната окръжност и точките 12M , 
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M23, M31 (фиг. 1). Това ни дава основание да построим в програмата GSP прави-
те, минаващи през върховете 1A , 2A  и 3A  и успоредни съответно на правите 

23OM , 31OM  и 12OM . Вижда се, че тези прави се пресичат в една точка H  
(фиг. 12). Освен това, както и да променяме положението на O , разглеждани-
те прави винаги се пресичат в една точка. По този начин получаваме една спе-
циална точка H , свързана с точката O , която наричаме ортоид на 1 2 3A A A∆ , 
определен от центъра O  на ( )k O . Оказва се, че ортоидът H  притежава ре-
дица свойства, които са подобни на тези на ортоцентъра. Тези свойства са 
описани подробно в (Grozdev & Nenkov, 2014). Едно от тези свойства се из-
разява с равенството ( )2 . Следователно точките O , H  и G  лежат на една 
права, която наричаме Ойлерова права на 1 2 3A A A∆ , определена от описаната 
крива ( )k O .

H  притежава редица свойства, които са подобни на тези на ортоцентъра. Тези свойства 
са описани подробно в (Grozdev & Nenkov, 2014). Едно от тези свойства се изразява с 
равенството  2 . Следователно точките O , H  и G  лежат на една права, която 
наричаме Ойлерова права на 1 2 3A A A , определена от описаната крива  k O . 

 
Както е показано в (Grozdev & Nenkov, 2014), точките 12M , 23M , 31M  и 

пресечните точки на правите 1A H , 2A H , 3A H  с 2 3A A , 3 1A A , 1 2A A  лежат на конично 
сечение   (фиг. 12), което наричаме Ойлерова крива на точката H  спрямо описаната 
крива  k O . Ако E  е центърът на  , то са изпълнени равенствата  3  и  4 , като G  и 
H  са центрове на хомотетия за  k O  и  . Тези и други свойства на кривата   са 
описани подробно в (Grozdev & Nenkov, 2014). 

Параболите, описани около 1 2 3A A A , можем да разглеждаме като конични 
сечения с безкрайни центрове (Mateev, 1977). Безкрайния център O  на параболата 
можем да определим с направлението на даден вектор O  (фиг. 13). Нека O  е вектор, 
който не е колинеарен с никоя от правите 1 2A A , 2 3A A  и 3 1A A . Съществува единствена 

парабола  k O , която минава през точките 1A , 2A , 3A  и има за ос права, колинеарна с 

O  (допира се до безкрайната права на равнината в безкрайната точка O ) (Mateev, 
1977). В този случай точката H  можем да разглеждаме като съвпадаща с безкрайния 
център на  k O . Правата през G  и колинеарна с O , разглеждаме като Ойлерова права 

на 1 2 3A A A , зависеща от направлението O  (или все едно зависеща от безкрайната 
точка O ) (фиг. 13). 

Съществува единствена парабола  , която минава през точките 12M , 23M , 31M  

и има за ос права, колинеарна с O . Тази парабола наричаме Ойлерова крива на 1 2 3A A A  

зависеща от направлението O  (фиг. 13). Оказва се, че параболата   е хомотетична на 

 k O  при хомотетия с център G  и коефициент 1
2

 . Това и други свойства на кривата 

  са описани подробно в (Grozdev & Nenkov, 2014). 
5. Ортоид и Ойлерова права на вписан в конично сечение многоъгълник. Нека 
първо разгледаме четириъгълник 1 2 3 4A A A A , вписан в конично сечение  k O  с център 
O . Построяваме ортоидите 1H , 2H , 3H  и 4H  съответно на триъгълниците 2 3 4A A A , 

Фигура 
12 

Фигура  
13 

			   Фигура 12	      Фигура 13

Както е показано в (Grozdev & Nenkov, 2014), точките 12M , 23M , 31M  и 
пресечните точки на правите 1A H , 2A H , 3A H  с 2 3A A , 3 1A A , 1 2A A  лежат на 
конично сечение Ω  (фиг. 12), което наричаме Ойлерова крива на точката H  
спрямо описаната крива ( )k O . Ако E  е центърът на Ω , то са изпълнени 
равенствата ( )3  и ( )4 , като G  и H  са центрове на хомотетия за ( )k O  и 
Ω . Тези и други свойства на кривата Ω  са описани подробно в (Grozdev & 
Nenkov, 2014).

Параболите, описани около 1 2 3A A A∆ , можем да разглеждаме като конични 
сечения с безкрайни центрове (Mateev, 1977). Безкрайния център O  на па-
раболата можем да определим с направлението на даден вектор O  (фиг. 13). 
Нека O



 е вектор, който не е колинеарен с никоя от правите 1 2A A , 2 3A A  и 
3 1A A . Съществува единствена парабола ( )k O



, която минава през точките  
1A , 2A ,  и има за ос права, колинеарна с O  (допира се до безкрайната права 

на равнината в безкрайната точка O ) (Mateev, 1977). В този случай точката H  
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можем да разглеждаме като съвпадаща с безкрайния център на
  

( )k O


. Права-
та през G  и колинеарна с O , разглеждаме като Ойлерова права на 1 2 3A A A , 
зависеща от направлението O  (или все едно зависеща от безкрайната точ-
ка O ) (фиг. 13).

Съществува единствена парабола Ω , която минава през точките 12M , 
23M , 31M  и има за ос права, колинеарна с O . Тази парабола наричаме Ой-

лерова крива на 1 2 3A A A∆ , зависеща от направлението O  (фиг. 13). Оказва 
се, че параболата Ω  е хомотетична на ( )k O



 при хомотетия с център G  и 

коефициент 
1
2

− . Това и други свойства на кривата Ω  са описани подробно в 

(Grozdev & Nenkov, 2014).
5. Ортоид и Ойлерова права на вписан в конично сечение многоъгъл-

ник. Нека първо разгледаме четириъгълник 1 2 3 4A A A A , вписан в конично сече-
ние ( )k O  с център O . Построяваме ортоидите 1H , 2H , 3H  и 4H  съответно 
на триъгълниците 2 3 4A A A , 3 4 1A A A , 4 2 1A A A  и 1 2 3A A A , определени от O . Забе-
лязваме, че правите 1 1A H , 2 2A H , 3 3A H  и 4 4A H  се пресичат в една точка H  
(фиг. 14). Освен това четириъгълниците 1 2 3 4A A A A  и 1 2 3 4H H H H  са симетрични 
спрямо точката H  (фиг. 14) и са изпълнени векторните равенства i iHH HA= −

 

 
( )1,2,3,4i = . Затова точката H  наричаме ортоид на 1 2 3 4A A A A  спрямо O .

3 4 1A A A , 4 2 1A A A  и 1 2 3A A A , определени от O . Забелязваме, че правите 1 1A H , 2 2A H , 3 3A H  
и 4 4A H  се пресичат в една точка H  (фиг. 14). Освен това четириъгълниците 1 2 3 4A A A A  и 

1 2 3 4H H H H  са симетрични спрямо точката H  (фиг. 14) и са изпълнени векторните 

равенства i iHH HA    1,2,3,4i  . Затова точката H  наричаме ортоид на 1 2 3 4A A A A  
спрямо O . 

 
По-нататък, аналогично на конструкцията на ортоид на триъгълника, 

извършваме следните построения: през центъра на тежестта на всяка двойка върхове на 
1 2 3 4A A A A  (средата на свързващата ги страна) построяваме права, успоредна на правата, 

минаваща през O  и центъра на тежестта на останалата двойка върхове. Така се 
получават шест прави, които минават през вече получената точка H  (фиг. 15). 

Ако четириъгълникът 1 2 3 4A A A A  е вписан в парабола, под ортоид ще разбираме 
безкрайната точка на описаната парабола (фиг. 16). На фиг. 14, 15 и 16 
четириъгълниците 1 2 3 4A A A A  са еднакви. 

 
Аналогично, ако 1 2 3 4 5A A A A A  е петоъгълник, вписан в конично сечение  k O  с 

център O , а 1H , 2H , 3H , 4H  и 5H  са ортоидите съответно на четириъгълниците 

2 3 4 5A A A A , 3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  и 1 2 3 4A A A A , то правите 1 1A H , 2 2A H , 3 3A H , 

4 4A H  и 5 5A H  минават през една точка H  (фиг. 17), която наричаме ортоид на 

Фигура 
17 

Фигура 
18 

Фигура 
19 

Фигура 
14 

Фигура 
15 

Фигура 
16 

	 Фигура 14		       Фигура 15		      Фигура 16
По-нататък, аналогично на конструкцията на ортоид на триъгълника, из-

вършваме следните построения: през центъра на тежестта на всяка двойка 
върхове на 1 2 3 4A A A A  (средата на свързващата ги страна) построяваме права, 
успоредна на правата, минаваща през O  и центъра на тежестта на останалата 
двойка върхове. Така се получават шест прави, които минават през вече полу-
чената точка H  (фиг. 15).
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Ако четириъгълникът  A1 A2 A3 A4  е вписан в парабола, под ортоид ще раз-
бираме безкрайната точка на описаната парабола (фиг. 16). На фиг. 14, 15 и 16 
четириъгълниците 1 2 3 4A A A A  са еднакви.

3 4 1A A A , 4 2 1A A A  и 1 2 3A A A , определени от O . Забелязваме, че правите 1 1A H , 2 2A H , 3 3A H  
и 4 4A H  се пресичат в една точка H  (фиг. 14). Освен това четириъгълниците 1 2 3 4A A A A  и 

1 2 3 4H H H H  са симетрични спрямо точката H  (фиг. 14) и са изпълнени векторните 

равенства i iHH HA    1,2,3,4i  . Затова точката H  наричаме ортоид на 1 2 3 4A A A A  
спрямо O . 

 
По-нататък, аналогично на конструкцията на ортоид на триъгълника, 

извършваме следните построения: през центъра на тежестта на всяка двойка върхове на 
1 2 3 4A A A A  (средата на свързващата ги страна) построяваме права, успоредна на правата, 

минаваща през O  и центъра на тежестта на останалата двойка върхове. Така се 
получават шест прави, които минават през вече получената точка H  (фиг. 15). 

Ако четириъгълникът 1 2 3 4A A A A  е вписан в парабола, под ортоид ще разбираме 
безкрайната точка на описаната парабола (фиг. 16). На фиг. 14, 15 и 16 
четириъгълниците 1 2 3 4A A A A  са еднакви. 

 
Аналогично, ако 1 2 3 4 5A A A A A  е петоъгълник, вписан в конично сечение  k O  с 

център O , а 1H , 2H , 3H , 4H  и 5H  са ортоидите съответно на четириъгълниците 

2 3 4 5A A A A , 3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  и 1 2 3 4A A A A , то правите 1 1A H , 2 2A H , 3 3A H , 

4 4A H  и 5 5A H  минават през една точка H  (фиг. 17), която наричаме ортоид на 

Фигура 
17 

Фигура 
18 

Фигура 
19 

Фигура 
14 

Фигура 
15 

Фигура 
16 

	 Фигура 17		             Фигура 18	   Фигура 19

Аналогично, ако 1 2 3 4 5A A A A A  е петоъгълник, вписан в конично сечение 
( )k O  с център O , а 1H , 2H , 3H , 4H  и 5H  са ортоидите съответно на 

четириъгълниците 2 3 4 5A A A A , 3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  и 1 2 3 4A A A A , 
то правите 1 1A H , 2 2A H , 3 3A H , 4 4A H  и 5 5A H  минават през една точка H  
(фиг. 17), която наричаме ортоид на 1 2 3 4 5A A A A A . Освен това H  е център на 
хомотетия за петоъгълниците 1 2 3 4 5A A A A A  и 1 2 3 4 5H H H H H , като са изпълне-

ни векторните равенства 
1
2i iHH HA= −

 

 ( )1,2,3,4,5i = . От друга страна, всяка 
права, минаваща през центъра на тежестта на триъгълник, образуван от вър-
ховете 1A , 2A , 3A , 4A , 5A , и успоредна на правата, минаваща през O  и сре-
дата на отсечката, определена от останалите два върха, минава през ортоида 
H  (фиг. 18). Ако петоъгълникът 1 2 3 4 5A A A A A  е вписан в парабола, под ортоид 
ще разбираме безкрайната точка на описаната парабола (фиг. 19).

Така по индукция получаваме, че за n -ъгълника 1 2 nA A A , вписан в ко-
нично сечение ( )k O  с център O , съществува точка H , която притежава 
следните свойства:

( )*  правите, минаващи през центровете на тежестта за 2n − -ъгълниците, 
образувани от точките 1A , 2A , …, nA , които са успоредни на правите през O  
и средите на отсечките, определени от останалите два върха, се пресичат в 
една точка H ;
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( )**  ако iH  е ортоидът на 1n − -ъгълника, образуван от точките 1A , 2A , 
…, nA  с изключение на iA , то правите i iA H  ( )1,2, ,i n=   се пресичат в H ;

( )***  изпълнени са векторните равенства 
1

3i iHH HA
n

= −
−

 

;

( )****  многоъгълникът 1 2 nH H H  е хомотетичен на 1 2 nA A A .
Точката H , притежаваща изброените свойства, наричаме ортоид на 

1 2 nA A A .
Преди да докажем формулираните твърдения, трябва да отбележим, че 

( )**  и ( )****  са непосредствени следствия от ( )*** . Затова е достатъчно 
да докажем ( )*** . Освен това при 4n =  в ( )****  хомотетията преминава в 
централна симетрия.

Проведените наблюдения показват, че за ортоида H  е изпълнено  
векторното равенство ( )6 . Затова формулираните твърдения ще бъдат 
доказани, ако ги проверим за точката H , удовлетворяваща ( )6 . Нека 

12G  е центърът на тежестта за 3 nA A , а 12M  е средата на 1 2A A . Тогава 

( )12 3
1

2 nOG OA OA
n

= + +
−

  

  и ( )12 1 2
1
2

OM OA OA= +
  

. Затова от ( )6  след-

ва ( )12 12 1 2 12
1 2

2 2
G H OH OG OA OA OM

n n
= − = + =

− −

     

. Следователно пра-

вата 12G H  е успоредна на 12OM . Аналогично се получава твърдение ( )*  и 
за останалите двойки успоредни прави. По-нататък ще докажем, че от ( )6  
следва ( )*** . Имаме

1 1
3 3 3i i i i

n nHH OH OH OG OH OG OA OH
n n n
−

= − = − = − − =
− − −

       

2 1 1 1 1
3 3 3 3 3i i i

n OH OH OA OH OA HA
n n n n n
−

= − − = − = −
− − − − −

     

.

С това ( )***  е доказано.
От проведените разсъждения следва, че за ортоида е изпълнено равенство-

то ( )6 . Оттук получаваме, че точките H , G  и O  лежат на една права. Тази 
права наричаме Ойлерова права на вписания в коничното сечение ( )k O  мно-
гоъгълник 1 2 nA A A .

Ако многоъгълникът 1 2 nA A A  е вписан в парабола, под ортоид ще разби-
раме безкрайната точка на описаната му парабола, а правата през медицентъ-
ра G , която е успоредна на оста на параболата, наричаме Ойлерова права на 

1 2 nA A A  (фиг. 16, 19, 21, 23).
Ойлерова крива на вписан в конично сечение многоъгълник. Нека че-

тириъгълникът 1 2 3 4A A A A  е вписан в конично сечение ( )k O  с център O . 
Построяваме центровете на тежестта 1G , 2G , 3G  и 4G  съответно на три-
ъгълниците 2 3 4A A A , 3 4 1A A A , 4 2 1A A A  и 1 2 3A A A . През точките 1G , 2G , 3G  
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и 4G  минават безброй много конични сечения. От тях трябва да определим 
едно, което обобщава случая с вписан в окръжност четириъгълник. Тъй като 

1
3i iGG GA= −

 

 ( )1,2,3,4i = , то четириъгълникът 1 2 3 4G G G G  е хомотетичен 

образ на 1 2 3 4A A A A  при хомотетия с център G  и коефициент 
1
3

− . Затова раз-
глеждаме кривата Ω , която минава през точките 1G , 2G , 3G  и има за цен-

тър точката E , определена с равенството 
1
3

GE GO= −
 

. От това определение 

следва, че Ω  е хомотетична на ( )k O  при споменатата хомотетия и мина-
ва през 4G . Кривата  наричаме Ойлерова крива на 1 2 3 4A A A A , определена 
от O . Трябва да се отбележи, че точката H  също е център на хомотетия за 
( )k O  и Ω .

успоредна на оста на параболата, наричаме Ойлерова права на 1 2 nA A A  (фиг. 16, 19, 
21, 23). 

Ойлерова крива на вписан в конично сечение многоъгълник. Нека 
четириъгълникът 1 2 3 4A A A A  е вписан в конично сечение  k O  с център O . Построяваме 
центровете на тежестта 1G , 2G , 3G  и 4G  съответно на триъгълниците 2 3 4A A A , 3 4 1A A A , 

4 2 1A A A  и 1 2 3A A A . През точките 1G , 2G , 3G  и 4G  минават безброй много конични 
сечения. От тях трябва да определим едно, което обобщава случая с вписан в 

окръжност четириъгълник. Тъй като 1
3i iGG GA    1,2,3,4i  , то четириъгълникът 

1 2 3 4G G G G  е хомотетичен образ на 1 2 3 4A A A A  при хомотетия с център G  и коефициент 
1
3

 . Затова разглеждаме кривата  , която минава през точките 1G , 2G , 3G  и има за 

център точката E , определена с равенството 1
3

GE GO  . От това определение следва, 

че   е хомотетична на  k O  при споменатата хомотетия и минава през 4G . Кривата 
  наричаме Ойлерова крива на 1 2 3 4A A A A , определена от O . Трябва да се отбележи, че 
точката H  също е център на хомотетия за  k O  и  . 

 

 
Фигура 
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20 
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			   Фигура 20	  		     Фигура 21

успоредна на оста на параболата, наричаме Ойлерова права на 1 2 nA A A  (фиг. 16, 19, 
21, 23). 

Ойлерова крива на вписан в конично сечение многоъгълник. Нека 
четириъгълникът 1 2 3 4A A A A  е вписан в конично сечение  k O  с център O . Построяваме 
центровете на тежестта 1G , 2G , 3G  и 4G  съответно на триъгълниците 2 3 4A A A , 3 4 1A A A , 

4 2 1A A A  и 1 2 3A A A . През точките 1G , 2G , 3G  и 4G  минават безброй много конични 
сечения. От тях трябва да определим едно, което обобщава случая с вписан в 

окръжност четириъгълник. Тъй като 1
3i iGG GA    1,2,3,4i  , то четириъгълникът 

1 2 3 4G G G G  е хомотетичен образ на 1 2 3 4A A A A  при хомотетия с център G  и коефициент 
1
3

 . Затова разглеждаме кривата  , която минава през точките 1G , 2G , 3G  и има за 

център точката E , определена с равенството 1
3

GE GO  . От това определение следва, 

че   е хомотетична на  k O  при споменатата хомотетия и минава през 4G . Кривата 
  наричаме Ойлерова крива на 1 2 3 4A A A A , определена от O . Трябва да се отбележи, че 
точката H  също е център на хомотетия за  k O  и  . 
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Ако четириъгълникът 1 2 3 4A A A A  е вписан в парабола, точките 1G , 2G , 3G  
и  лежат на единствена парабола с ос, успоредна на оста на описаната 
парабола (фиг. 21). Тази парабола наричаме Ойлерова крива на 1 2 3 4A A A A . На 
фиг. 20 и 21 четириъгълниците 1 2 3 4A A A A  са еднакви.

Нека сега 1 2 nA A A  ( )5n ≥  е многоъгълник, вписан в конично сечение 
( )k O  с център O . Ако iG  е центърът на тежестта на 1n − -ъгълника, образу-

ван от точките 1A , 2A , …, nA  с изключение на iA  ( )1,2, ,i n=  , то са изпъл-

нени равенствата 
1

1i iGG GA
n

= −
−

 

. Следователно 1 2 nG G G  е хомотетичен 

на 1 2 nA A A  при хомотетия с център G  и коефициент 
1

1n
−

−
. Аналогично 

се вижда, че ортоидът H  на 1 2 nA A A  е център на хомотетия с коефициент 
1

1n −
. Тъй като 1 2 nA A A  е вписан в ( )k O , то от хомотетичността следва, 

че 1 2 nG G G  също е вписан в крива Ω , центърът E  на която удовлетворява 
равенствата ( )7  и ( )8 . Кривата Ω  наричаме Ойлерова крива на 1 2 nA A A  
(фиг. 22).

Ако многоъгълникът 1 2 nA A A  е вписан в парабола, точките 1G , 2G ,…, nG  
лежат на единствена парабола с ос, успоредна на оста на описаната парабола 
(фиг. 23). Тази парабола наричаме Ойлерова крива на 1 2 nA A A .

5. Връзки на Ойлеровите криви с ортоида. Ортоидът лежи върху забе-
лежителната за 1 2A A A  права на Ойлер и има свойството да е център на 
хомотетия за описаната крива ( )k O  и кривата на Ойлер. Оказва се, че при 

4n ≥  Ойлеровите криви на 1n − -ъгълниците, вписани в ( )k O , също прите-
жават интересни свойства, свързани с ортоида на 1 2 nA A A .

Ако четириъгълникът 1 2 3 4A A A A  е вписан в парабола, точките 1G , 2G , 3G  и 4G  
лежат на единствена парабола с ос, успоредна на оста на описаната парабола (фиг. 21). 
Тази парабола наричаме Ойлерова крива на 1 2 3 4A A A A . На фиг. 20 и 21 
четириъгълниците 1 2 3 4A A A A  са еднакви. 

Нека сега 1 2 nA A A   5n   е многоъгълник, вписан в конично сечение  k O  с 
център O . Ако iG  е центърът на тежестта на 1n -ъгълника, образуван от точките 1A , 

2A , …, nA  с изключение на iA   1,2, ,i n , то са изпълнени равенствата 
1

1i iGG GA
n

 


. Следователно 1 2 nG G G  е хомотетичен на 1 2 nA A A  при хомотетия с 

център G  и коефициент 1
1n




. Аналогично се вижда, че ортоидът H  на 1 2 nA A A  е 

център на хомотетия с коефициент 1
1n 

. Тъй като 1 2 nA A A  е вписан в  k O , то от 

хомотетичността следва, че 1 2 nG G G  също е вписан в крива  , центърът E  на която 
удовлетворява равенствата  7  и  8 . Кривата   наричаме Ойлерова крива на 

1 2 nA A A  (Фиг. 22). 
Ако многоъгълникът 1 2 nA A A  е вписан в парабола, точките 1G , 2G ,…, nG  

лежат на единствена парабола с ос, успоредна на оста на описаната парабола (фиг. 23). 
Тази парабола наричаме Ойлерова крива на 1 2 nA A A . 
5. Връзки на Ойлеровите криви с ортоида. Ортоидът лежи върху забележителната за 

1 2 nA A A  права на Ойлер и има свойството да е център на хомотетия за описаната 
крива  k O  и кривата на Ойлер. Оказва се, че при 4n   Ойлеровите криви на 1n -
ъгълниците, вписани в  k O , също притежават интересни свойства, свързани с 
ортоида на 1 2 nA A A . 

 
Случаят с четириъгълник 1 2 3 4A A A A  ще отбележим отделно. Средите на шестте 

отсечки, свързващи точките 1A , 2A , 3A  и 4A , лежат на една крива от втора степен  , 

Фигура 
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Случая с четириъгълник 1 2 3 4A A A A  ще отбележим отделно. Средите на 
шестте отсечки, свързващи точките 1A , 2A , 3A  и 4A , лежат на една крива от 
втора степен Ω , която е Ойлерова крива на всеки от върховете на 1 2 3 4A A A A  
спрямо триъгълника, образуван от останалите три върха. Както е показано в 
(Nenkov, 2011), центровете на всички описани около 1 2 3 4A A A A  конични сече-
ния лежат върху Ω . Върху Ω  се намират и безкрайните центрове на двете 
описани за 1 2 3 4A A A A  параболи, когато 1 2 3 4A A A A  е изпъкнал четириъгълник. 
В (Nenkov, 2011) е показано още, че центърът на тежестта G  на 1 2 3 4A A A A  е 
център на Ω . Тъй като ортоидът H  е точка, която е симетрична на центъра на 
пораждащата го описана крива, то H  лежи върху Ω . Като вземем предвид и 
това, че ортоидът спрямо описана парабола е безкрайната точка на параболата, 
заключаваме: всеки ортоид на четириъгълника 1 2 3 4A A A A  лежи върху общата 
Ойлерова крива на триъгълниците A1A2A3, A2A3A4, 3 4 1A A A  и 4 1 2A A A  (фиг. 24).

която е Ойлерова крива на всеки от върховете на 1 2 3 4A A A A  спрямо триъгълника, 
образуван от останалите три върха. Както е показано в (Nenkov, 2011), центровете на 
всички описани около 1 2 3 4A A A A  конични сечения лежат върху  . Върху   се намират 
и безкрайните центрове на двете описани за 1 2 3 4A A A A  параболи, когато 1 2 3 4A A A A  е 
изпъкнал четириъгълник. В (Nenkov, 2011) е показано още, че центърът на тежестта G  
на 1 2 3 4A A A A  е център на  . Тъй като ортоидът H  е точка, която е симетрична на 
центъра на пораждащата го описана крива, то H  лежи върху  . Като вземем предвид 
и това, че ортоидът спрямо описана парабола е безкрайната точка на параболата, 
заключаваме: всеки ортоид на четириъгълника 1 2 3 4A A A A  лежи върху общата Ойлерова 
крива на триъгълниците 1 2 3A A A , 2 3 4A A A , 3 4 1A A A  и 4 1 2A A A  (фиг. 24). 

 
Сега да разгледаме по-подробно случаите за многоъгълник 1 2 nA A A , когато 

5n  . Първо да отбележим, че, ако 1 2 nA A A  е вписан в парабола, Ойлеровите криви на 
всички 1n -ъгълници, образувани от точките 1A , 2A , …, nA , са параболи с оси, 
успоредни на оста па описаната парабола. Следователно: Всички Ойлерови криви 
минават през ортоида на 1 2 nA A A  (фиг. 25). 

Опитът от разгледаните случаи ни подсказва, че можем да очакваме подобно 
свойство на Ойлеровите криви за многоъгълник 1 2 nA A A , вписан в крива  k O  с 
център O  при 5n  . Експериментите с GSP показват следните два резултата. 

Твърдение 1. Ойлеровите криви на всички 1n -ъгълници, образувани от 
върховете 1A , 2A , …, nA  на вписания в конично сечение с център O  многоъгълник 

1 2 nA A A , са еднакви и минават през ортоида H  на 1 2 nA A A  (фиг. 26). 
Твърдение 2. Центровете на Ойлеровите криви на всички 1n -ъгълници, 

образувани от върховете 1A , 2A , …, nA  на вписания в конично сечение с център O  
многоъгълник 1 2 nA A A , лежат на крива, която е еднаква с Ойлеровите криви и има за 
център ортоида H  на 1 2 nA A A  (фиг. 26). 

Фигура 
25 

Фигура 25

Сега да разгледаме по-подробно случаите за многоъгълник A1A2...An,  когато 
5n ≥ . Първо да отбележим, че, ако 1 2 nA A A  е вписан в парабола, Ойлеро-

вите криви на всички 1n − -ъгълници, образувани от точките 1A , 2A , …, nA , 
са параболи с оси, успоредни на оста на описаната парабола. Следователно: 
всички Ойлерови криви минават през ортоида на 1 2 nA A A  (фиг. 25).

Опитът от разгледаните случаи ни подсказва, че можем да очакваме подоб-
но свойство на Ойлеровите криви за многоъгълник 1 2 nA A A , вписан в крива 
( )k O  с център O  при 5n ≥ . Експериментите с GSP показват следните два 

резултата.
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Твърдение 1. Ойлеровите криви на всички n – 1-ъгълници, образувани от 
върховете 1A , 2A , …, nA  на вписания в конично сечение с център O  мно-
гоъгълник 1 2 nA A A , са еднакви и минават през ортоида H  на 1 2 nA A A  
(фиг. 26).

Твърдение 2. Центровете на Ойлеровите криви на всички 1n − -ъгълници, 
образувани от върховете 1A , 2A , …, nA  на вписания в конично сечение с цен-
тър O  многоъгълник 1 2 nA A A , лежат на крива, която е еднаква с Ойлеро-
вите криви и има за център ортоида H  на 1 2 nA A A  (фиг. 26).

Първо да отбележим, че еднаквостта на Ойлеровите криви на 1n − -ъгълни-
ците следва от хомотетичността им с описаната крива. Нека iE  е центърът на 
Ойлеровата крива iΩ  на 1n − -ъгълника, образуван от точките 1A , 2A , …, nA  
с изключение на върха iA  ( )1,2, ,i n=  . Ортоидът 1H  на 2 nA A  е център 
на хомотетия за 1Ω  и описаната крива ( )k O . Тъй като 2 nA A  е 1n − -ъгъл-

ник, тази хомотетия има коефициент 
1

2n −
. Затова 1 1 1

1
2

H E H O
n

=
−

 

. Оттук 

1 1
1

3 3
n OG OH OA

n n
= +

− −

  

. Сега от ( )***  и ( )6  следва

( )
( )( )1 1 1 1

1 1 1
3 3 3 2 3

nH H A H OA OH OA OG
n n n n n

= − = − = − =
− − − − −

     

1 1 1 1
1 1 1

2 2 2
OA OH H A

n n n
= − =

− − −

 

.

Следователно при разглежданата хомотетия точката 1A  от ( )k O  се  

изобразява в точката  от 1Ω . По аналогичен начин се показва, че другите 
Ойлерови криви минават през H . С това твърдение 1 е доказано.

Първо да отбележим, че еднаквостта на Ойлеровите криви на 1n -ъгълниците 
следва от хомотетичността им с описаната крива. Нека iE  е центърът на Ойлеровата 
крива i  на 1n -ъгълника, образуван от точките 1A , 2A , …, nA  с изключение на върха 

iA   1,2, ,i n . Ортоидът 1H  на 2 nA A  е център на хомотетия за 1  и описаната 

крива  k O . Тъй като 2 nA A  е 1n -ъгълник, тази хомотетия има коефициент 1
2n 

. 

Затова 1 1 1
1

2
H E H O

n



. Оттук 1 1

1
3 3

n OG OH OA
n n

 
 

. Сега от  ***  и  6  следва 

 
  1 1 1 1

1 1 1
3 3 3 2 3

nH H A H OA OH OA OG
n n n n n

      
    

 

1 1 1 1
1 1 1

2 2 2
OA OH H A

n n n
  

  
. 

Следователно при разглежданата хомотетия точката 1A  от  k O  се изобразява в 
точката H  от 1 . По аналогичен начин се показва, че другите Ойлерови криви минават 
през H . С това твърдение 1 е доказано. 

 
Сега разглеждаме хомотетия с център точката P  от Ойлеровата права, за която е 

изпълнено равенството 
1

nOP OG
n




. Тогава 

1 1 1 1
2 2 2 2 2i i i i

n nPE PA OE OP OA OP OG OP o
n n n n n


       

    
. 

Оттук имаме 1
2i iPE PA

n
 


  1,2, ,i n . Следователно при разглежданата 

хомотетия точките iA  от  k O  се изобразява в точките iE   1,2, ,i n . Следователно 
точките iE   1,2, ,i n  лежат на една крива  , хомотетична на  k O  с коефициент 

на хомотетия 1
2n 

. Но кривите i   1,2, ,i n  са хомотетични на  k O  със същия 

коефициент. Затова   е еднаква с i   1,2, ,i n . С това твърдение 2 е доказано. 

Фигура 
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Фигура 26
Сега разглеждаме хомотетия с център точката P  от Ойлеровата права, за 

която е изпълнено равенството 
1

nOP OG
n

=
−

 

. Тогава
1 1 1 1

2 2 2 2 2i i i i
n nPE PA OE OP OA OP OG OP o

n n n n n
−

+ = − + − = − =
− − − − −

        

.

Оттук имаме 
1

2i iPE PA
n

= −
−

 

 ( )1,2, ,i n=  . Следователно при раз-

глежданата хомотетия точките iA  от ( )k O  се изобразяват в точките iE  
( )1,2, ,i n=  . Следователно точките iE  ( )1,2, ,i n=   лежат на една крива 

ω , хомотетична на ( )k O  с коефициент на хомотетия 
1

2n −
. Но кривите iΩ  

( )1,2, ,i n=   са хомотетични на ( )k O  със същия коефициент. Затова ω  е 
еднаква с iΩ  ( )1,2, ,i n=  . С това твърдение 2 е доказано.

6. Заключение. При проведените изследвания с помощта на анало-
гия и програмата GSP на всеки многоъгълник, вписан в конично сече-
ние, съпоставихме Ойлерова права и Ойлерова крива, като естествени 
обобщения на известните ни от геометрията на триъгълника. Освен това 
триъгълниците и четириъгълниците притежават безкрайни множества от 
Ойлерови прави и съответните им Ойлерови криви. Според приложения 
подход на обобщение петоъгълникът притежава единствени Ойлерова 
права и Ойлерова крива, защото притежава единствено описано конично 
сечение.
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EULER LINE AND EULER CURVE 
OF AN INSCRIBED POLYGON IN A CONIC 

Abstract. The paper follows the successive development of the idea to define 
the notions of Euler line and Euler curve of an inscribed polygon in a circle, which 
leads in a natural way to the construction of Euler line and Euler curve of an 
inscribed polygon in a conic. Various configurations are examined by the help of 
the computer program “THE GEOMETER’S SKETCHPAD” (GSP).
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