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ОБОБЩЕНИЕ НА ТЕОРЕМАТА 
НА ЧЕЗАР КОШНИЦА

1) Сава Гроздев, 2) Веселин Ненков
1) Висше училище по застраховане и финанси

2) Технически колеж – Ловеч

Резюме. Във връзка с описаните за даден триъгълник ABC  конични сече-
ния е установено едно обобщение на теорема на Чезар Кошница. Описаното 
обобщение е свързано със специални криви в равнината на ABCΔ  и спрегна-
ти спрямо описаното конично сечение точки.

Keywords: triangle, conic, Euler circle, Euler line, conjugate lines

Увод. За произволен неправоъгълен триъгълник ABC  с център на описа-
ната окръжност O  е известна следната теорема на Кошница: Ако центровете 
на описаните окръжности за BCOΔ , CAOΔ  и ABOΔ  са съответно aO , 

bO  и cO , то правите aAO , bBO  и cCO  се пресичат в една точка (Simeonov, 
1992).

Оказва се, че теоремата на Кошница може да се обобщи, като описаната 
около ABCΔ  окръжност се замени с произволно описано за ABCΔ  конично 
сечение ( )k O , което има за център точка O , нележаща на никоя от страните 
BC , CA  и AB . От друга страна, в специалния случай, когато O  лежи на ня-
коя от страните BC , CA  и AB , се получава интересен вариант на теоремата 
на Кошница. Затова ще разгледаме двата случая поотделно.

Разглеждаме произволен триъгълник ABC . Спрямо ABCΔ  ще използваме 

барицентрични координати, като ( )1,0,0A , ( )0,1,0B  и ( )0,0,1C  (Paskalev 

& Chobanov, 2015). Средите на страните BC , CA  и AB  означаваме съответ-

но с 
1 10, ,
2 2aM ⎛ ⎞

⎜ ⎟
⎝ ⎠

, 
1 1,0,
2 2bM ⎛ ⎞

⎜ ⎟
⎝ ⎠

 и 
1 1, ,0
2 2cM ⎛ ⎞

⎜ ⎟
⎝ ⎠

, а с 
1 1 1, ,
3 3 3

G ⎛ ⎞
⎜ ⎟
⎝ ⎠

 – медицен-

търа ABCΔ . В равнината на ABCΔ  ще разглеждаме произволно конично 

сечение ( )k O  с център ( )0 0 0, ,O x y z  ( )0 0 0 1 .x y z+ + =  
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Преди да преминем към обобщението на теоремата на Кошница, ще при-
помним някои понятия, които са свързани с това обобщение.

Описана крива и асоциирани с нея Ойлерова права и Ойлерова крива. 
Спрегнати точки спрямо описана крива. Забележителните за триъгълника пра-
ва на Ойлер и окръжност на Ойлер могат да се обобщят спрямо произволна опи-
сана за ABCΔ  крива ( )k O . Освен това изогоналното изображение в равнината 
на ABCΔ  може да се обобщи спрямо ( )k O . Ще разгледаме различните възмож-
ности в зависимост от положението на центъра O  в равнината на ABCΔ .

1. Центърът ( )000 ,, zyxO  на ( )k O  е точка, различна от aM , bM  и cM . В 
този случай координатите на точките от ( )k O  удовлетворяват уравнението

( )1  ( ) ( ) ( ) ( ) 0212121: 000000 =−+−+− xyzzzxyyyzxxOk .
Определяме правите ah , bh  и ch  като минаващи съответно през върхове-

те A , B  и C  и успоредни съответно на правите aOM , bOM  и cOM . Тези 

прави се пресичат в една точка ( )0 0 01 2 ,1 2 ,1 2H x y z− − − , която се получава 

от O  посредством равенството 
1
2

GH GO=
JJJG JJJG

. Тъй като точката H  притежава 

свойства, подобни на ортоцентъра, ще я наричаме ортоид на ABCΔ  относ-
но ( )k O , а правата OH  – Ойлерова права, асоциирана с ( )k O . Средите 
на отсечките AH , BH , CH  и точките aM , bM , cM , ah BC∩ , bh CA∩ , 

ch AB∩  лежат на едно конично сечение Ω , което наричаме Ойлерова крива, 

асоциирана с ( )k O  (Grozdev & Nenkov, 2014). Ойлеровата крива Ω  има за 

център средата 0 0 01 1 1, ,
2 2 2
x y z

F
− − −⎛ ⎞

⎜ ⎟
⎝ ⎠

 на отсечката OH .

Двойките изогонално спрегнати точки спрямо ABCΔ  също могат да се 
обобщят по отношение на описаното централно коничното сечение ( )k O . 
Нека ( ), ,P P PP x y z  ( )1P P Px y z+ + =  е точка от равнината на ABCΔ , която 
не лежи върху ( )k O . Еднозначно е определена точката ( ), ,Q Q QQ x y z , чиито 

координати са следните:

( )2  ( )
( )

0 01 2 P P
Q

x x y z
x

Pϑ
−

= , ( )
( )
0 01 2 P P

Q

y y z x
y

Pϑ
−

= , ( )
( )

0 01 2 P P
Q

z z x y
z

Pϑ
−

= ,

където ( ) ( ) ( ) ( )0 0 0 0 0 01 2 1 2 1 2P P P P P PP x x y z y y z x z z x yϑ = − + − + − .
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Точката Q  ще наричаме спрегната на P  спрямо ( )k O .

2. Центърът O  на ( )k O  е някоя от точките aM , bM  и cM . Нека 
cO M≡  и ( )1 , ,0C l m  ( )1l m+ =  е точка от правата AB . Тогава съществува 

единствена крива ( ) ( )1,ck O k M C≡  с център в точката cM , която има след-
ното уравнение

( )3  ( )1, : 0ck M C lyz mzx xy+ + = , ( )1l m+ = .
В този случай разглеждаме ортоида H  като точка, съвпадаща с върха C, 

а Ойлеровата права е правата cCM . Ойлеровата крива ( )1,cM CΩ  опреде-
ляме като минаваща през aM , bM , cM , C  и 1C  (тази крива е единствена, 
защото минава през пет различни точки). Центърът на ( )1,cM CΩ  е средата 

1 1 1, ,
4 4 2

F ⎛ ⎞
⎜ ⎟
⎝ ⎠  

на отсечката cCM .

Ако точката P  не лежи върху ( ),ck M C1 , то еднозначно е определена 

точка ( ), ,Q Q QQ x y z , чиито координати са следните:

( )4  
( )1,

P P
Q

ly zx
P Cϑ

= , 
( )1,

P P
Q

mz xy
P Cϑ

= , 
( )1,

P P
Q

x yz
P Cϑ

= ,

където ( )1, P P P P P PP C ly z mz x x yϑ = + + .

Точката Q  ще наричаме спрегната на P  спрямо ( ),ck M C1 .

Обобщение на теоремата на Кошница. Нека центърът O  на ( )k O  не 
лежи върху никоя от правите BC , CA  и AB . Основната част в намирането 
на обобщение на теоремата на Кошница е откриването на подходящи точ-
ки, които да заменят центровете на описаните окръжности. Центровете на 
описаните окръжности са пресечни точки на симетрали. От друга страна, 
симетралите са прави, които минават през средите на страните на триъгъл-
ника и са спрегнати с тях спрямо описаната окръжност на ABCΔ . Затова 
ще заменим симетралите на отсечките OA , OB  и OC  със съответните им 
спрегнати спрямо ( )k O  прави, минаващи съответно през средите на OA , 
OB  и OC .

Нека as  е спрегната права на OA  спрямо ( )k O , минаваща през средата 
на отсечката OA . По същия начин през средите на отсечките OB  и OC  оп-
ределяме съответно правите bs  и cs . Ще намерим координатите на точките 

b c as s O∩ = , c a bs s O∩ =  и a b cs s O∩ = . За целта трябва да намерим уравне-
нията на правите as , bs  и cs .
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От резултатите, получени в (Гроздев & Ненков, 2015), следва, че ако век-
торът ( )1 2 3, ,v v v v

G
 е спрегнат с вектора ( )1 2 3, ,u u u u

G
, то са изпълнени равен-

ствата

( )5  

( ) ( )
( ) ( )
( ) ( )

1 0 0 0 1 0 2 0 3

2 0 0 1 0 0 2 0 3

3 0 0 1 0 2 0 0 3

1 2 ,

1 2 ,

1 2 .

v x y z u x u x u

v y y u z x u y u

v z z u z u x y u

= − − − +⎡ ⎤⎣ ⎦
= − + − −⎡ ⎤⎣ ⎦
= − − + + −⎡ ⎤⎣ ⎦

От ( )5  следва, че спрегнати вектори на OA
JJJG

, OB
JJJG

 и OC
JJJG

 са съответно

( )( ) ( ) ( )( )0 0 0 0 0 0 01 2 , 1 2 , 1 2z y x y y z z− − − − −  ,

( ) ( )( ) ( )( )0 0 0 0 0 0 01 2 , 1 2 , 1 2x x x z y z z− − − − − ,

( ) ( ) ( )( )( )0 0 0 0 0 0 01 2 , 1 2 , 1 2x x y y y x z− − − − − . 

Оттук за параметричните уравнения на правите as , bs  и cs  намираме:

:as ( )( )0
0 0 0

1 1 2
2 a
x

x z y x t
+

= + − − , ( )0
0 01 2

2 a
y

y y y t= − − , ( )0
0 01 2

2 a
z

z z z t= + − ,

:bs ( )0
0 01 2

2 b
x

x x x t= + − , ( )( )0
0 0 0

1 1 2
2 b
y

y x z y t
+

= + − − , ( )0
01 2

2 b
y

z z zt= − − ,

:cs ( )0
0 01 2

2 c
x

x x x t= − − , ( )0
0 01 2

2 c
y

y y y t= + − , ( )( )0
0 0 0

1 1 2
2 c
z

z y x z t
+

= + − − .

От последните уравнения определяме координатите на точките aO , bO  и 

cO  във вида:

 ( )
( )( )

( ) ( )

( ) ( )
( )( )

( )

( ) ( ) ( )
( )( )

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

2 2 1 1 1
, , ,

1 2 1 2 1 2 1 2

1 2 2 1 1
, , ,

1 2 1 2 1 2 1 2

1 1 2 2 1
, , .

1 2 1 2 1 2 1 2

a

b

c

x y z x y z z y
O

y z z y

x z y z x y z x
O

z z x x

x y y x z x y z
O

y x x y

+ − − −⎛ ⎞
⎜ ⎟− − − −⎝ ⎠

− + − −⎛ ⎞
⎜ ⎟− − − −⎝ ⎠

− − + −⎛ ⎞
⎜ ⎟− − − −⎝ ⎠

( )6

Точките aO , bO  и cO  са центрове на конични сечения ( )a ak O , ( )b bk O  
и ( )c ck O , които са описани съответно за BCOΔ , CAOΔ  и ABOΔ . От ( )6  
лесно се определя, че уравненията на тези криви са следните:
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

: 1 2 1 2 1 2 0,

: 1 2 1 2 1 2 0,

: 1 2 1 2 1 2 0.

a a

b b

c c

k O x x yz y y zx z z xy y z x x y z

k O x x yz y y zx z z xy z x y x y z

k O x x yz y y zx z z xy x y z x y z

− + − + − − + + =

− + − + − − + + =

− + − + − − + + =

Фигура 1

Интересно е да се определи видът на кривите ( )a ak O , ( )b bk O  и ( )c ck O  
в зависимост от вида на ( )k O . От ( )7  и резултатите, получени в (Grozdev & 
Nenkov, 2014,а), следват твърденията:

Теорема 1. Ако кривата ( )k O  е елипса, то кривите ( )a ak O , ( )b bk O  и 
( )c ck O  са елипси, хомотетични на ( )k O  (фиг. 1).
Теорема 2. Ако кривата ( )k O  е хипербола, то кривите ( )a ak O , ( )b bk O  

и ( )c ck O  са хиперболи, хомотетични на ( )k O  или на нейната спрегната 
( )k O .
От теорема 1 следва, че когато ( )k O  е окръжност, кривите ( )a ak O , 
( )b bk O  и ( )c ck O  са окръжностите от теоремата на Кошница. Така, за да по-

лучим желаното обобщение, остава да проверим дали правите aAO , bBO  и 
cCO  минават през една точка. Затова от ( )6  определяме уравненията на тези 

прави във вида:
:aAO ( )( ) ( )( )0 0 0 0 0 01 1 2 1 1 2 0y z z y z y y z− − − − − = ,
:bBO ( )( ) ( )( )0 0 0 0 0 01 1 2 1 1 2 0x z z x z x x z− − − − − = ,
:cCO ( )( ) ( )( )0 0 0 0 0 01 1 2 1 1 2 0x y y x y x x y− − − − − = .

След несложни пресмятания от последните равенства намираме, че правите 
aAO , bBO  и cCO  минават през точката K , която има следните координати

( )7
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( )8  
( )( )( ) ( )( )( ) ( )( )( )0 0 0 0 0 0 0 0 0 0 0 01 1 1 2 1 1 1 2 1 1 1 2

, ,
y z x x z x y y x y z z

K
τ τ τ

− − − − − − − − −⎛ ⎞
⎜ ⎟
⎝ ⎠ ,

където ( )( )( )0 0 0 0 0 01 2 1 2 1 2 3x y z x y zτ = − − − + .

Фигура 2

Точката K  е безкрайна, когато за координатите на центъра O  е изпълнено 
равенството 0τ = . Това означава, че правите aAO , bBO  и cCO  са успоредни 
и направлението им се определя от вектора

( )( )( ) ( )( )( ) ( )( )( )( )0 0 0 0 0 0 0 0 0 0 0 01 1 1 2 , 1 1 1 2 , 1 1 1 2y z x x z x y y x y z z− − − − − − − − − .
Така получихме следните твърдения.
Теорема 3. Правите aAO , bBO  и cCO  минават през една крайна или 

безкрайна точка K  (фиг. 2, 3).
Теорема 4. Правите aAO , bBO  и cCO  са успоредни тога-

ва и само тогава, когато O  лежи върху кривата от трета степен 
( )( )( )0 0 0 0 0 01 2 1 2 1 2 3 0x y z x y z− − − + =  (фиг. 3).

Теорема 3 се явява обобщение на формулираната в началото теорема на 
Кошница. Затова точката K  (крайна или безкрайна) ще наричаме точка на 
Кошница спрямо ( )k O . От теорема 4 следва, че точката на Кошница е без-
крайна само когато центърът на ( )k O  е точка от една специална крива от 
трета степен. Случаят, в който K  е крайна, също се характеризира със забе-
лежително свойство. Той е свързан със спрегнатостта спрямо  ( )k O . След 
заместване на координатите ( )8  в равенствата ( )2  се вижда, че спрегнатата 
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точка на K  е точката 0 0 01 1 1, ,
2 2 2
x y z

F
− − −⎛ ⎞

⎜ ⎟
⎝ ⎠

, която е центърът на Ойлеро-

вата крива, асоциирана с ( )k O . Така получихме следното
Следствие 1. Точката на Кошница и центърът на Ойлеровата крива, асо-

циирана с ( )k O , са спрегнати точки спрямо ( )k O .
От следствие 1 се получава, че когато ( )k O  е описаната за ABCΔ  окръж-

ност, точката на Кошница е изогонално спрегната с центъра на Ойлеровата 
окръжност.

Едно конично сечение с център върху Ойлеровата права. Освен точ-
ката на Кошница с центровете aO , bO  и cO  на кривите ( )a ak O , ( )b bk O  и 

( )c ck O  е свързано и едно специално конично сечение, което е описано около 
a b cO O OΔ .
Нека as  е спрегната права на b cO O  спрямо ( )k O , минаваща през средата 

на отсечката b cO O . По същия начин през средите на отсечките c aO O  и a bO O  
определяме съответно правите bs  и cs . Тъй като векторите ( )0 0 01 , ,x y z− − , 
( )0 0 0,1 ,x y z− − −  и ( )0 0 0, ,1x y z− − −  са спрегнати съответно на b cO O

JJJJJG
, c aO O
JJJJJG

 
и a bO O
JJJJJG

, то параметричните уравнения на правите as′ , bs′  и cs′  се представят 
във вида

Фигура 3
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Чрез тези уравнения установяваме, че правите  as′ , bs′  и cs′  се пресичат в 
една точка 1O , която има следните координати

( )9  ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 0 0
1

1 3 1 3 1 3
, ,

x y z x y z x y z x y z
O

⎛ ⎞Δ − − Δ − − Δ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟
⎝ Δ Δ Δ ⎠

,

където ( )( )( )0 0 01 2 1 2 1 2x y zΔ = − − − .
Точката 1O  е център на конично сечение ( )1k O , което е описано за 
a b cO O OΔ . Ще определим уравнението на ( )1k O . За целта извършваме смя-

на на координатния триъгълник ABC  с a b cO O O . Ако координатите на точка 
P  спрямо ABCΔ  са ( ), ,x y z , а спрямо a b cO O OΔ  са ( ), ,x y z′ ′ ′ , то са изпъл-
нени равенствата

( )
( )( )

( ) ( )0 0 0 0 0 0 0 0

0 0 0 0

2 2 1 1 1
1 2 1 2 1 2 1 2

x y z x x z x y
x x y z

y z z y
+ − − −

′ ′ ′= + +
− − − −

,

( ) ( )
( )( )

( )0 0 0 0 0 0 0 0

0 0 0 0

1 2 2 1 1
1 2 1 2 1 2 1 2

y z y z x y y x
y x y z

z z x x
− + − −

′ ′ ′= + +
− − − −

,

( ) ( ) ( )
( )( )

0 0 0 0 0 0 0 0

0 0 0 0

1 1 2 2 1
1 2 1 2 1 2 1 2

z y z x z x y z
z x y z

y x x y
− − + −

′ ′ ′= + +
− − − −

.

( )
( )( ) ( )

( )
( )( )

( )
( )( )

0 0 0 0
0

0 0

0 0 0 0 0
0

0 0

0 0 0 0 0
0

0 0

4 3 1
1 ,

2 1 2 1 2

4 3 1
: ,

2 1 2 1 2

4 3 1
,

2 1 2 1 2

a

a a

a

y z x x
x x t

y z

z x y z y
s y y t

z x

x y z y z
z z t

x y

⎧ + −
′= + −⎪ − −⎪

⎪ + − −⎪′ ′= −⎨ − −⎪
⎪ + − −⎪ ′= −

− −⎪⎩

( )
( )( )

( )
( )( ) ( )

( )
( )( )

0 0 0 0 0
0

0 0

0 0 0 0
0

0 0

0 0 0 0 0
0

0 0

4 3 1
,

2 1 2 1 2

4 3 1
: 1 ,

2 1 2 1 2

4 3 1
,

2 1 2 1 2

b

b b

b

y z x z x
x x t

y z

z x y y
s y y t

z x

x y z x z
z z t

x y

⎧ + − −
′= −⎪ − −⎪

⎪ + −⎪′ ′= + −⎨ − −⎪
⎪ + − −⎪ ′= −

− −⎪⎩

( )
( )( )

( )
( )( )

( )
( )( ) ( )

0 0 0 0 0
0

0 0

0 0 0 0 0
0

0 0

0 0 0 0
0

0 0

4 3 1
,

2 1 2 1 2

4 3 1
: ,

2 1 2 1 2

4 3 1
1 .

2 1 2 1 2

c

c c

c

y z x y x
x x t

y z

z x y x y
s y y t

z x

x y z z
z z t

x y

⎧ + − −
′= −⎪ − −⎪

⎪ + − −⎪′ ′= −⎨ − −⎪
⎪ + −⎪ ′= + −

− −⎪⎩
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От тези равенства следва

 ( ) ( )

( ) ( )

( ) ( )

0 0 0 0 0 0 0 0 0 0 0
0 0

0 0 0 0 0 0 0 0 0 0 0
0 0

0 0 0 0 0 0 0 0 0 0 0
0 0

1 2 1 2 1 ,

1 2 1 2 1 ,

1 2 1 2 1 .

x x y z x z x y z y y z x y z
y z

y z x y z x x y z y x y z x z
z x

z y z x y x x y z x y x y z z
x y

′ = − + + − + + −⎡ ⎤⎣ ⎦

′ = − + − + + + −⎡ ⎤⎣ ⎦

′ = − + − + + − +⎡ ⎤⎣ ⎦

( )10
 

От ( )10  следва, че координатите ( )1 1 1
, ,O O Ox y z′ ′ ′  на 1O  спрямо a b cO O OΔ  се 

изразяват с равенствата

( )11  ( )
1

2
0 0 0 01 2 2Ox x x y z′ = − − , ( )

1

2
0 0 0 01 2 2Oy y y z x′ = − − , ( )

1

2
0 0 0 01 2 2Oz z z x y′ = − − .

Сега заместваме ( )10  и ( )11  в уравнението 2 2 2
0 0 0 0x y z y z x z x y′ ′ ′ ′ ′ ′+ + =  на 

( )1 1k O  спрямо a b cO O OΔ  и получаваме уравнението 3   спрямо ABCΔ  във 
вида

( )1 :k O
( )( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 1 2 1 2 1 2 1 2 1 2

3 2 1 3 2 1 3 2 1 0.

x y z x x yz y y zx z z xy

x y z y z x x x z x y y y x y z z z x y z

− − − − + − + − +⎡ ⎤⎣ ⎦
+ + − + + − + + − + + =⎡ ⎤⎣ ⎦

От уравнението на ( )1k O  и резултатите, получени в (Гроздев & Ненков, 
2014,а), следва следната:

Теорема 5. Кривата ( )1k O  е хомотетична на ( )k O  с коефициент на 

хомотетия 
( )( )( )

0 0 0

0 0 01 2 1 2 1 2
x y z

x y z
±

− − −
.

Оттук следва, че кривите ( )k O  и ( )1k O  са от един и същи вид. Това се 
уточнява чрез следните следствия:

Следствие 2. Ако кривата ( )k O  е елипса, то кривата ( )1k O  е елипса 
(фиг. 2).

Следствие 3. Ако кривата ( )k O  е хипербола, то кривата ( )1k O  е хи-
пербола.

Като използваме координатите ( )9  на 1O , след известни несложни пре-

смятания установяваме, че 1O  лежи на една права с точките ( )0 0 0, ,O x y z  и 
1 1 1, ,
3 3 3

G ⎛ ⎞
⎜ ⎟
⎝ ⎠

. Следователно е изпълнена следната
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Теорема 6. Ойлеровата права ABCΔ , асоциирана с ( )k O , минава през 
центъра 1O  на ( )1k O  (фиг. 2).

От следствие 2 и теорема 6 следва, че ако ( )k O  е описаната за ABCΔ  
окръжност, то ( )1k O  е окръжност, центърът на която лежи върху Ойлеровата 
права на ABCΔ . Нещо повече, от теорема 5 следва, че ако α , β  и γ  са ъг-
лите на ABCΔ , то отношението на радиусите на ( )k O  и ( )1k O  е равно на 
8cos cos cosα β γ .

Вариант на теоремата на Кошница при описана крива с център върху 
някоя от правите BC , CA  и AB . Нека cO M≡  и ( )1 , ,0C l m  ( )1l m+ =  е 
точка от правата AB . Тогава съществува единствена описана за ABCΔ  крива 

( ) ( )1,ck O k M C≡  с център cM , точките на която удовлетворяват уравнение 
( )3 . В този случай, ако cs  е правата, спрегната на cCM  и минаваща през 
средата на отсечката cCM , то a c c aO s M M= ∩  и b c c bO s M M= ∩ . Коорди-
натите на центровете aO  и bO  са следните

( )12  
1 2 1 1, ,
4 2 4a

lO
m m

−⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
1 1 2 1, ,
2 4 4b

mO
l l

−⎛ ⎞
⎜ ⎟
⎝ ⎠

.

Фигура 4
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От ( )12  за уравненията на правите aAO  и bBO  намираме:
:aAO 2 0y mz− = , :bBO 2 0x lz− = .

От тези уравнения намираме пресечната им точка 
2 2 1, ,
3 3 3a bAO BO K l m⎛ ⎞∩ = ⎜ ⎟

⎝ ⎠
. Сега лесно се проверява, че координатите на 

точката K  удовлетворяват уравнението 0mx ly− =  на правата 1CC . Така по-

лучаваме следната
Теорема 7. Правите aAO , bBO  и 1CC  се пресичат в една точка (фиг. 4)
Точката K  и в този случай ще наричаме точка на Кошница спрямо 

( ) ( )1,ck O k M C≡ . От ( )4  и координатите на K  следва, че е изпълнено 

твърдението: Точката на Кошница е спрегната с центъра 
1 1 1, ,
4 4 2

F ⎛ ⎞
⎜ ⎟
⎝ ⎠

 на 

Ойлеровата крива  ( )1,cM CΩ , асоциирана с ( )1,ck M C . По този начин се 
установява, че и в този случай е изпълнено следствие 1. Ако ( )1,ck M C  е 
описаната за ABCΔ  окръжност (това се случва, когато 90ACB = °) ), 1CC  е 
височината на ABCΔ  през C  и затова K  е точка от височината към хипоте-
нузата на ABCΔ .

Заключение. Извършените наблюдения върху зависимостите между ос-
новните елементи в теоремата на Кошница ни позволиха да получим нейно 
обобщение за всяко описано около триъгълника конично сечение. Извърше-
ните изследвания доведоха до откриване на допълнителни свойства на точ-
ката на Кошница. Освен това получихме и една допълнителна крива, която е 
тясно свързана с теоремата на Кошница, и други забележителни свойства на 
триъгълника, зависещи от описаната крива.
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A GENERALIZATION OF A CESAR KOSHNICA THEOREM 

Abstract. In relation with some described conics of a given triangle ABC  a 
generalization of a Cesar Koshnica theorem is established. The generalization is 
connected with some specials curves in the plane of ABCΔ  and conjugated points 
with respect to the described conic. 
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