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За някои геометрични твърдения може да се каже, че притежават естествени 
обобщения. Често най-естественото обобщение е скрито в особено построение, 
което съдържа някои специални конструкции. Пример за такова твърдение е 
следната задача от международната олимпиада по математика през 2013 г.: Външ-
новписаните окръжности ( )a aIΓ , ( )b bIΓ  и ( )c cIΓ  на ABC∆  се допират до 
страните му BC , CA  и AB  съответно в точките 1A , 1B  и 1C . Да се докаже, че 
ако центърът на описаната около 1 1 1A B C∆  окръжност k  лежи върху описаната 
окръжност ( )OΓ  на ABC∆ , то ABC∆  е правоъгълен. (Гроздев&Ненков, 2013)

Допирните точки на ( )a aIΓ , ( )b bIΓ  и ( )c cIΓ  съответно с BC , CA  и AB , 
свързани със срещуположните им върхове, образуват чевиани, които се пресичат 
в добре познатата точка на Нагел за ABC∆  (Паскалев & Чобанов, 1985). Освен 
това всяко описано за ABC∆  конично сечение се свързва с еднозначно опреде-
лени вписани в ABC∆  конични сечения, които също определят точки на Нагел. 
Конструкцията, съдържаща тези конични сечения, наричаме Фойербахова конфи-
гурация (Ненков, 2010).

От друга страна, петите на чевианите през произволна точка P  от равнината 
на ABC∆  лежат на една окръжност – наричаме я окръжност на Чева. Тази ок-
ръжност пресича за втори път страните на ABC∆  в точки, които, свързани със 
срещуположните им върхове, образуват чевиани през точка P′  (Хитов, 1990). По 
отношение на произволно описано за ABC∆  конично сечение ( )k O  чрез спе-
циална конструкция на всяка точка P  еднозначно може да се съпостави точка P′
, така че петите на чевианите през точките P  и P′  определят конично сечение, 
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което наричаме крива на Чева за точката P  (и P′ ). Когато ( )k O  съвпадне с оп-
исаната за ABC∆  окръжност, кривата на Чева преминава в окръжността на Чева 
за точките P  и P′  (Гроздев & Ненков, 2014).

Въз основа на тези две наблюдения можем да очакваме, че най-естественото 
обобщение на олимпиадната задача се получава при разглеждане на кривата на 
Чева за точка на Нагел в подходяща Фойербахова конфигурация. Затова в началото 
трябва да припомним какво по-точно определяме като Фойербахова конфигурация 
и крива на Чева.

Обичайните изследвания, които извършваме върху свойствата на Фойербахо-
ви конфигурации и криви на Чева, осъществяваме с помощта на барицентрични 
координати. Затова в по-нататъшните изследвания ще използваме барицентрични 
координати спрямо даден ABC∆ , като ( )1,0,0A , ( )0,1,0B  и ( )0,0,1C  (Паскалев 
& Чобанов, 1985). Средите на страните BC , CA  и AB  означаваме съответно 

с 1 10, ,
2 2aM  

  
, 1 1,0,

2 2bM  
  

 и 1 1, ,0 .
2 2cM  

  
 Освен това в построяването на ко-

ничните сечения и забелязването на някои от техните свойства ще използваме 
конструктивните и динамични възможности на програмата “THE GEOMETER’S 
SKETCHPAD” (GSP).

1. Фойербахови конфигурации. Нека ( ), ,I I II x y z  ( )1I I Ix y z+ + =  е произ-
волна точка от равнината на ABC∆ , нележаща на никоя от правите BC , CA , AB , 

b cM M , c aM M  и a bM M . Спрямо ABC∆  точката I  има спрегнат триъгълник A B CI I I  

(Паскалев & Чобанов, 1985). Точките ( ), ,I I II x y z , , ,
1 2 1 2 1 2

I I I
A

I I I

x y zI
x x x

 − − − − 
, 

, ,
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 и , ,

1 2 1 2 1 2
I I I

C
I I I

x y zI
z z z

 − − − − 
 са центрове на конични 

сечения ( )k I , ( )Ak I , ( )Bk I  и ( )Ck I , вписани в ABC∆ . Средите на отсечките 
AII , BII , CII , CB II , AC II  и BA II  лежат на конично сечение ( )k O , описано за 
ABC∆  (Ненков, 2010). От резултатите, получени в (Ненков, 2008), следва, че урав-

нението на кривата ( )k O  и координатите на центъра й O  са съответно следните:

( )1 	 ( ) 2 2 2: 0I I Ik O x yz y zx z xy+ + = ,

( )2 ( )
( )( )( )
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Коничните сечения ( )k I , ( )Ak I , ( )Bk I , ( )Ck I  и ( )k O  са обвързани с ре-
дица общи свойства. Поради едно от тях ще казваме, че те са елементи на една 
Фойербахова конфигурация (Ненков, 2010).

Всяка от кривите ( )k I , ( )Ak I , ( )Bk I , ( )Ck I  и ( )k O  чрез центъра си опре-
деля еднозначно останалите. Изключения се получават само когато центърът O  
съвпада с някоя от точките aM , bM  и cM . Ако aO M≡ , коничното сечение ( )k O  
не е определено еднозначно от центъра си. Затова ще го определим с помощта на 
центъра I  на съответното му вписано конично сечение ( )k I . От ( )2  следва, че 

aO M≡  тогава и само тогава, когато е изпълнено равенството 1 2 2 0I I Ix y z− − = . 
Последното равенство означава, че точката I  лежи на хиперболата aχ , която има 
уравнение :1 2 2 0a x yzχ − − =  (тази хипербола има за център точката, симетрична 
на A  спрямо aM , а асимптотите й са успоредни на AC  и AB  (фиг. 1)). Нека сега 
I  е точка от хиперболата aχ . Точката I  е център на единствено конично сечение 

( )k I , което е вписано в ABC∆ . Освен това точката I  има спрямо ABC∆  спрегнат 
триъгълник A B CI I I . Средите на отсечките AII , BII , CII , CB II , AC II  и BA II  ще 
лежат на описано около ABC∆  конично сечение ( )ak M , което има за център 
точката aM . Обратно, на така получената крива ( )ak M  можем да съпоставим 
кривата ( )k I , от която е получена. По този начин получаваме съответствие между 
вписаните конични сечения ( )k I с центрове върху хиперболата aχ  и описаните 

Фигура 1
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конични сечения с център aM . Освен това след заместване на координатите на 
точките AI , BI  и CI  в уравнението на aχ , лесно се установява, че те също лежат 
на aχ  (фиг. 1). Следователно всяка от тези точки поражда същата крива ( )ak M , 
както и точката I . Така всяка от точките I , AI , BI  и CI  поражда по единствен 
начин кривите ( )k I , ( )Ak I , ( ) ,Bk I  ( )Ck I  и ( )ak M . Поради специалните 
положения, които имат центровете на кривите ( )k I , ( )Ak I , ( )Bk I , ( )Ck I  и 

( )ak M , ще казваме, че те са елементи на специална Фойербахова конфигурация. 

По аналогичен начин се получават специални Фойербахови конфигурации, в 
които участват описани за ABC∆  конични сечения с центрове точките bM  и cM . 
Когато кривите ( )k I , ( )Ak I , ( )Bk I , ( )Ck I  и ( )k O  са елементи на Фойербахова 
конфигурация, за която { }, ,a b cO M M M∉ , ще казваме още, че разглеждаме обща 
Фойербахова конфигурация. Тъй като произволна Фойербахова конфигурация може 
да се разглежда като породена само от точката I  (център на вписана в ABC∆  
крива), то всички аналитични резултати ще зависят само от координатите на I . 
Затова произволна специална Фойербахова конфигурация притежава всички свой-
ства, които имат общите Фойербахови конфигурации. Тъй като за една специална 
Фойербахова конфигурация е изпълнено едно от равенствата 1 2 2 0I I Ix y z− − = , 
1 2 2 0I I Iy z x− − = , 1 2 2 0I I Iz x y− − = , тя притежава и по-специални свойства. 
Такова специално и основно свойство е, че по отношение на специалните Фойер-
бахови конфигурации всеки триъгълник се държи като правоъгълен триъгълник. 
Този факт ясно ще се прояви в обобщението на олимпиадната задача.

2. Крива на Чева за точка на Нагел. Нека кривите ( )k I , ( )Ak I , ( )Bk I , ( )Ck I  
и ( )k O  са елементи на една Фойербахова конфигурация и ( )Ak I , ( )Bk I , ( )Ck I  
се допират до BC , CA  и AB  съответно в точките

1
1 2 1 20, ,

2 2
I I

I I

y zA
x x

 − −
 
 

, 
1

1 2 1 2,0,
2 2

I I

I I

x zB
y y

 − −
 
 

, 
1

1 2 1 2, ,0
2 2

I I

I I

x yC
z z

 − −
 
 

.

Правите 1AA , 1BB  и 1CC  се пресичат в една точка ( )1 2 ,1 2 ,1 2I I IN x y z− − −  , 
която ще наричаме точка на Нагел за DABC спрямо тройката криви ( )AIk  , ( )BIk  и ( )CIk  (Ненков, 2010). По аналогичен начин спрямо тройките криви 

( )Ik , ( )BIk  и ( )CIk ; ( )Ik , ( )CIk  и ( )AIk ; ( )Ik , ( )AIk  и ( )BIk  се получа-

ват точките на Нагел 
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12  (Ненков, 2010). Ще обърнем специално внимание 
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на точката N, защото останалите точки на Нагел се получават, като заменим впи-
саната крива ( )k I  с ( )Ak I , ( )Bk I  и ( )Ck I . От резултатите, получени в (Гроздев 
& Ненков, 2014), е известно, че през точките 1A , 1B  и 1C  минава крива от втора 
степен, уравнението на която може да се запише по следния начин

( ) ( )( )2 2 2
11 22 33: 0N I I Ic k x yz y zx z xy a x a y a z x y z+ + + + + + + = ,

където
( )( )( )( )( )( )1 2 1 2 1 2 1 4 1 4 1 4

4
I I I I I I

I I I

x y z x y z
k

x y z
− − − − − −

= ,

( )( ) ( )( )11 1 2 1 2 4 1 2 1 2I I I I I I Ia y z x y z y z= − − − − −   ,

( )( ) ( )( )22 1 2 1 2 4 1 2 1 2I I I I I I Ia z x x y z z x= − − − − −   ,

( )( ) ( )( )33 1 2 1 2 4 1 2 1 2I I I I I I Ia x y x y z x y= − − − − −   .

Кривата Nc  наричаме крива на Чева за точката на Нагел N . Кривата на Чева 
Nc , както е показано в (Гроздев & Ненков, 2014), пресича за втори път правите 

BC , CA , AB  съответно в точките
( )( )

( )( )
( )( )

( )( )2

4 1 2 1 2 4 1 2 1 2
0, ,

2 1 2 1 2 2 1 2 1 2
I I I I I I I I I I

I I I I I I

x y z x y x y z z x
A

x y z x y z
− − − − − − 

 − − − − 
,

( )( )
( )( )

( )( )
( )( )2

4 1 2 1 2 4 1 2 1 2
,0,

2 1 2 1 2 2 1 2 1 2
I I I I I I I I I I

I I I I I I

x y z x y x y z y z
B

y z z y z z
− − − − − − 

 − − − − 
,

( )( )
( )( )

( )( )
( )( )2

4 1 2 1 2 4 1 2 1 2
, ,0

2 1 2 1 2 2 1 2 1 2
I I I I I I I I I I

I I I I I I

x y z z x x y z y z
C

z x y z x y
− − − − − − 

 − − − − 
.

Тези точки заедно с върховете определят правите 2AA , 2BB  и 2CC , които 
минават през една точка N ′ , чиито координати се изразяват по следния начин:

( )( ) ( )( )
( ) ( )2 2 2

4 1 2 1 2 4 1 2 1 2
48 32 4 1

I I I I I I I I I I
N

I I I I I I I I I I I I I I I I I I

x y z z x x y z x y
x

x y z x y z y z z x x y y z z x x y′

− − − − − −      =
− + + + + + −

,

( )( ) ( )( )
( ) ( )2 2 2

4 1 2 1 2 4 1 2 1 2
48 32 4 1

I I I I I I I I I I
N

I I I I I I I I I I I I I I I I I I

x y z x y x y z y z
y

x y z x y z y z z x x y y z z x x y′

− − − − − −      =
− + + + + + −

,

( )( ) ( )( )
( ) ( )2 2 2

4 1 2 1 2 4 1 2 1 2
48 32 4 1

I I I I I I I I I I
N

I I I I I I I I I I I I I I I I I I

x y z y z x y z z x
z

x y z x y z y z z x x y y z z x x y′

− − − − − −      =
− + + + + + −

.

Относно координатите на центъра ( )O N  на кривата на Чева Nc  в (Гроздев & 
Ненков, 2014) е показано, че те се определят с равенствата
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( ) ( ) ( ) ( )
( ) ( )( ){

( )( ) ( )( ) ( )}

2
2 2 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 2 1 2 2 1 2 1 2 1 2 2 ,

I
I I I IO N

I I I

I I I I I I I I I I I I

xx x x y z
x y z

y z x z x y x y z x y z

= × − − − +
− − −

+ − − − − − − − − −  

( ) ( ) ( ) ( )
( ) ( )( ){

( )( ) ( )( ) ( )}

2
2 2 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 2 1 2 2 1 2 1 2 1 2 2 ,

I
I I I IO N

I I I

I I I I I I I I I I I I

yy y y z x
x y z

z x y x y z y z x y z x

= × − − − +
− − −

+ − − − − − − − − −  

( ) ( ) ( ) ( )
( ) ( )( ){

( )( ) ( )( ) ( )}

2
2 2 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 2 1 2 2 1 2 1 2 1 2 2 .

I
I I I IO N

I I I

I I I I I I I I I I I I

zz z z x y
x y z

x y z y z x z x y z x y

= × − − − +
− − −

+ − − − − − − − − −  
Едно забележително свойство на центъра на кривата на Чева Nc  е, че при 

произволна Фойербахова конфигурация той лежи върху правата, определена от 
точките N  и N ′  (Гроздев & Ненков, 2014). В следващия пункт ще покажем още 
едно свойство на центъра ( )O N , което е свързано със специалните Фойербахови 
конфигурации и една специална крива от трета степен в равнината на ABC∆ .

3. Необходими и достатъчни условия центърът ( )O N  да лежи върху 
описаната крива ( )k O . Едно обобщение на формулираната в началото задача 
е направено в (Гроздев & Ненков, 2013). Сега ще покажем обобщение, в което 
основните геометрични елементи се обхващат по естествен начин от специални 
Фойербахови конфигурации. Нека N  е точка на Нагел, принадлежаща на Фойер-
бахова конфигурация, съдържаща кривите ( )k I , ( )Ak I , ( )Bk I , ( )Ck I  и ( )k O , 
а Nc  е съответната й крива на Чева. От ( )1  следва, че центърът ( )O N  на Nc  ще 
лежи върху ( )k O  тогава и само тогава, когато е изпълнено равенството

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 0I I IN O N O N O N O N O N Ox y z y z x z x y+ + = .

След заместване в това равенство на координатите на центъра N (O) получаваме

( ) ( ) ( )
( )( )( ) ( )( )( )

3 3 31 2 1 2 1 2

2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 0.

I I I

I I I

I I I I I I I I I I I I I I I

x y z
x y z

x y z x y z x y z y z x z x y

×
− − −

× − − − − − − − − − − =  
Последното равенство показва, че е изпълнено следното
Твърдение 1. Една Фойербахова конфигурация за ABC∆  притежава точка 

на Нагел, чиято крива на Чева има за център точка от описаната крива, тогава 
и само тогава, когато един от центровете на вписаните в DABC криви лежи 
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върху някоя от кривите: ( )( )( ): 2 1 2 1 2 1 2 0K xyz x y z− − − − = , :1 2 2 0a x yzχ − − = , 
:1 2 2 0b y zxχ − − = , :1 2 2 0c z xyχ − − = .
От Твърдение 1 се получават някои интересни следствия. Първо да отбележим, 

че видът на кривата ( )k O  се определя от общите решения на уравнението й (1)
и уравнението на безкрайната права 0x y z+ + = . От тези уравнения се получава 

( )2 2 2 2 2 2 2 0I I I I Iy x x y z xy x y+ + − + = . Последното уравнение има реални решения 
само когато изразът ( )( )( )1 2 1 2 1 2I I ID x y z= − − − −  е положителен. В тези случаи 

( )k O  е хипербола, а в останалите – елипса. Ако I K∈ , то е изпълнено 2 I I ID x y z= −  . 
От друга страна, точките от K, които са различни от Ma, Mb и Mc, имат една отрица-
телна и две положителни координати (фиг. 2). Следователно, когато I K∈ , кривата 

( )k O  е хипербола. Така получаваме следното
Следствие 1. Ако I K∈ , то съответната Фойербахова конфигурация за 

ABC∆  се състои от хиперболи (фиг. 2).
Оттук следва още
Следствие 2. Ако една Фойербахова конфигурация за ABC∆  не е специална и 

се състои от елипси, тя не притежава точка на Нагел, чиято крива на Чева има 
за център точка от описаната крива ( )k O .

От следствие 2 непосредствено се получава
Следствие 3. Ако центърът O  на описаната окръжност ( ) ( )k O OΓ≡  не 

лежи върху страна на DABC, съответната Фойербахова конфигурация за DABC, 
състояща се от окръжности, не притежава точка на Нагел, чиято окръжност 
на Чева има център, лежащ на ( )k O .

Ако I Î K, можем да предположим, че някоя от точките IA, IB и IC също лежи 
върху K. Това е възможно, когато освен ( )( )( )2 1 2 1 2 1 2 0I I I I I Ix y z x y z− − − − =  
е  изпълнено и поне едно от  равенствата  ( )( )2 1 2 1 2 0I I I I Ix y z y z+ − − = , 

( )( )2 1 2 1 2 0I I I I Ix y z z x+ − − =  , ( )( )2 1 2 1 2 0I I I I Ix y z x y+ − − = . Лесно се проверява, 
че от тези четири равенства едновременно могат да бъдат изпълнени най-много 
две. Следователно

Следствие 4. Ако I Î K, то съответната Фойербахова конфигурация за DABC 
притежава най-много две точки на Нагел, чиито криви на Чева имат центрове, 
лежащи върху описаната крива ( )k O .

В случай че IA и IB са двете точки, лежащи върху K (фиг. 2), то центровете на 
вписаните криви координатно се представят по следния начин: 

2 6 2 6, ,3 6
2 2

I
 − + − + −  

,  6 6, ,1
6 6AI

 
−  

,  6 6, ,1
6 6BI

 
−  

, 
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2 6 2 6, ,3 6
2 2CI

 − − − − +  
 или 2 6 2 6, ,3 6

2 2
I

 − − − − +  
, 6 6, ,1

6 6AI
 

−  
, 

6 6, ,1
6 6BI

 
−  

, 2 6 2 6, ,3 6
2 2CI

 − + − + −  
. От тези координати се вижда, че 

точките AI  и BI  лежат на правата през върха C , която е успоредна на AB . Освен 
това тези точки са равно отдалечени от C .

Нека сега точката I  лежи върху някоя от хиперболите aχ , bχ  или cχ . Тогава 
породената от I  Фойербахова конфигурация за ABC∆  е специална. Както беше 
отбелязано, в този случай точките AI , BI  и CI  лежат върху същата хипербола. 
Така от твърдение 1 непосредствено се получава търсеното естествено обобщение 
на формулираната в началото задача във вид на следното

Следствие 5. За произволна специална Фойербахова конфигурация за ABC∆  
всяка точка на Нагел има крива на Чева, центърът на която лежи върху описа-
ната крива ( )k O  (Фиг. 3).

От следствие 5 и следствие 3 се вижда, че олимпиадната задача (за класическата 
точка на Нагел) се уточнява в следното

Фигура 2
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Следствие 6. Центърът на окръжността на Чева за точката на Нагел лежи 
върху описаната окръжност на ABC∆  тогава и само тогава, когато ABC∆  е 
правоъгълен.

Тъй като всяка Фойербахова конфигурация притежава четири точки на Нагел, 
от следствие 5 можем да останем с впечатление, че за произволна специална Фо-
йербахова конфигурация точките на Нагел имат четири криви на Чева, центровете 
на които лежат върху ( )k O . Оказва се обаче, че тези криви са две. За да обосновем 
това, ще уточним положението на центъра на кривата на Чева за точката на Нагел N  
върху ( )k O , когато cI χ∈ . В този случай е изпълнено равенството 1 2 2 0I I Iz x y− − =  . 

След заместване на последното равенство в координатите на центъра ( )O N  получа-

ваме ( ) ( )
( )( )

( )
( )( ) ( )( )

2

, ,
1 2 1 2 1 2 1 2 1 2 1 2

I I I I I I I

I I I I I I

x x y y y x zO N
x y x y x y

 − + − +
  − − − − − − 

. Но точката, която 

има такива координати, е средата на отсечката A BI I . Следователно ( )O N  е средата 
на A BI I  (фиг. 3). След заместване на същото равенство в координатите на N ′  по-

лучаваме 2 1 2 1 1, ,
1 2 1 2 1 2

I I

I I I

y xN
z z z

 − −′ − − − 
, т.е. CN N′ ≡ . Следователно точките N  и CN  

Фигура 3
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имат обща крива на Чева Nc , чийто център е средата на A BI I  (Фиг. 3). Оттук следва 

още, че точките 
2

2 1 10, ,
2 2

I

I I

xA
x x

 −
 
 

, 
2

2 1 1,0,
2 2

I

I I

yB
y y

 −
 
 

 и 
2

1 2 1 2, ,0
2 2

I I

I I

y xC
z z

 − −
 
 

 са 

допирните точки на ( )Ak I , ( )Bk I  и ( )k I  съответно с правите BC, CA и AB (фиг. 3). 
Сега, ако в горните разсъждения заменим точката I с IA (или IB), получаваме, че 
точките на Нагел NA и NB имат обща крива на Чева Nc , чийто център е средата на 
отсечката CII . Кривата Nc  минава през останалите шест допирни точки на кри-
вите k (I), k (IA), k (IB) и k (IC) с правите BC, CA и AB, които не принадлежат на Nc  
(фиг. 3). Освен това центровете на Nc  и Nc  са диаметрално противоположни точки 
за описаната крива ( )k O .

Последните резултати обобщаваме в следващите следствия.
Следствие 7. При всяка специална Фойербахова конфигурация за ABC∆  цен-

търът на кривата на Чева за произволна точка на Нагел е средата на някоя от 
отсечките A BI I , B CI I , C AI I , AII , BII  и CII .

Следствие 8. Ако cI χ∈ , то допирните точки на ( )Ak I , ( )Bk I  и ( )k I  съ-
ответно с правите BC , CA  и AB  лежат на кривата на Чева Nc .

Следствие 9. Ако cI χ∈ , то точките на Нагел N  и CN  имат обща крива на 
Чева Nc .

Следствие 10. При всяка специална Фойербахова конфигурация за ABC∆  
точките на Нагел имат две криви на Чева, центровете на които са диаметрално 
противоположни точки за описаната крива ( )k O .

4. Едно обобщение на кривата на Чева за точка на Нагел. От следствие 8 се 
вижда, че когато cO M≡ , допирните точки 2A , 2B  и 2C  на ( )Ak I , ( )Bk I  и ( )k I  
съответно с правите BC, CA и AB лежат на кривата на Чева Nc  за точката на 
Нагел N, минаваща през допирните точки 1A , 1B  и 1C  на ( )Ak I , ( )Bk I  и ( )Ck I  
съответно с правите BC, CA  и AB. От друга страна, при произволна Фойерба-
хова конфигурация двете тройки точки 1A , 1B , 1C  и 2A , 2B , 2C  са пети на две 
тройки чевиани за DABC, минаващи през точките на Нагел N  и CN . Но в (Гроз-
дев & Ненков, 2009) е показано, че шест точки от страните на триъгълник с тези 
свойства лежат на една крива от втора степен. Следователно е изпълнено следното

Твърдение 2. При произволна Фойербахова конфигурация за ABC∆  допир-

ните точки 
1

1 2 1 20, ,
2 2

I I

I I

y zA
x x

 − −
 
 

, 1
1 2 1 2,0,

2 2
I I

I I

x zB
y y

 − −
 
 

, 
1

1 2 1 2, ,0
2 2

I I

I I

x yC
z z

 − −
 
   

, 
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2
2 1 10, ,

2 2
I

I I

xA
x x

 −
 
 

, 2
2 1 1,0,

2 2
I

I I

yB
y y

 −
 
 

, 2
1 2 1 2, ,0

2 2
I I

I I

y xC
z z

 − −
 
 

 лежат на една крива 

от втора степен ( ), CK N N .

Фигура 4

О т  ко о р д и н ат и т е  н а  т оч к и т е  н а  Н а г е л  ( )1 2 ,1 2 ,1 2I I IN x y z− − −  и 







−−

−
−

−

II

I

I

I
C zz

x
z

yN
21
1,

21
12,

21
12 , както и от резултатите, получени в (Гроздев & Ненков, 

2009), следва, че уравнението на кривата ( ), CK N N  може да се представи по следния 
начин ( ), :CK N N

( )( )( ) ( )( )( )
( ) ( ) ( )( )( )
( )( )( ) ( ) ( ) ( )

2 2

2 2 2

2 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 2 1 2 1 2 1 2 2

1 2 1 2 1 2 2 1 2 1 2 1 2 0.

I I I I I I

I I I I I I I

I I I I I I I I

x y z x x y z y

x y z x y y z x yz

x y x y z zx x y z xy

− − − + − − − −

− − − − − − − − −

 − − − − − − − + − − = 
Всъщност след заместване на координатите на точките A1, B1, C1, A2, B2 и C2 в 

последното уравнение непосредствено се установява, че тези точки лежат на кри-
вата K (N, NC). По този начин получаваме още едно доказателство на твърдение 2.

Нека сега забележим, че от координатите на точките A1, B1, A2 и B2 се полу-

чават векторните равенства 
2 1

1 2
2

I

I I

xA B CI
x y

−=
 

 и 
2 1

1 2
2

I

I I

yB A CI
x y

−=
 

. Следователно 



395

Няколко свойства на един вид криви, породени от точка на Нагел

2 1 2 1A B B A CI  . Оттук следва, че ако ( ), CK N N  е изродена крива, тя се състои 
от две успоредни прави. Такива успоредни прави могат да се получат в следните 
два случая: 1) когато са колинеарни двете тройки точки ( )2 1 2, ,A B C  и ( )1 2 1, ,A B C  ; 
2) когато са колинеарни двете тройки точки ( )2 1 1, ,A B C  и ( )1 2 2, ,A B C . Според 
теоремата на Менелай случай 1) е възможен точно когато са изпълнени равен-

ствата 2 1 2

2 1 2

. . 1BA CB AC
CA AB BC

=  и 1 2 1

1 2 1

. . 1BA CB AC
CA AB BC

= . Пресмятанията показват, че и 

двете равенства са изпълнени тогава и само тогава, когато е в сила равенството 
1 2 2 0I I Ix y z− − = . Последното, както знаем, е изпълнено тогава и само тогава, 
когато aO M≡ . Аналогично се проверява, че случай 2) е възможен тогава и само 
тогава, когато е в сила равенството 1 2 2 0I I Iy z x− − = , т.е. тогава и само тогава, 
когато bO M≡  (Фиг. 4). Така получихме следното

Твърдение 3. Кривата ( ), CK N N  се състои от две успоредни прави тогава и 
само тогава, когато aO M≡  или bO M≡  (фиг. 4).

Случаите, в които кривата ( ), CK N N  не е изродена, тя притежава ед-

нозначно определен център W .  Ако ( )1 21 2 2 1, ,
4 4 4

I I II I

I I I I

x z yx xP
y x x y

− + − −
 
 

 и 

Фигура 5
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( )1 22 1 1 2, ,
4 4 4

I I II I

I I I I

y z xy yQ
y x x y

− + − −
 
 

 са среди съответно на отсечкитеA2B1 и B2A1, 

то е изпълнено равенството ( )( )1 2 1 2
4
I I

A B
I I

x y
PQ I I

x y
− −

=
 

. Оттук следва, че точките 

P и Q лежат на правата IAIB. Следователно четириъгълникът A1B2A2B1 е трапец, а 
правата IAIB минава през средите на основите му. Тъй като всяка крива от втора 
степен, която е описана около трапец, има за център точка, лежаща на правата 
през средите на основите му, то центърът W на K(N, NC) лежи върху правата IAIB. 
С това установихме следното

Твърдение 4. Центърът W  на неизродената крива K(N, NC) лежи върху пра-
вата A BI I  (Фиг. 5, 6, 7, 8, 9).

Фигура 6

Това свойство на центъра W позволява лесно да определим координатите му. 
Нека правата 2 1 1: , ,

2 2
I

I I

xl x t y t z
x x
−= = − = , която минава през точката A2 и е ус-

поредна на правата 1 2C C AB≡ , пресича за втори път ( ), CK N N  в точката 2A′ . 
От уравненията на l  и ( ), CK N N  за координатите на 2A′  намираме

 
( ) ( ) ( )( )

( )
( )( )( )

( )
2 2 2 2 2

2 2 2

2 1 1 2 1 2 1 2 1 2 1, ,
2 1 2 2 1 2 2

I I I I I I I I I I

I I I I I I I

x z z y x y x y x y
A

x z z x z z x

  − − + − − − − −  ′  − − 
. Сега 

правата през средите на отсечките 2 2A A′  и 1 2C C  (която е cM ) пресича A BI I  в 
центъра W. От уравненията на тези прави намираме координатите на W във вида 
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( )( )( )
( ) ( )( )( )22

1 2 1 2
1 2 1 2 1 2

I I I I I
W

I I I I I I

x x y y x
x

z z x y x y
− − −

=
− − − − −

,

( )( )( )
( ) ( )( )( )22

1 2 1 2
1 2 1 2 1 2

I I I I I
W

I I I I I I

y x y x y
y

z z x y x y
− − −

=
− − − − −

,

( )
( ) ( )( )( )

2

22

1 2
1 2 1 2 1 2

I I
W

I I I I I I

z z
z

z z x y x y
−

=
− − − − −

.

В твърдение 3 са определени случаите, в които кривата ( ), CK N N  е изродена. 
Тъй като конструкцията на ( ), CK N N  е твърде обща, не може да се очаква, че 
видът й в останалите случаи се определя по прост начин, както в твърдение 3. 
Наблюденията с GSP обаче показват, че видът на ( ), CK N N  запазва известно по-
стоянство в зависимост от положението на центъра O  на описаната крива ( )k O  . 
За да определим вида на ( ), ,CK N N  необходимо е да определим броя на общите 
точки на ( ), CK N N  и безкрайната права 0x y z+ + = . От уравненията на ( ), CK N N  
и безкрайната права намираме

( )( ) ( )( )
( ) ( ) ( )

2 2 2 2

2 2

2 1 2 1 2 2 1 2 1 2

1 2 2 1 2 1 2 0.

I I I I I I

I I I I I

y x y x x x y y

z x y x y xy

− − + − − −

 − − − − + − = 

Фигура 7
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Оттук следва, че видът на K (N, NC) зависи от знака на израза

( )( )
( )( ) ( )( )
( )( )

( ) ( ) ( ) ( ){ }2 2 2

4 1 2 2 1 2 2

1 2 2 1 2 2 4 1 2 1 2

2 1 2 2 1 2 2

1 2 1 2 1 2 8 .

I I I I I I

I I I I I I I I I I

I I I I I I

I I I I I I I

D x y z y z x

x y z y z x x y x y

x y z y z x

z x y x y x y

= − − − − − ×

× − − − − − + − − =  
= − − − − − ×

 × − − + − − − 

Фигура 8

Нека ( )( )( )1 2 1 2 1 2I I Ix y z∆ = − − − . От координатите на точката O  и първото 
представяне на D  получаваме ( )( )2 2

0 0 0 04 4 1 2 1 2I I I ID x y x y x y x y = − ∆ − ∆ + − −  . А ко  с а  и з п ъ л н е н и  н е р а в е н с т в ат а  0 0x <  и  0 0y > ,  т о  н е з а в и с и -
мо от знака на ∆  е изпълнено ( )( ) 21 2 1 2 4I I I I Ix y x y z− − < .  Следователно 

( )( ) ( ) ( )2 2

2

1 2 1 2
4 1 2 1 2 0I I

I I I I
I

x y
x y x y

z
− −

− − = > . Това означава, че 0D > . Оттук 

следва, че в този случай ( ), CK N N  е хипербола (фиг. 5). Аналогично се получава, 
че когато 0 0x >  и 0 0y < , кривата ( ), CK N N  е хипербола.

Сега да отбележим, че винаги една от точките I, IA, IB и IC е вътрешна за 
DABC. Тъй като всяка от тези точки поражда една и съща Фойербахова кон-
фигурация, то оттук нататък ще смятаме, че точката I е вътрешна за DABC. 
Ако точката I се намира в DMaMbC, то са изпълнени неравенствата 1 - 2xI  > 0, 
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1 2 0Iy− > ,  1 2 0Iz− < ,  0∆ < ,  ( )( )1 2 2 2 1 2 1 2 0I I I I I I Ix y z y z y z− − = − − − > , 
( )( )1 2 2 2 1 2 1 2 0I I I I I I Iy z x z x z x− − = − − − > . Оттук следва, че ако точката I лежи в 

a bM M C∆ , описаната крива ( )k O  е хипербола, а центърът й O  лежи във външната 
върхова област на точката C , т.е. 0 0x <  и 0 0y < . Сега от второто представяне 
на D  получаваме

( ) ( ) ( ) ( ){ }2 2 22
0 04 1 2 1 2 1 2 8 0I I I I I I ID x y z x y x y x y = − ∆ − − + − − − >  .

Следователно в този случай ( ), CK N N  е хипербола (фиг. 6).

Фигура 9

От последните разглеждания следва, че ако центърът O  на описаната крива 
( )k O  е вътрешна точка за ABC∆ , то точката I  не лежи в никой от триъгълниците 

b cM M A , c aM M B  и a bM M C . Следователно I  лежи в a b cM M M∆  и 1
2Ix < , 1

2Iy < , 
1
2Iz < . Тъй като 0∆ > , то от 0 0z >  следва, че 1 2 2 0I I Iz x y− − > . Оттук получаваме

( ) ( ) ( ) ( ) ( )( )2 2 21 2 1 2 1 2 8 4 1 2 1 2 0I I I I I I I I I I Iz x y x y x y x y x y − − + − − − > − − >  .
Сега от второто представяне на D  получаваме 0D < . Следователно, когато O  

е вътрешна точка за ABC∆ , кривата ( ), CK N N  е елипса (фиг. 7).
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Фигура 10

Остава да отбележим, че когато центърът O  лежи в областта, при която 0 0x > , 
0 0y >  и 0 0z < , съществуват положения на O , за които ( ), CK N N  е елипса (фиг. 

8), положения, при които ( ), CK N N  е хипербола (фиг. 9), а също така и положения 
на O , когато ( ), CK N N  е парабола (фиг. 10).

Накрая можем да обобщим получените резултати за вида на ( ), CK N N  на 
следващата фигура 11.

Фигура 11
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SOME PROPERTIES OF A TYPE OF CURVES, 
GENERATED BY A NAGEL POINT 

Abstract. The paper considers a generalization of a geometric problem from the 
International Mathematical Olympiad in 2013.
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