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ОБЩ ПОДХОД ЗА УСТАНОВЯВАНЕ 
НА ЗАВИСИМОСТИ МЕЖДУ РАДИУСИ 
НА ДОПИРАЩИ СЕ ОКРЪЖНОСТИ

1Сава Гроздев, 2Веселин Ненков
1Висше училище по застраховане и финанси

2Технически колеж – Ловеч

Резюме. Разгледана е една обща идея за намиране на зависимости меж-
ду радиусите на допиращи се окръжности в равнината на даден триъгълник. 
В основата си тази идея съдържа формулата на Ойлер за разстоянието между 
центровете на описаната и вписаната окръжност на триъгълника и други връз-
ки между радиусите на тези окръжности. Основните резултати са обединени 
във формулировката и доказателството на съответна лема.
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1. Увод. Много геометрични задачи в равнината на даден триъгълник са свър-
зани с комбинации от окръжности. Такива комбинации често се съдържат в япон-
ските теореми „Сангаку“. Някои от тези теореми, публикувани в рубриката „Зада-
чата на броя“ на списание „Математика и информатика“, са следните четири:

Теорема 1. В окръжност Γ  е вписан правоъгълен триъгълник. Окръж-
ността 1k  с радиус 1r  се допира до катетите на триъгълника и вътрешно до 
Γ . Ако вписаната в триъгълника окръжност има радиус r , то е изпълнено 
равенството 1 2.r r=  (фиг. 1). (Табов, 1990, 1990 а).

Теорема 2. Триъгълник ABC  ( )BC BA<  е вписан в окръжност Γ . Точ-
ката C′  е от страната CA  и BC BC′ = . Окръжността 1k  с радиус 1r  се 
допира до раменете на BC A′Δ  и вътрешно до Γ . Ако вписаната в BC A′Δ  
окръжност 2k  има радиус 2r , то е изпълнено равенството 1 22.r r=  (фиг. 2). 
(Табов, 1998), (Михайлов, 1999).

Теорема 3. Окръжността cΓ  минава през върховете A  и B  на ABCΔ  
така, че върхът C  да лежи вътре в cΓ . Точката M  е средата на AB , а 
точката N  е средата на дъгата �AB . Окръжността k′  с радиус x  се допира 
до страните AC  и BC  на ABCΔ  и вътрешно до cΓ . Ако BC a= , CA b= , 
AB c= , 

2
a b cp + +

= , MN d= , а вписаната в ABCΔ  окръжност k  има радиус 
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r , то е изпълнено равенството ( )( )2d p a p b
x r

cp
− −

= +  (фиг. 3). (Табов, 1999), 
(Цеков, 2000).

Теорема 4. Точките A , B , C  и D  лежат в този ред на окръжност 
( ),O rΓ , а E  е пресечната точка на AC  и BD . Окръжността ( )1 1 1,k O r  

е вписана в ABEΔ , а окръжността ( )2 2 2,k O r  е вписана в CDEΔ . Ако ок-
ръжността ( )3 3 3,k O r  се допира до отсечките AE  и BE  и до дъгата AB , 
а окръжността ( )4 4 4,k O r  се допира до отсечките CE  и DE  и до дъгата 
CD , то е изпълнено равенството 

1 4 2 3

1 1 1 1
r r r r
+ = +  (фиг. 4). (Табов, 1999 а), 

(Антонов, 2000).

Фигура 1                                     Фигура 2

Фигура 3                                     Фигура 4
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Ако направим известен анализ на конфигурациите от окръжности, които 
се съдържат във формулираните японски теореми, ще установим, че във всяка 
тях участва по една окръжност, която минава през поне два върха на триъ-
гълник, и една окръжност, която се допира поне до две от страните на същия 
триъгълник. Окръжност, която минава през два върха на ABCΔ , ще наричаме 
полуописана за ABCΔ , а окръжност, която се допира до две от правите BC , 
CA  и AB , ще наричаме полувписана за ABCΔ . Всяка от горните теореми се 
отнася до полувписани и полуописани окръжности и изисква определена из-
обретателност, за да се открие съответното є доказателство. Оказва се обаче, 
че съществува обща идея, която може да се използва при доказване на зави-
симости между радиуси на окръжности от вида, в който присъстват във фор-
мулираните теореми „Сангаку“. Тази идея се съдържа в една основна лема, 
която дава възможност не само да докажем формулираните четири теореми, 
но и да покажем интересни обобщения на някои от тях. От своя страна, тези 
обобщения позволяват да се получат други интересни частни случаи.

Преди да формулираме и докажем въпросната лема, ще се уговорим, че 
за елементите на даден ABCΔ  ще използваме стандартните означения за не-
говите елементи, т.е. BC a= , CA b= , AB c= , 

2
a b cp + +

= , BAC α= ,
ABC β= , ACB γ= , R  – радиус на описаната окръжност, r  – радиус на 

вписаната окръжност, ar , br , cr  – радиуси на външновписаните окръжности, 
допиращи се съответно до страните BC , CA , AB . Освен това центровете на 
описаната окръжност Γ и на вписаната окръжност k  на ABCΔ  ще означава-
ме съответно с O  и I .

2. Основна помощна теорема. Едно общо твърдение, което свързва ра-
диусите на допиращи се полувписани и полуописани окръжности за даден 

ABCΔ , ще докажем в следващата лема. Тази лема се намира в основата на 
всички следващи доказателства и я формулираме по следния начин:

Лема. Окръжност ( ),c c cRΓ Ω  минава през върховете A  и B  на даден 
триъгълник ABC , описаната окръжност на който има за център точка-
та O . Ако окръжността ( ),c c ck O ρ  се допира до правите AC  и BC  и до 
( ),c c cRΓ Ω , то е изпълнено равенството:

 

( )

2 2

2 2

sin sin cos
2 2 2

1cos cos 2 sin sin sin
2 2 2 2 2 2

cos cos cos 0,
2 2

c

c cr T R

r r T

α β γ ρ

α β γ α β γε ε ε ρ

α β γ

−

⎡ − ⎤⎛ ⎞′ ′ ′′− − + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+ − =

( )*
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където
1) 2 2 2 2 2 2

1 2 16 sin sin sin sin
2 2 2cT R rα β γε ε γ= − ;

2) 1 1ε = , когато O  и cΩ  лежат в една полуравнина спрямо AB  или кога-
то O  лежи на AB  , или когато c OΩ ≡ ;

3) 1 1ε = − , когато O  и cΩ  лежат в различни полуравнини спрямо AB ;
4) 2 1ε = , когато 

2
πγ <  или когато 

2
πγ =  и cΩ  и C  са в една и съща 

полуравнина спрямо AB  , или когато c OΩ ≡ ;
5) 2 1ε = − , когато 

2
πγ >  или когато 

2
πγ =  и cΩ  и C  са в различни по-

луравнини спрямо AB ;
6) 1ε ′ = , когато ck  лежи в ACB ;
7) 1ε ′ = − , когато ck  лежи в ъгъла, противоположен на ACB ;
8) 1ε ′′ = , когато ck  се допира външно до cΓ ;
9) 1ε ′′ = − , когато ck  се допира вътрешно до cΓ .
Доказателство. Ще използваме означенията от фиг. 5. Когато L M≡ , т.е. 

когато  AC BC= , разсъжденията са прости, а и твърдението в този случай 
следва от съображения за непрекъснатост в общия случай, когато L M≠ . За-
това по-нататък ще предполагаме, че L M≠ .

Фигура 5
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Доказателството ще проведем в следната последователност:
1) От правоъгълните триъгълници AIL , CIN  и 1 1CO N  се получават съот-

ветно следващите три равенства:

( )1  
sin

2

rAI α= , 
sin

2

rCI γ= , 
sin

2

c
cCO ρ

γ= .

2) От правоъгълните триъгълници AMO  и cAMΩ  и синусовата теорема 
за ABCΔ получаваме съответно следващите две равенства:

( )2  
2

2 2 2 cos
4
cOM R R γ= − = , 

2
2 2 2 2 2sin

4c c c
cM R R RΩ γ= − = − .

3) Тъй като 
2

a bML −
= , от правоъгълния триъгълник MIL  получаваме

( )3  ( )2
2 2

4
a bIM r−

= + .

4) Нека c MΩ ≠  и cIMΩ ψ= . Ако O M≠ , то IMO ψ= , когато O  и 
cΩ  са от една и съща страна на M  или c OΩ ≡  и IMO π ψ= − , когато O  

и cΩ  са от различни страни на M . От косинусовата теорема за IOMΔ  има-
ме 2 2 2

12. . . .cosIO IM OM OM IMε ψ= + − , където 1 1ε = , ако IMO ψ=  и 
1 1ε = − , ако IMO π ψ= − . Сега, след заместване в последното равенство 

на ( )3 , на второто равенство от ( )2  и използване на формулата на Ойлер 
2 2 2OI R Rr= − , формулите

( )4  ( )( ) 2

2 2
p a p b r ctg ctgα β
− − = ,

( )5  4 sin sin sin
2 2 2

r R α β γ
=

получаваме последователно равенствата:
( )( )

2 2
22 2 2

1 1 1

22 2 2.cos
2. 2 cos 2 cos

r ctg ctg r Rrp a p b r RrOM IM OIIM
OM R R

α β

ψ ε ε ε
γ γ

− + +− − − + ++ −
= = = =

2
2

2 22

1 1 1

sin
2 1 2sinsin 2 sin sin 2sin

22 2 2 2
2 cos sin sin 2 cos sin sin 4 cos sin sin sin

2 2 2 2 2 2 2

rr
rr Rr

R R R

γ
γγ α β γ

ε ε εα β α β α β γγ γ γ

− +
⎛ ⎞−− + ⎜ ⎟
⎝ ⎠= = = =

2

1 1 2
cos
cos

r r
r

γε ε ε
γ

= = ,
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където 2 1ε = , когато 
2
πγ <  и 2 1ε = − , когато 

2
πγ > .

Ако O M≡ , то 
2

AMIπψ = − � , когато cΩ  и C  са в една и съща полуравнина спря-
мо AB , и 

2
AMIπψ = − � , когато cΩ  и C  са в различни полуравнини спрямо AB . 

От синусовата теорема за AMIΔ  получаваме равенството 
sinsin 2AMI

AI IM

α

=
� ,  

което, комбинирано с първото равенство ( )1 , води до 2cosIM rψ ε= . В този 
случай полагаме 1 1ε = . Така получаваме, че при произволно положение на 
O  в равнината на ABCΔ  е изпълнено равенството

( )6  1 2cosIM rψ ε ε= .
5) Ако c MΩ ≠ , то от ( )3 , ( )6 , второто равенство от ( )2  и косинусовата 

теорема за cI MΩΔ  се получава равенството

( )7  ( )( )2 2 2 2 2 2
1 22 sinc c cI r R p a p b r R RΩ ε ε γ= + − − − − − .

Ако c MΩ ≡ , то 2c
cR =  и подкоренната величина в ( )7  е рав-

на на нула. Освен това от правоъгълния триъгълник ILM  и ( )3  следва 
( )2

2 2 2 2 2

4c
a bI IM IL ML rΩ −

= = + = + . 

От друга страна, ( )( ) ( )( )
( )22

2

4 4c
c a bR p a p b p a p b −

− − − = − − − = .

Следователно равенството ( )7  е в сила и когато c MΩ ≡ . Това означава, 
че равенството ( )7  е изпълнено при всички положения на cΩ  в равнината на 

ABCΔ .
6) Нека c MΩ ≠  и cCMΩ ϑ= . Ако O M≠ , то CMO ϑ= , когато O  и 

cΩ  са от една и съща страна на M , или c OΩ ≡  и CMO π ϑ= − , когато O  и 
cΩ  са от различни страни на M . От косинусовата теорема за CMOΔ  имаме 

2 2 2
12. . . .cosCO CM OM OM CMε ϑ= + − , където 1 1ε = , ако CMO ϑ=  и 

1 1ε = − , ако CMO π ϑ= − . Сега, след заместване в последното равенство 
на първото равенство от ( )2  и използване на известните формули

( )8  2 2 2sin sin sin 2sin sin cosα β γ α β γ+ − = ,
( )9  ( )2 2 2 21 2 2

4
CM a b c= + − ,

както в 4) получаваме равенството:
( )10  1 2.cos 2 sin sinCM Rϑ ε ε α β= ,
където 2 1ε = , когато 

2
πγ <  и 2 1ε = − , когато 

2
πγ > .
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Ако O M≡ , то 
2

AMCπϑ = − � , когато cΩ  и C  са в една и съща полу-

равнина спрямо AB , и 
2

AMCπϑ = − � , когато cΩ  и C  са в различни по-

луравнини спрямо AB . От синусовата теорема за AMCΔ  получаваме  ра-

венството sin sinAMC
AC CM

α
=

� , което, комбинирано със синусовата теорема 

2 sinAC R β=  за ABCΔ , води до 2cos 2 sin sinCM Rϑ ε α β= . В този слу-

чай полагаме 1 1ε =  и отново се получава равенството ( )10 . Следователно 
( )10  е изпълнено при произволно положение на O  в равнината на ABCΔ .

7) Ако c MΩ ≠ , то от ( )8 , ( )9 , ( )10 , второто равенство от ( )2 , синусовата 
теорема за ABCΔ  и косинусовата теорема за cC MΩΔ  се получава равенството

( )11 2 2 2 2 2
1 24 sin sin cos 4 sin sin sinc c cC R R R RΩ α β γ ε ε α β γ= + − − .

Ако c MΩ ≡ , то 
2c
cR =  и подкоренната величина в ( )7  е равна на 

нула. Освен това от ( )8 , ( )9  и синусовата теорема за ABCΔ  следва 
( )

2
2 2 2 2 2 2 21 4 sin sin cos

4 2c c
cC CM a b c R RΩ α β γ= = + + − = + . Следователно ра-

венството ( )11  е в сила и когато c MΩ ≡ . Трябва да се отбележи и случаят, 
при който c CΩ ≡ . Това означава, че равенството (11) е изпълнено при всички 
положения на cΩ  в равнината на ABCΔ .

8) Нека cICΩ ϕ= . Тогава c cO CΩ ϕ= , ако точката cO  лежи в 
ACB  и c cO CΩ π ϕ= − , ако точката cO  лежи в ъгъла, противоположен 

на ACB . От косинусовата теорема за триъгълниците cCIΩ  и 1 cCOΩ  се 
получават съответно равенствата 2 2 2 22. . .cosc c cI CI C CI CΩ Ω Ω ϕ= + −  и 

2 2 2
1 12. . . cosc c c cCO C CO CΟ Ω Ω ε Ω ϕ′= + − , където 1ε ′ = , ако c cO CΩ ϕ=  

и 1ε ′ = − , ако c cO CΩ π ϕ= − . След елиминиране на cosϕ  от последните 
равенства получаваме

( )12  ( )( )2 2 2. . . . . .c c c c c c cCI O CO I C CO CI CI COΩ ε Ω Ω ε ε′ ′ ′− = − − .
9) Разстоянието между cO  и cΩ  се намира по формулата

( )13  .c c c cO RΩ ε ρ′′= + , където 1ε ′′ = , когато 
ck  се допира външно до 

cΓ , и 1ε ′′ = − , когато 
ck  се допира вътрешно до cΓ .

Заместваме ( )1 , ( )5 , ( )7 , ( )11  и ( )13  в ( )12  и след известни преобразу-
вания получаваме равенството
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( )

2 2 2 21sin sin cos cos cos 2 sin sin sin
2 2 2 2 2 2 2 2 2

cos cos cos 0,
2 2

c c cr T R

r r T

α β γ α β γ α β γρ ε ε ε ρ

α β γ

⎡ − ⎤⎛ ⎞′ ′ ′′− − + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+ − =

където 2 2 2 2 2 2
1 2 16 sin sin sin sin

2 2 2cT R rα β γε ε γ= − .

С това лемата е напълно доказана.
3. Полувписани окръжности, допиращи се до описаната окръжност на 

триъгълника. Общността, която се съдържа във формулировката на лемата, 
позволява в теорема 1 да заменим правоъгълния триъгълник с произволен. 
Тогава в лемата имаме cΓ Γ≡ , c OΩ ≡ , cR R= , 1 1ε ε ′= = , 1ε ′′ = − . От ( )5  
получаваме, че 2. . cos .cosT r rε γ γ= = . Сега от лемата след елементарни 

преобразувания следва равенството 2 2sin sin cos sin sin . 0
2 2 2 2 2c crα β γ α βρ ρ− = . 

Единственото решение на това уравнение, което има геометричен смисъл, е 

2cos
2

c
rρ γ= . Така получаваме обобщение на теорема 1, което е съдържанието 

на следната

Теорема 5. Ако ABC  е произволен триъгълник, а окръжността ck  с ра-
диус cρ  се допира до страните AC  и BC  и вътрешно до описаната около 

ABCΔ  окръжност Γ , то е изпълнено равенството 
2cos

2

c
rρ γ=  (фиг. 6). (Нен-

ков, 1991). 
Ако в теорема 5 заменим вътрешнодопиращата се до Γ  окръж-

ност ( ),c c ck O ρ  с външнодопираща се окръжност ( ),c c ck O ρ′ ′ ′ , в лемата имаме
cΓ Γ≡ , cR R= ,  1 1ε ε ε′ ′′= = = . От ( )5  отново получаваме, че 2. . cos .cosT r rε γ γ= =  

Сега от лемата след елементарни преобразувания следва равенството 
2 2sin sin cos cos cos . 0

2 2 2 2 2c crα β γ α βρ ρ′ ′− = . Като вземем предвид, че е изпълнено равен-

ството .
2 2cr r ctg ctgα β

= , получаваме 2 2cos . 0
2 c c crγ ρ ρ′ ′− = . Единственото решение 

на това уравнение, което има геометричен смисъл, е 2cos
2

c
c

rρ γ
′ = . Така получа-

ваме и следната
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Теорема 6. Ако ABC  е произволен триъгълник, а окръжността 
ck′  с ра-

диус cρ ′  се допира до раменете на ACB  и външно до описаната около 
ABCΔ  окръжност Γ , то е изпълнено равенството 

2cos
2

c
c

rρ γ
′ =  (фиг. 7). 

(Ненков, 1991).

  

Фигура 6                                               Фигура 7

От теорема 6 при 
2
πγ =  и 

3
πγ =  се получават съответно равенствата 

2.c crρ ′ =  и 4
3c crρ ′ = . Първото от тези равенства е аналог на теорема 1.

4. Полувписани окръжности, породени от върхови секущи на три-
ъгълника. Втората японска теорема се отнася до окръжност, която е по-
лувписана в BC A′Δ , който, от своя страна, е част от дадения ABCΔ . До-
пълнението на BC A′Δ  до ABCΔ  е равнобедреният триъгълник CC B′ , 
за който 2BCC π γ′ = − . Тук можем да разгледаме по-общия случай, в 
който BCC ω′ =  и 0 ω β≤ < . Тогава ъглите на BC A′Δ  са C AB α′ = , 

ACC β ω′ = −  и BC C γ ω′ = + .
Означаваме вписаната в BC A′Δ  окръжност с ( )k ω , а нейния радиус с 
( )ρ ω . Разглеждаме окръжностите ( )ck ω  и ( )ck ω′ , допиращи се съответно 

вътрешно и външно до Γ  и до раменете на AC B′  (фиг. 8, 9). Радиусите на 
( )ck ω  и ( )ck ω′  означаваме съответно с ( )cρ ω  и ( )cρ ω′ .
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От синусовата теорема за BC A′Δ  се получават равенствата 
( )
( )

sin .
sin

C A cβ ω
γ ω
−′ =
+ , 

( )
sin .

sin
BC cα

γ ω
′ =

+ . Освен това от синусовата теорема за ABCΔ  имаме 2 sinc R γ= . 

От тези три равенства за полупериметъра 
2

BC C A ABp
′ ′+ +′ =  на BC A′Δ  нами-

раме 
cos cos sin

2 22
sin

2

p R

α β ω γ

γ ω

−

′ =
+ . От друга страна, от геометрията на триъгълника 

е известно, че за p′  е изпълнено равенството ( )
2 2 2

p ctg ctg ctgα β ω γ ωρ ω − +′ = . 
Сега от последните две равенства получаваме

( )14  
( ).cos

2
2sin sin sin

2 2

R

γ ωρ ω

α β γγ

+

=
− .

Прилагаме лемата за BC A′Δ  при cΓ Γ≡ , c OΩ ≡ , cR R= , ( )r ρ ω= . От ( )5  
и ( )14 получаваме, че ( ) ( ) ( ) ( )1 2. . sin sinT ctg ctgε ε ρ ω γ ω γ ρ ω γ ω γ= + = + . 
Разглеждаме случаите за окръжностите ( )ck ω  и ( )ck ω′  едновременно. Затова с t  
ще означаваме общо радиусите на тези окръжности. Сега заместваме в ( )*  и след 
елементарни преобразувания получаваме квадратното относно t  уравнение

 

( )

( )

2 2

2

sin sin sin cos
2 2 2

cos cos .sin sin
2 2 2 2

cos cos sin 0.
2 2

t

t

β ω α γ ωγ

γ ω β α ω γ ω γ ωε ε ε ρ ω

β ω α ωρ ω

− +
−

+ − − − +⎛ ⎞′ ′ ′′− + −⎜ ⎟
⎝ ⎠

−
− =

( )15

Сега да отбележим, че са изпълнени следните равенства:

( )16  

2cos .sin sin
2 2 2

2. sin sin sin cos cos cos sin cos ,
2 2 2 2 2 2 2 2

β α ω γ ω γ ω

β ω α γ ω β ω α ω γ

− − − +
− =

− −⎛ ⎞= −⎜ ⎟
⎝ ⎠

( )17
 2cos .sin sin

2 2 2

2. cos cos sin cos sin sin sin cos .
2 2 2 2 2 2 2 2

β α ω γ ω γ ω

β ω α γ ω β ω α ω γ

− − − +
− =

− −⎛ ⎞= −⎜ ⎟
⎝ ⎠
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За окръжността ( )ck ω  имаме 1ε ′ = , 1ε ′′ = −  и ( )ct ρ ω= . Като вземем 

предвид равенството ( )16 , установяваме, че единственото решение на урав-

нението ( )15 , което има геометричен смисъл, е ( )
( )cos

2
cos cos

2 2

c

ωρ ω
ρ ω γ γ ω=

+ . Така по-

лучаваме обобщение на теорема 1, което е съдържанието на следната

Теорема 7. Точката C′  от странатаCA  на ABCΔ  е такава, че 
CBC ω′ =  ( )0 ω β≤ < . Окръжността ( )ck ω  с радиус ( )cρ ω  се допира 

до раменете на BC A′  и вътрешно до описаната около ABCΔ  окръжност 
Γ . Ако радиусът на вписаната в ABC′Δ  окръжност е ( )ρ ω , то е изпълне-
но равенството ( )

( )cos
2

cos cos
2 2

c

ωρ ω
ρ ω γ γ ω=

+
 (фиг. 8).

                  Фигура 8                                                  Фигура 9

За окръжността ( )ck ω′  имаме 1ε ′ = , 1ε ′′ =  и ( )ct ρ ω′= . Като вземем 
предвид равенството ( )17 , установяваме, че единственото решение на урав-
нението ( )15 , което има геометричен смисъл, е

 ( )
( ) cos

2 2 2
cos cos

2 2

c

ctg ctgα β ω ωρ ω
ρ ω γ γ ω

−

′ =
+ . 
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Ако радиусът на външновписаната за ABC′Δ  окръжност, която се допира 
до страната му AB , е ( )ρ ω , то от геометрията на триъгълника е известно, че 
( ) ( )

2 2
ctg ctgα β ωρ ω ρ ω −

= . Така получаваме следната

Теорема 8. Точката C′  от странатаCA  на ABCΔ  е такава, че 
CBC ω′ =  ( )0 ω β≤ < . Окръжността ( )ck ω′  с радиус ( )cρ ω′  се допи-

ра до раменете на BC A′  и външно до описаната около ABCΔ  окръж-
ност Γ . Ако радиусът на външновписаната за ABC′Δ  окръжност, коя-
то се допира до страната му AB , е ( )ρ ω , то е изпълнено равенството 

( )
( )cos

2
cos cos

2 2

c

ωρ ω
ρ ω γ γ ω
′ =

+
 
(фиг. 9).

Сега теорема 2 лесно се получава като частен случай на теорема 7 при 
2ω π γ= − . Интересно е обаче да се отбележи, че има друг случай, в кой-

то CC B′Δ  е равнобедрен. Това се случва, когато CC BC′ ′= , т.е. когато 
CBC ω γ′ = = . В този случай от теорема 7 получаваме следното

Следствие 1. Ако C′  е такава точка от страната CA , че BC BC′ = , то 
( ) ( )

cosc
ρ ωρ ω

γ
= .

Аналогично от теорема 8 се получават аналози на теорема 2 и следствие 1, 
които формулираме по следния начин.

Следствие 2. Ако C′  е такава точка от страната CA , че BC BC′ = , то 
( ) ( )2cρ ω ρ ω′ = .
Следствие 3. Ако C′  е такава точка от страната CA , че CC BC′ ′= , 

то ( ) ( )
cosc
ρ ωρ ω

γ
′ = .

Освен формулираните следствия трябва да се отбележи, че теореми 5 и 6 
се получават като частни случаи съответно на теореми 7 и 8 при 0ω = .

5. Няколко връзки между допиращи се полуописани и полувписани 
окръжности. Като се вземе предвид особеното положение на върха C  в тео-
рема 4, тя може се включи в един от случаите на основната лема. Това ни дава 
основание да обобщим теорема 4 и за останалите случаи, които не присъст-
ват в нейната формулировка. Обобщението на Сангаку теоремата изглежда по 
следния начин:
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Теорема 9. Окръжността cΓ  минава през върховете A  и B  на ABCΔ  
така, че върхът C  да лежи вътре в cΓ . Точката M  е средата на AB , а 
точката N  е средата на дъгата AB , като MN d= . Тогава
а) ако окръжността k′  с радиус x  се допира до раменете на ACB  и 

вътрешно до cΓ , то ( )( )2d p a p b
x r

cp
− −

= +  (фиг. 3);

б) ако окръжността k′′  с радиус y  се допира до раменете на ACB  и 
външно до cΓ , то ( )( )

( )
2

c
d p a p b

y r
c p c
− −

= +
−

 (фиг. 10);

в) ако окръжността 1k  с радиус u  се допира до раменете на ъгъла, про-
тивоположен на ACB , и вътрешно до cΓ , то ( )( )

2
c p a p b

u r
dp

− −
= − +  (фиг. 

11);
г) ако окръжността 2k  с радиус v  се допира до раменете на ъгъла, про-

тивоположен на ACB , и външно до cΓ , то ( )( )
( )2c

c p a p b
v r

d p c
− −

= − +
−

 (фиг. 
12).

                           Фигура 10                                           Фигура 11

От метричната зависимост между пресичащи се хорди в окръжност, при-
ложена за диаметъра през M  и хордата AB  в окръжността cΓ , се получава 
равенството
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2 24

8c
c dR

d
+

=  (фиг. 3). 

Оттук и синусовата теорема за ABCΔ  следва 
2 2sin
2c

R dR
d
γ +

= . 
Сега за израза T  в лемата намираме
 ( )2 2 2 2

1 2 sin sin
2 2

R d r R d rT
Rd Rd

ε ε γ γ− −
= = .

Ще използваме t  като общо означение за радиусите x  и v  на окръжности-
те k′  и 2.k  Заместваме намерените изрази за cR , T  и . 1ε ε′ ′′ = −  в ( )*  и след 
елементарни преобразувания получаваме квадратното относно t  уравнение

2 2

2 2 2

2 2 2

2 sin sin cos
2 2 2

. . sin sin 2 cos 2 cos cos cos 2 sin
2 2 2 2 2 2 2

cos cos 2 cos 2 sin 0.
2 2 2 2

Rd t

r d d R R d R t

r d R d R

α β γ

α β γ α β γ γε

α β γ γ

−

⎡ ⎤⎛ ⎞ ⎛ ⎞′− + + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞⎛ ⎞+ + − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

Решенията на това уравнение са следните: 1
22 cos

2

rdt r
R

ε α
⎛ ⎞′= +⎜ ⎟
⎜ ⎟
⎝ ⎠

 и

 
2 2

2 2 sin 2 sin
2 2 2 2

crrt ctg ctg d R d R
d d

α β γ γε ε⎛ ⎞ ⎛ ⎞′ ′= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                                                   (тъй като .
2 2 cr ctg ctg rα β

= ). 

Ако N ′  е средата на дъгата AB  от описаната за ABCΔ  окръжност Γ , то 

d MN MN d′ ′= > =  и 2 2
cd tg γ′ =  ( C  лежи в cΓ ). Тогава 22 sin 0

2
d R d dγ ′− = − < . 

Когато 1ε ′ = , получаваме, че 1 0t >  и 2 0t < . Следователно вътрешнодопира-
щата се до cΓ  окръжност k′  има радиус 1x t= . Като вземем предвид форму-
лите на Ойлер, изразяващи тригонометричните функции на ъглите на ABCΔ  
чрез страните му, и равенството ( )5 , получаваме ( )( )2d p a p b

x r
cp

− −
= + . Когато 

1ε ′ = − , получаваме, че 1 0t <  и 2 0t > . Следователно външнодопиращата се 
до cΓ  окръжност 2k  има радиус 2y t= . Както в предишния случай получава-
ме ( )( )

( )2c
c p a p b

v r
d p c
− −

= − +
−

. Така доказахме твърдения а) и г) на теорема 9.
Нека сега z  е общо означение за радиусите y  и u  на окръжностите k′′  и 

1k . Заместваме изразите за cR , T  и . 1ε ε′ ′′ =  в ( )*  и след елементарни прео-
бразувания получаваме квадратното относно z  уравнение
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Корените на това уравнение са следните

 
2

1

sin
2

2

rR
z r

d

γ

ε

⎛ ⎞
⎜ ⎟
′= −⎜ ⎟
⎝ ⎠

 и 
2

2 2

2 2. 1
2 2 2 cos 2 cos

2 2

c

drctg ctgdz r ctg ctg r
R R

α β
α βε εγ γ

⎛ ⎞
⎜ ⎟⎛ ⎞′ ′= + = +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

. 

Както в предишния случай намираме, че ако 1ε ′ = − , то 

( )( )
1 2

c p a p b
u z r

dp
− −

= = − + , а при 1ε ′ =  имаме ( )( )
( )2

2
c

d p a p b
y z r

c p c
− −

= = +
−

. 

С това теорема 9 е напълно доказана, като нейното твърдение а) съвпада с 
теорема 3.

6. Доказателство на теорема 4. Сега, като използваме основно съдържа-
нието на две от твърденията на теорема 9, ще покажем едно доказателство на 
Сангаку твърдението, формулирано в началото като теоремата 4.

Пресечната точка на хордите AC  и BD  означаваме с E  (фиг. 3). Нека abp  
и cdp  са полупериметрите съответно на триъгълниците ABE  и CDE . Освен 
това с abd  означаваме разстоянието между средата на по-малката дъга AB  и 
средата на отсечката AB , а с cdd  – разстоянието между средата на по-малката 
дъга CD  и средата на отсечката CD .

От твърдения а) и в) на теорема 9, приложени към ABEΔ , следват съответно 

равенствата: ( )( )
3 1

2.
.

ab ab

ab

d p BE p AE
r r

c p
− −

= +  и ( )( )
4 1

.
2. .

ab ab

ab

c p BE p AE
r r

d p
− −

= − + . 

Оттук получаваме, че е изпълнено следното равенство:

( )18  ( )( ) ( ) ( )2 2
3 1 4 1 ab abr r r r p BE p AE− + = − − .

Тъй като ~CDE BAEΔ Δ , то 2

1

cd

ab

p rCE DE CD
BE AE AB p r

= = = = .     

Сега твърдения а) и в) на теорема 9, приложени към CDEΔ , водят съответно 
до равенствата:

( )( ) ( )( )2
2

3 2 2 2
12

cd cd ab ab

cd ab

CD p CE p DE r p AE p BE
r r r

d p r d p
− − − −

= − + = − +
′ ′

,

( )( ) ( )( )2
2

4 2 2 2
1

2
2

cd cd ab ab

cd ab

d p CE p DE d r p AE p BE
r r r

CD p r p
′ ′− − − −

= + = +

.
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От последните две равенства получаваме следната зависимост:

( )19  ( )( ) ( ) ( )
2

2 22
4 2 3 2 2

1
ab ab

rr r r r p BE p AE
r

− + = − − .

След почленно деление на ( )19  и ( )18  се получава 

( )( ) ( )( )2 2
1 4 2 3 2 2 4 1 3 1r r r r r r r r r r− + = + − . След известни преобразувания на 

последното равенство получаваме 
1 4 2 3

1 1 1 1
r r r r
+ = + . 

С това теорема 4 е доказана с помощта на теорема 9.

7. Полувписани окръжности, допиращи се до Ойлеровата окръжност 
на триъгълника. Сега ще разгледаме едно твърдение, което е в стила на те-
оремите Сангаку. В него основната лема се прилага три пъти. Това твърдение 
се формулира по следния начин.

Теорема 10. Ако всяка от трите окръжности ( )a ak ρ , ( )b bk ρ , ( )c ck ρ  
се допира до две от страните на ABCΔ  и външно до Ойлеровата му окръж-
ност (фиг. 13), то е изпълнено равенството:

( )20  ( )( ) ( )( ) ( )( )2 2 2 2 2 2b c c a a br r r r r r rρ ρ ρ ρ ρ ρ− − + − − + − − = .

                           Фигура 12                                       Фигура 13

Нека точките 1A , 1B  и 1C  са средите съответно на страните BC , CA  и AB  
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(фиг. 13), а ( )c ck ρ  се допира до страните AC  и BC . Прилагаме лемата за 
1 1A B CΔ , Ойлеровата окръжност на ABCΔ  и ( )c ck ρ . Тъй като 1 1A B CΔ  е хомо-

тетичен на ABCΔ  с коефициент на хомотетия 1
2

− , то в лемата заместваме α , 

β , γ , cR  и r  съответно с α , β , γ , 
2
R  и 

2
r . Освен това, тъй като 

2
πγ <  и ( )c ck ρ  

се допира до Ойлеровата окръжност на ABCΔ , то 1 1ε = − , 2 1ε ε ε′ ′′= = = . 

Сега от равенството ( )*  след известни преобразувания получаваме 
2 2 2 22sin sin cos 2cos cos cos sin sin cos cos cos cos 0

2 2 2 2 2 2 2 2 2 2c cr rα β γ α β γ α β α βρ γ ρ γ⎛ ⎞− + + =⎜ ⎟
⎝ ⎠

В това равенство заместваме .
2 2cr r tg tgα β

=  и го преобразуваме до следното 
равенство:

2 2 2 22cos cos cos 2cos cos cos sin sin cos sin sin cos 0
2 2 2 2 2 2 2 2 2 2c c c cr rα β γ α β γ α β α βρ γ ρ γ⎛ ⎞− + + =⎜ ⎟

⎝ ⎠
Последното равенство, разглеждано като уравнение относно cρ , има след-

ните решения: c crρ ′ =  и 
2 2

cos cos2 2 .
2cos 2cos

2 2

c

c

r tg tg
r

α β γ γρ γ γ
′′ = =

. 

Следователно съществуват две окръжности ( )ck ρ′ ′  и ( )c ck ρ′′ ′′ , допиращи 
се до раменете на ACB  и външно до Ойлеровата окръжност на ABCΔ .

Тъй като c crρ ′ = , то ( )ck ρ′ ′  е външновписана окръжност за ABCΔ , която се до-
пира до продълженията на страните AC  и BC . Следователно ( ) ( )c c c ck kρ ρ′ ′≠ . 
(Току-що показахме, че външновписаната окръжност ABCΔ , допираща се до стра-
ната му AB , се допира до Ойлеровата окръжност на ABCΔ . По същия начин при 

1ε ′′ = −  се показва, че вписаната в ABCΔ  окръжност също се допира до Ойлеро-
вата окръжност на ABCΔ . Така получаваме още едно доказателство на известната 
теорема на Фойербах, която твърди, че вписаната и външновписаните окръжности 
на даден триъгълник се допират до Ойлеровата окръжност на ABCΔ .)

От друга страна, тъй като 
2

2

2cos 1
2cos

2

ctg
r
ργ γ

γ
′′

= − = , то 2 c rρ ′′ < , т.е. 

( )c ck ρ′′ ′′  сe съдържа в криволинейния триъгълник, образуван от страните 

AC  и BC  и вписаната окръжност ( )k r . Следователно ( ) ( )c c c ck kρ ρ′′ ′′≡  и 

c cρ ρ ′′≡ , т.е. 
2

cos .
2cos

2

c rγρ γ= . (Ако 
2
γγ >  и ( )c ck ρ  е окръжността, допираща 
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се до раменете на ъгъла, противоположен на ACB  и вътрешно до Ойлеро-

вата окръжност на ABCΔ , то по същия начин се показва, че 
2

cos .
2cos

2

c rγρ γ= − .) 

Сега от израза за cρ  получаваме 2 2
2

crtg
r
ργ −

= .

Ако ( )a ak ρ  се допира до страните CA  и BA , а ( )b bk ρ  се допира до 
страните AB  и CB , то по аналогичен начин се получават равенствата 

2 2
2

artg
r
ρα −

= , 2 2
2

brtg
r
ρβ −

= .
Сега, като използваме равенството 1

2 2 2 2 2 2
tg tg tg tg tg tgα β β γ γ α

+ + = , по-
лучаваме

( )( ) ( )( ) ( )( )2 2 2 2 2 2b c c a a br r r r r r rρ ρ ρ ρ ρ ρ− − + − − + − − = .

8. Полуописани окръжности, допиращи се до вписаната окръжност на 
триъгълника. Сега ще покажем как се получават някои зависимости между 
радиуси на допиращи се окръжности с частично използване на лемата. По-
точно, като използваме част от доказателството є, ще покажем, че е в сила 
следната

Теорема 11. Ако окръжност cΓ  с радиус cR  минава през върховете A  
и B  на ABCΔ  и се допира до вписаната окръжност ( )k r  (фиг. 14), то е 
изпълнено равенството

2 2 2cos cos cos
2 2 2
sin .sinc

r
R

α β γ

α β

⎛ ⎞+⎜ ⎟
⎝ ⎠=

                         Фигура 14                                 Фигура 15
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От пункт 5) е известно, че разстоянието между центровете I  и cΩ  на окръжно-
стите ( )k r  и ( )c cΓ Ω  се намира чрез равенството ( )7 . Тъй като ( )k r  се допира 
вътрешно до ( )c cΓ Ω , то е изпълнено равенството c cI R rΩ = − . Сега от ( )7  след-
ва( ) ( )( )2 2 2 2 2 2

1 22 sinc c cR r r R p a p b r R Rε ε γ− = + − − − − − , което е еквивалентно с 
равенството ( )( ) 2 2 2

1 22 . 2 sinc cr R p a p b r R Rε ε γ− − − = − . След използване на ( )4  
последното се преобразува в 2 2 2

1 22 . 2 sin
2 2c cr R rctg ctg r R Rα β ε ε γ− = − . 

След повдигане в квадрат на двете страни на това равенство и извършване на ня-
кои преобразувания получаваме 2 2 2cos cos cos

2 2 2
sin .sinc

r
R

α β γ

α β

⎛ ⎞+⎜ ⎟
⎝ ⎠=

. С това теорема 11 е 
доказана.

По аналогичен начин се получава и следната
Теорема 12. Ако окръжност cΓ ′  с радиус cR′  минава през върховете A  и 

B  на ABCΔ  и се допира до външновписаната окръжност ( )c ck r  (фиг. 15), 
то е изпълнено равенството

2 2 2sin sin cos
2 2 2
sin .sin

c

c

r
R

α β γ

α β

⎛ ⎞+⎜ ⎟
⎝ ⎠′ = .

9. Заключение. С разгледаните теореми показахме един общ подход за до-
казване на твърдения, които са подобни на тези теореми. Разбира се, разгледа-
ните теореми могат да се докажат и по други начини. Няколко доказателства 
на теорема 1 се съдържат в (Табов, 1990а), а доказателства на теореми 2, 3 и 4, 
различни от приведените по-горе, се съдържат съответно в (Михайлов, 1999), 
Цеков, 2000) и (Антонов, 2000).

Тъй като лемата описва всички случаи, в които могат да попаднат раз-
глежданите окръжности, нейната формулировка изглежда много сложна. Но 
в конкретна ситуация може да се приложи само онази нейна част, която е 
подходяща за случая. Основното е, че в лемата е разработена една обща идея 
за доказване на определен вид задачи. Също така, както е показано в теореми 
11 и 12, могат да се използват елементи от доказателството на лемата при ре-
шаването на някои задачи.
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A GENERAL APPROACH TO ESTABLISH RELATIONS 
AMONG THE RADII OF TANGENT CIRCLES 

Abstract. A general idea is considered to establish relations among the radii 
of tangent circles in the plane of a given triangle. The idea is based on Euler’s 
formula for the distance between the radii of the circum-circle and the in-circle of 
the triangle and also on some other relations between the radii in question. The main 
results are unifi ed in the formulation of a corresponding lemma. 
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