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Резюме. Нека nnn SHA ,,  са съответно аритметичното, хармонич-
ното и квадратичното средни за положителните реални числа 1 2, ,..., na a a  
. В тази статия са доказани следните теореми:

Теорема 1. За 3n =  е изпълнено
3(1 ). .

3n n nA H Sλ λ λ≥ − + ⇔ ≤  и 6(1 ). .
3n n nA H Sλ λ λ≤ − + ⇔ ≥ .

Теорема 2. За 4n =  е изпълнено
1(1 ). .
2n n nA H Sλ λ λ≥ − + ⇔ ≤  и 3(1 ). .

2n n nA H S        .

Теорема 3. За 5n =  е изпълнено 2 5(1 ). .
5n n nA H S        .

Предложени са и няколко нерешени задачи.
Keywords: ineaquality, arithmetic mean, geometric mean, harmonic 

mean, quadratic mean

Въведение. Нека a1, a2,...an са положителни реални числа и както е прието, 
означаваме:
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...( )n

n
a a aM S

n
+ + +

= =
.

Добре е известно, че pM  е растяща функция на p , т.е. 
1 2p pM M≤  за 

1 2p p<  (това е доказано например в (Hardy et al., 1952), като равенство се 
достига само когато 1 2 ... na a a= = = . При горните означения следва, че  

n n n nH G A S≤ ≤ ≤ . В настоящата статия ще приложим метод , чрез който ще 
докажем следните теореми.

В случая, когато 3n =
Теорема 1.1 Неравенството (1 ). .n n nA H Sλ λ≥ − +  е изпълнено ⇔

3
3

λ ≤ .

Теорема 1.2 Неравенството (1 ). .n n nA H Sλ λ≤ − +  е изпълнено ⇔
6

3
λ ≥ .

В случая когато 4n =
Теорема 1.3 Неравенството (1 ). .n n nA H Sλ λ≥ − +  е изпълнено ⇔ 1

2
λ ≤ .

Теорема 1.4 Неравенството (1 ). .n n nA H Sλ λ≤ − +  е изпълнено ⇔
3

2
λ ≥ .

В случая, когато 5n =
Теорема 1.5 Неравенството (1 ). .n n nA H Sλ λ≤ − +  е изпълнено ⇔

2 5
5

λ ≥ .
Известни са много неравенства между класическите средни (за повече 

информация например Hardy et al., 1952; Niculesco, 2000; Sato, 2001; Mitev, 
2003; Stolarsky, 1971), но неравенства от горния тип не са разглеждани. Дока-
зателствата на горните теореми показват как могат да се доказват симетрични 
хомогенни неравенства между 3, 4, 5 произволни положителни числа. Прила-
гайки същия метод, ще покажем как могат да се доказват неравенства между 
основните метрични величини на произволен триъгълник.

Същност на метода и примери
Да разгледаме неравенството
(2.1) 	 ( , , ) ( ) 0F a b c ≥ > ,

където ( , , )F a b c  е хомогенна симетрична функция на положителни-
те реални променливи , ,a b c . Освен това ще искаме F  да може да се 
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представя явно като функция на елементарните симетрични полиноми 
2 3,ab bc ca t abc p        . Последното е възможно, например 

когато F  е хомогенен симетричен полином. Метод за доказване на нера-
венство (2.1) , когато F е симетричен хомогенен полином от трета степен, е 
предложен например от Stolarsky в (Stolarsky, 1971). Други методи за доказ-
ване на подобни неравенства на (2.1)  са разгледани например в (Hardy et al., 
1952), (Niculesco, 2000), (Sato, 2001), (Mitev, 2003), (Stolarsky, 1971), (Aliyev, 
2007), (Barbara, 2008).

Тъй като F  е хомогенна, можем да считаме, че 1 1a b c      . Означаваме 
2 3,ab bc ca t abc pσ σ= + + = = = . Тогава ( , , )F a b c  може да се представи 

явно като функция на t  и p , т.е. ( , , )F a b c ( , )f t p= . Нашият метод се ос-
новава на разглеждането на ( , )f t p , като функция на t  при фиксирано p . 
Следващите леми дават някои оценки за t  и p , както и неравенства между 
тях (ще считаме, че поне две от променливите , ,a b c  не са равни ).

Лема 2.1 Изпълнени са неравенствата
1(2.2) 0
27

p< <

1(2.3) 0
3

t< < .

Доказателство: (2.2)  следва от 3 10 ( )
3 27

a b cabc  
    . (2.3)  следва 

от 21 10 ( )
3 3

t ab bc ac a b c< = + + < + + = .
Лема 2.2 Изпълнени са неравенствата
(2.4) 3t p> ,

1 9(2.5)
4

pt +
< .

Доказателство: в известното неравенство 2( ) 3( )x y z xy yz zx+ + > + +  
(поне две от числата са различни) полагаме , ,x ab y bc z ca= = =  и по-
лучаваме

2 2 2 2 2( ) 3( ) 3 ( ) 3 3t ab bc ca ab c bc a ca b abc a b c abc p= + + > + + = + + = = ,
откъдето следва верността на (2.4). (2.5) е неравенството 

1 9
4 4

ab bc ca abc+ + < + . То следва например от известното неравенство 

(Schur ) ( )( ) ( )( ) ( )( ) 0,a a b a c b b c b a c c a c b− − + − − + − − ≥  от равенството 
1a b c+ + =  и от тъждеството

3( ) 9 4( ) ( )( ) ( )( ) ( )( )a b c abc ab bc ca a a b a c b b c b a c c a c b+ + + − + + = − − + − − + − − .
Ще разгледаме няколко примера, при чието доказателство ще демонстри-

раме нашия метод.
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Пример 1. Вярно е неравенството
3 3 3(2.6) 2.A H S≥ + .

Доказателство: съгласно горните означения получаваме, че 

3 3
1 3 3 3, ,1 1 13 3

a b c abc pA H
ab bc ca t

a b c

+ +
= = = = =

+ ++ +

2 2 2 2

3
( ) 2( ) 1 2

3 3 3
a b c a b c ab bc ca tS + + + + − + + −

= = = .

Тогава (2.6) е еквивалентно на следното неравенство:

(2.7)	
1 3 1 22.
3 3

p t
t

−
≥ +

Лесно се вижда, че когато трите числа са равни, то в (2.6) се достига равен-
ство. Нека поне две от числата са различни. Сега лесно се проверява, че (2.7) 
е еквивалентно на

(2.8)	 ( ) 0f t ≥ , където 3 2 2( ) 6 36 81f t t t pt p= + − + .

Фиксираме 
1, (0; )
27

p p ∈  и разглеждаме ( )f t  като функция на t  за  
1 9( 3 ; )

4
pt p +

∈  (последното следва от Лема 2.2). От 2( ) 18 2 9f t t t p′ = + −  и 
от (2.4) последователно получаваме 2( ) 18 9 18.3 9 45 0f t t p p p p′ > − > − = > , 
т.е. ( ) 0f t    и следователно ( )f t  е растяща функция ⇒  достатъчно е да докажем, 
чe

(2.9)	 ( 3 ) 0f p ≥ , откъдето ще следва (2.8).
Но ( 3 )f p 2 218 3 3 36 3 81 3 (3 3 1) 0p p p p p p p p= + − + = − > , т.е 

(2.9) е вярно. Следователно всичко е доказано.
Пример 2. Вярно е неравенството
(2.10)	 3 3 33. 2. 1.A G S   
Доказателство: когато трите числа са равни, се достига равенство. Нека 

поне две от числата са различни. Както при доказателството на (2.6) получа-
ваме, че 

3 1 2(2.10) 1 2. ( 1, , )
3

tp a b c abc p ab bc ca t−
⇔ ≥ + + + = = + + =

2336. 6. 1t p p⇔ ≥ − −  .
За да докажем последното неравенство и оттам и (2.10), е достатъчно да про-

верим верността на следното 2333 6. 6. 1p p p≥ − −  (използвахме (2.4) ). 
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В това неравенство полагаме 
6p q= , следователно 

3(0; )
3

q ∈
 
съгласно 

(2.2). Тогава лесно се проверява, че е еквивалентно на следното вярно нера-

венство 23 1( )((6 3 3)( ) ) 0
3 3

q q q q− + − + > . Следователно (2.10) е доказа-
но.

Следващият пример показва, че оценките в Лема 2.1 и Лема 2.2 невинаги 
са достатъчни при прилагане на метода.

Пример 3. За произволни положителни числа , ,a b c  е изпълнено неравен-
ството

(2.11) 4 2 2( ) 6 ( ) 4( ) ( ) ( )a b c abc a b c ab bc ca a b c ab bc ca+ + + + + + + + ≥ + + + +
Доказателство: лесно се проверява, че за a b c= =  се достига равенство. 

Нека поне две от числата са различни. (2.11) е хомогенно и затова можем да 
считаме, че 1a b c+ + = . Лесно се проверява, че (2.11) е еквивалентно на 
(2.12) 2( ) 0 , ( ) 4 5 1 6 , ,f t f t t t p t ab bc ca p abc≥ = − + + = + + = .

Отново фиксираме 
1, (0; )
27

p p ∈  и разглеждаме ( )f t  като функция 

на t  за 
1 9( 3 ; )

4
pt p +

∈ . Но ( ) 8 5 0f t t′ = − <  съгласно (2.3). Следовател-

но ( )f t  е намаляваща функция и затова е достатъчно (но не е необходимо!) 

да докажем, че 
1 9( ) 0≥ . Но последното неравенство не е вярно, защото 

1 9 3 (27 1)( )
4 4

p p pf + −
=  и 

1(0; )
27

p ∈ . Последното следва от факта, че 

множеството от стойности на t  не съвпада с интервала 
1 9( 3 ; )

4
pp +

. Ще се 
върнем към доказателството на (2.11) по-късно.

Следващата теорема се отнася за множеството от стойности на t .
Теорема 1. Нека p  е фиксирано число от интервала 

1(0; )
27

. Тогава е 
изпълнено:

( )i 	 Уравненията 3 22 0x x p− + =  и 3 22 4 0x x x p− + − =  имат точно по 
два корена в интервала (0;1) , съответно 1 2,x x  и 3 4,x x , като при това са из-
пълнени неравенствата

2.13)	 3 1 2 4
10 1
3

x x x x< < < < < <  и 

(2.14)	 2
1
2

x <  
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( )ii 	Нека , ,a b c  са положителни числа, поне две от които са раз-
лични, 1 ,a b c abc p+ + = = . Тогава множеството от стойности на 
t ab bc ca= + +  съвпада с интервала [ ; ]m M  , където

(2.15)	 1 4min{ ( }, ( )}m g x h x=
(2.16)	 2 3max{ ( ) , ( )}M g x h x=

2 21( ) 2 3 , ( ) (1 2 3 )
4

g x x x h x x x= − = + − , 1 2 3 4, , ,x x x x  са определени 
в ( )i .

( )iii  Изпълнени са неравенствата
(2.17)	 3m p>  и 

(2.18)	
1 9

4
pM +

< .

Освен това, когато 
(2.19)	 2

1 12 3t m x x= = −  ,   то   2 3
1 12p x x= − . Ако 2

2 22 3t M x x= = −  ,  
то    2 3

2 22p x x= −

(2.20)	 2
4 4

1 (1 2 3 )
4

t m x x= = + − , то 3 2
4 4 4

1 ( 2 )
4

p x x x= − + . Ако 

2
3 3

1 (1 2 3 )
4

t M x x= = + −  , то 3 2
3 3 3

1 ( 2 )
4

p x x x= − +  , 1 2 3 4, , ,x x x x  са опреде-

лени в ( )i , ,m M  са определени в ( )ii .
( )iv
(2.21)	 Когато са изпълнени (2.19) или (2.20), точно две от числата 

, ,a b c  са равни помежду си.
(Доказателството на теоремата е в края на статията.)
Продължение на доказателството на (2.11).
Разглеждаме ( )f t  за [ ; ]t m M∈  ( ,m M  са определени в теорема 1). То-

гава е достатъчно да докажем, че 0)( ≥Mf . Съгласно (2.13), (2.14), (2.19), 
(2.20) разглеждаме два случая:

( )i 	 22 3t M x x= = −  ,      2 32p x x= −  , 2
1 1( , ) ,
3 2

x x x∈ = . 
Тогава 

(2.22)	 2 2 2 2 34(2 3 ) 5(2 3 ) 1 6( 2 ) 0x x x x x x⇔ − − − + + − ≥  
2 2(3 1) (2 1) 0x x⇔ − − ≥

Последното неравенство е строго, защото 
1 1( , )
3 2

x ∈ .

( )ii 	 21 (1 2 3 )
4

t M x x= = + − , 
3 21 ( 2 )

4
p x x x= − + , 3

1(0; ) ,
3

x x x∈ = . Тогава (2.22) 
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2 2 3 2
21 3 3 1 2 3 24( ) 5( ) 1 6( ) 0

4 4 4
x x x x x x x+ − + − − +

⇔ − + + ≥
4 3 2 2 29 6 0 (3 1) 0x x x x x⇔ − + ≥ ⇔ − ≥ .

Последното неравенство е строго, защото 
1(0; )
3

x ∈ . Следователно (2.11) 
е доказано.

Заб. (2.11) e eквивалентно на (част от problem 2839 oт 
(Crux Mathematicorum With Mathematical Mayhem, 2004)) 

3 3 3 2 2 3 3 3 3 3 3( ) 3( ) 4( )a b c abc a b b c c a+ + + ≥ + + , защото съответната функ-
ция е 2( ) (1 )(4 5 1 6 )f t t t t p= − − + + .

Заб. Oт доказателствата на примери 1 – 3 се вижда, че равенство се достига 
само при a b c= = .

3. Основни резултати
Припомняме, че сме въвели следните означения:

1 2
0 1 2 1 1

1 2

.... ... , , ,1 1 1...
nn

n n n n

n

a a a nM a a a G M A M H
n

a a a

−

+ + +
= = = = = =

+ + +
12 2 2

1 2 2
2

...( )n
n

a a aM S
n

+ + +
= = .

Теорема 1.1. Неравенството

(3.1)	 3 3 3(1 )A H Sλ λ≥ − +  е вярно ⇔  
3

3
λ ≤ .

Доказателство: Нека 
2 2 23(1 ) 1 1 13 3

a b c a b c

a b c

λ λ+ + + +
≥ − +

+ +
 е из-

пълнено за произволни положителни числа , ,a b c  където λ  е фиксирано. 
Полагаме 1 2 ,a b cε ε= − = =  в последното неравенство. При 0ε → +  

получаваме, че 
3

3
λ ≤ . Следователно е достатъчно да докажем следното 

неравенство

(3.2)	
2 2 23 3 3 3( ) 1 1 13 3 3 3

a b c a b c

a b c

+ + − + +
≥ +

+ +
.

При ù = =  се достига равенство. Нека поне две от числата са раз-
лични. Можем да считаме, че 1a b c+ + = . Тогава при означенията 

,ab bc ca t abc p+ + = =  получаваме
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1 3 3 3 3 1 2(3.2) . . 3(3 3) 1 2
3 3 3 3

p t t p t t
t

− −
⇔ ≥ + ⇔ − − ≥ −

.
⇔

2 2(3.3) ( 3(3 3) ) ( 1 2 )t p t t− − ≥ −  ( от (2.2) и (2.4) следва
3(3 3) 0t p− − > ).

Лесно се проверява, че (3.3) е еквивалентно на следното
(3.4)	 0)( ≥tf , където 23 )32(54)33(62)( pptttf   .

Фиксираме p , 
1(0; )
27

p ∈  и разглеждаме )(tf  за ];[ Mmt ∈ , където 

,m M  са определени в Теорема 1. От pttf )33(66)( 2 −−=′  и (2.4) следва

( ) ( 3 ) 6 3 0 ( )f t f p p f t′ ′> = > ⇒  e растяща функция, следова- 

телно (3.4) ще е вярно, ако докажем следното
(3.5) ( ) 0f m ≥ .
Съгласно Теорема 1 разглеждаме следните два случая:

2 2 3
1

1( ) 2 3 , 2 , (0; ) ,
3

i t x x p x x x x x= − = − ∈ =

Тогава (3.5) 2 3 2 3 2 2 3 22(2 3 ) 6(3 3)( 2 )(2 3 ) 54(2 3)( 2 ) 0x x x x x x x x⇔ − − − − − + − − ≥ .
След опростяване получаваме, че последното неравенство е еквивалент-

но на следното вярно неравенство 3 26 (3 1) [(21 12 3) 6 3 10] 0x x x− − + − ≥ . 

Последното неравенство е строго, защото 
1(0; )
3

x ∈ .

2 3 2
4

1 1 1( ) (1 2 3 ) , ( 2 ) , ( ;1) ,
4 4 3

ii t x x p x x x x x x= + − = − + ∈ =

Тогава 
2 3 2 3 2 3 2 2(1 2 3 ) (1 2 3 )( 2 ) ( 2 )(3.5) 2 6(3 3) 54(2 3) 0

64 16 16
x x x x x x x x x x+ − + − − + − −

⇔ − − + − ≥

3 2(1 ) (1 3 ) [(12 3 21) 1] 0x x x⇔ − − − + ≥ .
Последното неравенство е вярно (защото от 

1(0; )
3

x ∈  следва
1(12 3 21) 1 (12 3 21) 1 4 3 6 0
3

x− + > − + = − > )

и е строго. Следователно (3.5) е доказано и в двата случая, с което приключва 
доказателството на теоремата.

Заб. Oт доказателството следва, че равенство се достига само когато трите 
числа са равни.
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Теорема 1.2. Неравенството 

(3.6)	 ù ùù λ λ  е вярно ⇔  
6

3
λ ≥ .

Доказателство: нека 
2 2 23(1 ) 1 1 13 3

a b c a b c

a b c

λ λ+ + + +
≤ − +

+ +
 е из-

пълнено за произволни положителни числа , ,a b c , където λ  е фиксирано. 

Полагаме 
12 ,
2

a b cε ε= = = −  в последното неравенство. 

При 0ε → +  получаваме, че 
6

3
λ ≥ .

Следователно е достатъчно да докажем следното неравнство
2 2 26 3 6(3.7) (1 ) 1 1 13 3 3 3

a b c a b c

a b c

+ + + +
≤ − +

+ +
.

При a b c= =  се достига равенство. Нека поне две от числата са раз-
лични. Можем да считаме, че 1a b c+ + = . Тогава при означенията 

,ab bc ca t abc p+ + = =  получаваме, че (3.7) ⇔  
(3.8)	 ,0)( ≥tF където 1)63(342)( −−+−=

t
pttF .

Фиксираме p , 
1(0; )
27

p ∈  и разглеждаме )(tF  за ];[ Mmt ∈ , където 

,m M  са определени в Теорема 1. От 2
2 (3 6)( ) 0

1 2
pF t

t t
−′ = − − <

−
 след-

ва, че ( )F t  е намаляваща функция. Следователно (3.8) ще е вярно, ако дока-
жем, че

(3.9) ( ) 0F M ≥ .
След преобразуване на (3.8) получаваме следното еквивалентно неравенство
(3.10)	 0)( ≥tf ,
където 223 )625(27)63(64)( ppttttf   . Тогава (3.9) ще 

следва от ( ) 0f M   , което ще докажем. Съгласно Теорема 1 разглеждаме 
следните два случая:

2 2 3
2

1 1( ) 2 3 , 2 , ( ; ) ,
3 2

i t x x p x x x x x       .
Заместваме в (3.10) и получаваме следното вярно неравенство

2 2( ) (3 1) (1 2 )[1 (3 6 6) ] 0f M x x x x= − − − − ≥
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(от
 

1 1( ; )
3 2

x ∈ следва
 

1 8 3 61 (3 6 6) 1 (3 6 6) 0
2 2

x −
− − > − − = > ).

Последното неравенство е строго.
2 3 2

3
1 1 1( ) (1 2 3 ) , ( 2 ) , (0; ) ,
4 4 3

ii t x x p x x x x x x= + − = − + ∈ = .

Заместваме в (3.10) и получаваме следното вярно неравенство
2 2( ) (3 1) (1 ) [8 3 6 (3 6 6) ] 0f M x x x x= − − − + − ≥

(от 
1(0; ) 8 3 6 (3 6 6) 8 3 6 0
3

x x∈ ⇒ − + − > − > ).
Последното неравенство е строго. Следователно (3.9) е доказано и в двата 

случая, с което приключва доказателството на теоремата.
Заб. Oт доказателството следва, че равенство се достига само когато трите 

числа са равни.
Теорема 1.1.1. Неравенството 3 3 3(1 ). .A G Sλ λ≥ − +  е изпълнено ⇔  

3
3

λ ≤ .

Неравенството 3 3 3(1 ). .A G S      е изпълнено ⇔  
6

3
λ ≥ .

Доказателството е подобно на доказателствата на Теорема 1.1 и Теорема 1.2,  
но е свързано с дълги (елементарни) пресмятания и преобразувания.

Теорема 1.3. Неравенството 4 4 4(1 ). .A H S      е изпълнено ⇔ 1
2

λ ≤ .
Доказателство: Нека

2 2 2 24(3.11) (1 ) 1 1 1 14 4
a b c d a b c d

a b c d

      
  

  
 

е изпълнено за произволни положителни числа a, b, c, d, където λ  е фиксира-
но. Можем да считаме, че

(3.12)	 1a b c d+ + + =

Полагаме , 1 3a b c dε ε= = = = −  в последното неравенство. При → +  

получаваме, че 
1
2

λ ≤ . Достатъчно е да докажем, че (3.11) е вярно за 
1
2

λ = . Явно, 

когато и четирите числа са равни, се достига равенство. Нека поне две от тях са 
различни. Без да ограничаваме общността, можем да считаме, че

(3.13)	 a b c d≤ ≤ ≤ .
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Фиксираме d  и полагаме
(3.14)	 1 1 1, , , 1a a b b c c dθ θ θ θ= = = − = .

Тогава от (3.12), (3.13) следва, че 
1( ;1)
4

d ∈  откъдето

(3.15)	
3(0; )
4

θ ∈ .

От (3.12) и (3.14) получаваме 1 1 1
1 1

1 1
a b c a b c da b c

d d
    

     
 

 , т.е. 
(3.16)	 1 1 1 1a b c+ + = .
Последното равенство позволява да приложим метода, който използ-

вахме при доказателствата на Теорема 1.1 и Теорема 1.2.

Заместваме в (3.11) 
1
2

λ =  и от (3.12), (3.14) получаваме, че е достатъчно 

да докажем следното:

 

2 2 2 2 2
1 1 1

1 1 1

( ) (1 )1 1 4 1( )1 1 1 1 14 2 2 4( )
1

a b c

a b c

θ θ

θ θ

+ + + −
≥ + ⇔

+ + +
−

(3.17) ( ) 1F tθ ≤ ,

където 22 )1()21(
)1(

)1(8)( θθ
θθ

θθ
θ −+−+

+−
−

= t
pt

ptF , 

1 1 1 1 1 1 1 1 1,t a b b c c a p a b c= + + = , също така използвахме (3.16). Първо ще 

разгледаме случая, когато 1 1 1a b c= = . Тогава 
1 1,
3 27

t p= =  и от (3.17) 
следва, че е достатъчно да докажем следното

(3.18)	 28 (1 ) 1 3( ) 1 , ( ) 4 6 3 , (0; )
9 8 43

g g θ θθ θ θ θ θ
θ

−
≤ = + − + ∈

−
 

( съгласно (3.15)).

(3.18)	 28 (1 ) 11 4 6 3
9 8 3
θ θ θ θ

θ
−

⇔ ≤ − − +
−

.

2

2

3 1(4 3) ( ) 0
9 8 3 2 4 6 3

θ
θ θ θ

⇔ − − − ≤
− 

2

3 1 0
9 8 3 2 4 6 3θ θ θ

⇔ − ≥ ⇔
− + − +

(3.19) (3 2 ) 0θ θ− ≥ .
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Oт верността на (3.19) следва (3.18). Нека сега поне две от числата 1 1 1, ,a b c  
са различни.

Разглеждаме функцията ( )F tθ , определена в (3.17) при фиксирано p , 
1(0; )
27

p ∈  за [ ; ]t m M∈ , където ,m M  са определени в Теорема 1. От 
2 2

2 2 2

8 (1 )( ) 0
[(1 ) ] (1 2 ) (1 )

pF t
t p t

θ
θ θ θ

θ θ θ θ

−′ = − − <
− + − + −

 следва, че ( )F tθ  е на-

маляваща функция, следователно, за да довършим доказателството на теоре-
мата, е необходимо да докажем:	

(3.20)	 ( ) 1F mθ ≤ .
Съгласно Теорема 1 разглеждаме следните два случая:

2 2 3
1

1( ) 2 3 , 2 , (0; ) ,
3

i t x x p x x x x x= − = − ∈ = .
След заместване на ,t p  в (3.17) и преобразуване, получаваме

(3.21)	
2

2 2 2
2

8 (1 )( 2 )( ) ( , ) (6 4 1) (1 )
2 3 2 ( 1)

x xF m F x x x
x xθ

θ θθ θ θ
θ

− −
= = + − + + −

− − −
.

Да отбележим, че x  и θ  не зависят едно от друго. Тогава от (3.21) полу-
чаваме:

(3.22)	 1( , ) 2 (3 1) ( , )F x x F x
x

θ θ θ∂
= −

∂
, където

2

1 2 2 2 2 2

8(1 ) ( 1)( , )
[2 3 2 ( 1) ] (6 4 1) (1 )

xF x
x x x x

θ θθ
θ θ θ

− −
= +

− − − − + + −
.

Oзначаваме: 
2

1 22 2 2 2 2

8(1 ) ( 1)( , ) , ( , )
[2 3 2 ( 1) ] (6 4 1) (1 )

xf x f x
x x x x

θ θθ θ
θ θ θ

− −
= =

− − − − + + − .

Ще докажем, че
(3.23)	 1 1 2( , ) ( , ) ( , ) 0F x f x f xθ θ θ= + < .

От 1
2 3

( , ) 8 ( 1)(2 1)(1 ) 0
[2 3 2 ( 1) ]

f x x x x
x x

θ θ
θ θ

∂ − − −
= >

∂ − − −
 следва, че 1( , )f x θ  е растяща 

функция по отношение на θ . Следователно

(3.24)	 1 1 11 2 2
3 2( 1)( , ) ( , ) ( )
4 (3 1)

f x f x f x< = = .
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От 
2 2

11 2 4
2(1 3 )(9 12 1)( )

(3 1)
x x xf x

x
− − +′ =

−
 лесно следва, че 

11 11
2 3 3( ) ( ) (5 3 3)

3 16
f x f −

< = − + .

От последното и от (3.24) получаваме

(3.25)	 1( , )f x θ < 11
3( ) (5 3 3)

16
f x < − + .

От 
3

2
2 2 2 3

( , ) 2 (1 3 ) 0
[ (6 4 1) (1 ) ]

f x x
x x x

θ θ

θ θ

∂ −
= >

∂ − + + −
 

1 3( (0; ) , (0; ) )
3 4

x θ∈ ∈  следва, че 

2 ( , )f x θ  е растяща функция по отношение на x . Следователно
(3.26)	

2 2 22 2

1 3.( , ) ( , ) ( )
3 4 6 3

f x f f θθ θ θ
θ θ

< = =
− +

.

От 22 2 3

3 3.(1 )( ) 0
(4 6 3)

f θθ
θ θ

−′ = >
− +

 следва, че 22 22
3 3( ) ( )
4 2

f fθ < = . От по-

следното и от (3.26) следва

(3.27)	 2
3( , )
2

f x θ <  

От (3.25) и (3.27) получаваме

1 1 2( , ) ( , ) ( , )F x f x f xθ θ θ= + <
3 (5 3 3)

16
− + +

3 9 (1 3) 0
2 16

= − < , т.е. 
(3.23) е доказано.

От (3.22), (3.23) и от 
1(0; )
3

x ∈  следва, че 1( , ) 2 (3 1) ( , ) 0xF x x F xθ θ θ′ = − > , 

 откъдето следва, че ( , )F x θ  е растяща функция по отношение на x . Тогава (3.20) 

ще следва от 
1( , ) ( , )
3

F x Fθ θ< = 28 (1 ) 1( ) 4 6 3 1
9 8 3

g θ θθ θ θ
θ

−
= + − + ≤

−
, 

което е точно доказаното по-горе (3.18). Следователно (3.20) е доказано в този 
случай.

2 3 2
4

1 1 1( ) (1 2 3 ) , ( 2 ) , ( ;1) ,
4 4 3

ii t x x p x x x x x x= + − = − + ∈ = .

След заместване на ,t p  в (3.17) получаваме

(3.28) 
2 2

2 2
2

8 (1 )( )( ) ( , ) (3 2 1) (1 )
1 3 ( 1) 2

x xF m H x x x
x xθ

θ θ θθ θ
θ

− −
= = + − + + −

+ − +
.
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Тогава (3.20) ⇔  
(3.29)	 ( , ) 1H x θ ≤  за 

1( ;1)
3

x ∈  и 
3(0; )
4

θ ∈ .
След пресмятане и преобразуване получаваме, че

(3.30)	 1 2( , ) (1 3 )[ ( , ) ( , )]H x x h x h x
x

θ θ θ θ∂
= − +

∂
, 

Където 22

2

1 ])1(31[
)1()1(8),(

+−+
+−

=
xx
xxh

θ
θθ  и 

2222
)1(2)123(2

2),(
θθ

θθ
−++−

−=
xx

xh .

По-долу ще докажем, че
(3.31)	 1 2( , ) ( , ) 0h x h xθ θ+ > .

От (3.31), 
1( ;1)
3

x ∈  и (3.30) следва, че ( , ) 0xH x θ′ < . Тога-
ва ( , )H x θ  е намаляваща по отношение на x  и съгласно (3.29) е 
достатъчно да докажем, че 1( , ) 1

3
H θ ≤ , но това е еквивалентно на 

21 (1 ) 1 3( , ) ( ) 4 6 3 1 , (0; )
3 9 8 43

H g θ θθ θ θ θ θ
θ

−
= = + − + ≤ ∈

−
, което е точно дока-

заното по-горе (3.18). Остава само да докажем (3.31).
Доказателство: от (3.30) получаваме 

1
2 3

( , ) 16 ( 1)( 1)(1 ) 0
[1 3 ( 1) ]

h x x x x
x x

θ θ
θ θ

∂ − + −
= <

∂ + − +
 ( 

1( ;1)
3

x ∈ ). Следователно 1( , )h x θ  

е намаляваща функция по отношение на θ , ⇒

(3.32)	 1 1 11 2 2
3 8( 1)( , ) ( , ) ( )
4 (3 6 1)

xh x h x h x
x x

θ +
> = =

− −
.

От 
2 2

11 2 4
8(3 6 1)( 9 6 11)( )

(3 6 1)
x x x xh x

x x
− − − − +′ =

− −
 лесно се проверява, че за 

1( ;1)
3

x ∈ от последното и от (3.32) следва, че

(3.33)	 1( , )h x θ >
3(5 3 3)

32
+

.

От 
3

2
2 2 2 3

( , ) 2 (3 1) 0
2 [ (3 2 1) 2(1 ) ]

h x x
x x x

θ θ

θ θ

∂ −
= >

∂ − + + −
 следва, че 2 ( , )h x θ  

е растяща функция по отношение на x . Тогава

(3.34)	 2 2 22 2

1 3( , ) ( , ) ( )
3 2 4 6 3

h x h h θθ θ θ
θ θ

> = = −
− +

.
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От 22 2 3

3 1( ) 0
2 (4 6 3)

h θθ
θ θ

−′ = − <
− +

 следва, че 22 ( )h θ  е намаляваща 

22 22
3 3( ) ( )
4 4

h hθ⇒ > = − . От последното и от (3.34) следва 

(3.35)	 2
3( , )
4

h x θ > − .

От (3.33) и от (3.35) получаваме, че 

1 2
3(5 3 3) 3 9( 3 1)( , ) ( , ) 0

32 4 32
h x h xθ θ + −

+ > − = > , т.е (3.31) е доказано. 

Следователно (3.29) е доказано, с което завършваме доказателството на Тео-
рема 1.3.

Заб. Oт доказателството следва, че равенство се достига само когато всич-
ки числа са равни.

Теорема 1.4. Неравенството 4 4 4(1 ). .A H S      е изпълнено ⇔  
3

2
λ ≥ .

Доказателство: нека 
2 2 2 24(3.36) (1 ) 1 1 1 14 4

a b c d a b c d

a b c d

λ λ+ + + + + +
≤ − +

+ + +

е изпълнено за произволни положителни числа , , ,a b c d , където λ  е фиксирано. 
Можем да считаме, че 1a b c d+ + + = . Полагаме , 1 3a b c dε ε= = = = −  
в последното неравенство.

При 0ε → +  получаваме, че 
3

2
λ ≥ . Достатъчно е да докажем, че (3.36) 

е вярно за 
3

2
λ = . По аналогичен начин, както в доказателството на Теорема 

1.3, получаваме, че трябва да докажем следното:
(3.37)	 1)( ≥tFθ ,където

22 )1()21(3
)1(

)1()3816()( 



 




 t
ptt

ptF  . Първо ще разгледаме 

случая, когато 1 1 1a b c= = . Тогава 
1 1,
3 27

t p= =  и от (3.37) следва, че е 
достатъчно да докажем следното
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(3.38)	 2(16 8 3) (1 ) 3( ) 1 , ( ) 4 6 3 , (0; )
9 8 4

g g θ θθ θ θ θ θ
θ

− −
≥ = + − + ∈

−
.

2(16 8 3) (1 ) 3(3.38) 1 4 6 3 , (0; )
9 8 4

θ θ θ θ θ
θ

− −
⇔ ≥ − − + ∈

−
2 2

2

(2 3)(4 3) (4 3)
9 8 3 2 4 6 3

θ θ
θ θ θ

− − − − −
⇔ ≥

− + − +

2

2 3 1
9 8 3 2 4 6 3θ θ θ

−
⇔ ≤

− + − +
2(2 3)(9 8 ) 3 2 4 6 3θ θ θ⇔ + − − ≥ − + ⇔

(3.39)	 364)32(4349 2 +−++≥+ θθθ .

Разглеждаме функцията 364)( 2 +−= θθθr  за )
4
3;0(∈θ . От 

2

4 3ù
ù

r θθ
θ θ

−′ = <
− +

 следва, че (3.40)	 ( ) (0) 3r rθ < = .

От (3.39), (3.40) и от 
3(0; )
4

θ ∈  получаваме, че

(3.41)	 3493
4
3)32(4364)32(4 2 +<++<+−++ θθθ .

Тогава от (3.39), (3.41) следва верността на (3.38). Нека сега поне две от 
числата 1 1 1, ,a b c  са различни. Разглеждаме функцията ( )F tθ , определена при 

фиксирано p , 
1(0; )
27

p ∈

за [ ; ]t m M∈  където ,m M  са определени в Теорема 1. От

(3.42)	
2 2

2 2 2

(16 8 3) (1 ) 3.( ) 0
[(1 ) ] (1 2 ) (1 )

pF t
t p t

θ
θ θ θ

θ θ θ θ

− −′ = − − <
− + − + −

следва, че
(3.43)	 ( )F tθ  е намаляваща функция.
Следователно, за да довършим доказателството на теоремата, е необходи-

мо да докажем 	(3.44)	 ( ) 1F Mθ ≥ .

По-долу ще считаме, че θ  е фиксирано ( 
3(0; )
4

θ ∈ ). Съгласно Теорема 1 
разглеждаме следните два случая:

2 2 3
2

1 1( ) 2 3 , 2 , ( ; ) ,
3 2

i t x x p x x x x x= − = − ∈ = .

След заместване на ,t p  и преобразуване, получаваме
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(3.45) 
2

2 2 2
2

(16 8 3) (1 )( 2 )( ) ( ) 3. (6 4 1) (1 )
2 3 2 ( 1)

x xF M F x x x
x xθ
θ θ θ θ

θ
− − −

= = + − + + −
− − −

.

Тогава от (3.45) следва 
(3.46)	 1( ) 2 (3 1) ( )F x x F xθ′ = − ,където

(3.47)	
2

1 2 2 2 2 2

2(16 8 3)(1 ) ( 1) 3.( )
[2 3 2 ( 1) ] (6 4 1) (1 )

xF x
x x x x

 
  

  
 

      
 .

От (3.47) след пресмятане и преобразуване получаваме:
(3.48)	 2 2 3

1 2 3 2 2 2 3

2(16 8 3)(1 ) [3 4 6 ( 1) ] 2 3. (3 1)( )
[2 3 2 ( 1) ] [ (6 4 1) (1 ) ]

x x xF x
x x x x
θ θ θ

θ θ θ

− − − + − −′ = −
− − − − + + −

.

От )
4
3;0(∈θ  и )

2
1;

3
1(∈x  следва, че

2 2 23 13 4 6 ( 1) 3 4 6. ( 1) (9 12 1) 0
4 2

x x x x x xθ− + − < − + − = − + < .

От последното и от (3.48) следва, че 1 ( ) 0F x′ < , следователно
(3.49)	 1( )F x  е намаляваща функция.
От (3.49), (3.46) и от 3 1 0x     следва, че са възможни следните три случая:

0)()1( 1 ≥xFi  за )
2
1;

3
1(∈x .

Тогава от (3.46) следва, че ( )F x  e растяща и тогава е достатъчно да дока-

жем, че ( ) 1≥ ⇔ (3.40), което е доказано по-горе.

0)()2( 1 >xFi  за );
3
1( 0xx ∈ , 0)(1 <xF  за )

2
1;( 0xx ∈ .

Тогава в т. 0x , ( )F x  има локален max. Следователно е достатъчно да про-
верим верността на следните две неравенства: 

1( ) 1
3

F ≥ , което е доказано и 

(3.50)	
1( ) 1
2

F ≥ .

Но от (3.45) следва

(3.50)	
2

2 2 233. (1 ) 1 (3 4 2) 1 (3 2) 0
2 2

θ θ θ θ θ⇔ + − ≥ ⇒ − + ≥ ⇔ − ≥ ,  

т.е (3.50) е доказано.
0)()3( ≤xFi  за )

2
1;

3
1(∈x .

Тогава ( )F x  е намаляваща и е достатъчно да докажем (3.50), което е на-
правено.
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2 3 2
3

1 1 1( ) (1 2 3 ) , ( 2 ), (0; ) ,
4 4 3

ii t x x p x x x x x x         .

След заместване на ,t p  в (3.39) получаваме

(3.51)	
2

2 2 2
2

(16 8 3) (1 )( ) 3( ) ( , ) (3 2 1) 2(1 )
1 3 ( 1) 2

x xF M H x x x
x x
   


  
      

  
 .

Тогава (3.44) ⇔  ( , ) 1H x θ ≥ .Считаме, че θ  е фиксирано и ще пишем 
( )H x  вместо ( , )H x θ . От (3.51) получаваме, че
(3.52)	 1( ) (1 3 ) ( )H x x H xθ′ = − , където

(3.53)	
2

1 2 2 2 2 2

(16 8 3) (1 ) ( 1) 3( )
[1 3 ( 1) ] 2 (3 2 1) 2(1 )

xH x
x x x x

θ θ θ
θ θ θ

− − +
= −

+ − + − + + −
.

От (3.53) получаваме
(3.54)	

2 2

1 2 3
(16 8 3).27. (1 ) [3 ( 1) 5 3 ]( )

[1 3 ( 1) ]
x xH x

x x
θ θ θ

θ
− − + − −′ =

+ − +3

2 2 2 3

3 (1 3 )
2 [ (3 2 1) 2(1 ) ]

x
x x

θ

θ θ

−
−

− + + −

От 
1(0; )
3

x ∈ и 
3(0; )
4

θ ∈  последователно получаваме

2 2 23 13 ( 1) 3 5 3. .( 1) 3 5 (9 6 11) 0
4 4

x x x x x xθ + − − < + − − = + − < .

От последното, 
1(0; )
3

x ∈ и от (3.54) следва, че 1 ( ) 0H x′ < 1( )H x⇒  е на-

маляваща функция.

От последното, (3.52) и от 
1(0; )
3

x ∈  следва, че са възможни следните три 

случая:

0)()1( 1 xHii   за )
3
1;0(∈x .

Тогава 0)( ≥′ xH  за )
3
1;0(∈x , следователно ( )H x  е растяща и тогава е 

достатъчно да докажем, че
(3.55)	 (0) 1≥ .
Последователно получаваме:

2 2 23 3(3.55) . 3 4 2 1 (3 4 2) 1 (3 2) 0
2 2

θ θ θ θ θ⇔ − + ≥ ⇔ − + ≥ ⇔ − ≥ , 

т.е. (3.55) е доказано.
0)()2( 1 xHii   за );0( 0xx ∈ , 0)(1 <xH  за )

3
1;( 0xx ∈ .
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Тогава ( )H x  има локален max в т. 0x  и следователно е достатъчно да докажем:
(3.55)	 (което е доказано ) и 1( ) 1

3
H ≥ . Но последното неравенство е 

точно доказаното по-горе.
0)()3( 1 xHii   за )

3
1;0(∈x .

Следователно ( )H x  е намаляваща и тогава е достатъчно да докажем, че 
1( ) 1
3

H ≥ . И в трите случая ( ) 1H x ≥ , следователно всичко е доказано.

Заб. Oт доказателството следва, че равенство се достига само когато всич-
ки числа са равни.

Теорема 1.5 Неравенството 5 5 5(1 ). .A H Sλ λ≤ − +  е изпълнено ⇔  
2 5

5
λ ≥ .

Доказателство: нека
2 2 2 2 25(3.56) (1 ) 1 1 1 1 15 5

a b c d e a b c d e

a b c d e

λ λ+ + + + + + + +
≤ − +

+ + + +

е изпълнено за произволни положителни числа , , , ,a b c d e , където λ  е фикси-
рано. Можем да считаме, че

(3.57)	 1a b c d e+ + + + =
Полагаме 

1 , 4
4

a b c d eε ε= = = = − = . При 0ε → +  получаваме, че 

2 5
5

λ ≥ . Достатъчно е да докажем, че (3.56) е вярно за 
2 5

5
λ = . Можем 

да считаме, че
(3.58)	 a b c d e≤ ≤ ≤ ≤ .
Полагаме: 1 1 1, , , 1 ,a a b b c c d e deθ θ θ θ δ= = = − − = = , 

1 1 1 1 1 1 , 1 1 1t a b b c c a p a b c= + + = .
Явно 1 1 1 1a b c+ + = . От (3.57) и (3.58) следват:

(3.59)	
4(0; )
5

θ ∈  и 

(3.60)	
2(1 )(0; ]

4
θδ −

∈ .

Лесно се проверява, че е достатъчно да докажем:
(3.61) 1),,,( ≥δθptF ,

където 



 2)1()21(2
)1(

)525(5
),,,( 22 




 t
pt

p
ptF  . Нека 
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първо 11 cba == . Тогава 
27
1,

3
1

 pt  . Имаме (3.61) ⇔

(3.62) ( , ) 1f δ θ ≥ ,

Където 
2

25(5 2 5)( , ) 2 (1 ) 2
9 (1 ) 3

f θδ θδ θ θ δ
δ θ θ

−
= + + − −

+ −
. Фиксираме

 
4, (0; )
5

θ θ ∈  и разглеждаме ( , )f δ θ  като функция на 
2(1 ), (0; ]

4
θδ δ −

∈  

(ще пишем ( )f δ  вместо ( , )f δ θ ).
Последователно получаваме: 

2

2 2
2

5(5 2 5) (1 ) 2( )
[9 (1 )]

(1 ) 2
3

f θ θδ
δ θ θ θ θ δ

− −′ = −
+ −

+ − −

 ,

(3.63)	
2

3 2
2 3

90(5 2 5) (1 ) 2( ) 0
[9 (1 )]

[ (1 ) 2 ]
3

f θ θδ
δ θ θ θ θ δ

− −′′ = − − <
+ −

+ − −

.

Съгласно (3.63), (3.62) ще следва от верността на следните неравенства:
(3.64)	 (0) 1f ≥  и 

(3.65)	
2(1 )( ) 1

4
f θ−

≥ .

Доказателство на (3.64) и (3.65):

(3.64)	
2

22 (1 ) 1
3

θ θ⇔ + − ≥  24 (4 6 3) 1
3

θ θ⇔ − + ≥
2 216 24 9 0 (4 3) 0θ θ θ⇔ − + ≥ ⇔ − ≥ .

(3.65)	 ⇔ 25(5 2 5) (1 ) 6 5 6 3 1
9 5 3

θ θ θ θ
θ

− −
+ − + ≥

−

⇔
2

2

2

1 6[ (5 3) ]3( 5 2)[ (5 3) ].
9 5 6 5. 5 6 3

θθ
θ θ θ

− −
− − − ≥

− + − +

⇔
2

1 63( 5 2).
9 5 6 25 30 15θ θ θ

− ≤ ⇔
− + − +

1 2(3.66) ( ) ( )f fθ θ≥ , 
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Където )6569(
3

52)(1 θθ −
+

=f  и 153025)( 2
2  tf  . От

 
4(0; )
5

θ ∈  лесно се получава, че

1 1
4 6(5 5 7)(3.67) ( ) ( )
5 3

f fθ +
≥ =

,

2 2(3.68) ( ) (0) 15f fθ < = .

Тогава от 
6(5 5 7) 15

3
+

> , (3.67) и (3.68) следва верността на (3.66) и 

оттам следва (3.65). Нека сега поне две от числата 1 1 1, ,a b c  са различни. Раз-
глеждаме ( , , , )F t p θ δ  (определена в (3.61)) като функция на t  при фикси-
рано p (при условията на Теорема 1) и като функция на δ  при фиксирано 

4, (0; )
5

θ θ ∈ .

От 
2

2 2 2

(5 2 5) . . 2( , ) 0
[ (1 ) ] (1 2 ) (1 ) 2

F pt
t t p t

θ δδ
δ θ θ θ θ δ

∂ −
= − − <

∂ + − − + − −
следва, че е достатъчно да докажем:
(3.69)	 ( ) 1F M ≥
(М е определено в Теорема 1). Съгласно Теорема 1 разглеждаме два слу-

чая:
2 2 3

2
1 1( ) 2 3 , 2 , ( ; ) ,
3 2

i t x x p x x x x x= − = − ∈ = .

След заместване на ,t p  в (3.61) и преобразуване получаваме
(3.69) ⇔  
(3.70)	 1),( ≥δxG ,

Където 


 2)1()146(2
)2)(1()32(

)2()525(),( 222
2

2





 xx

xxx
xxxG  

. 
От 

2

2 0G
δ

∂
<

∂
 

(
2 2 2

2 2 3 2 2 2 3

20(5 2 5) (1 )( 2 )(2 3 ) 2
[ (2 3 ) (1 )( 2 )] [ (6 4 1) (1 ) 2 ]

G x x x
x x x x x
θ θ

δ δ θ θ θ θ δ
∂ − − − −

= − −
∂ − + − − − + + − −

) 

следва, че за да е вярно (3.70), трябва да докажем следните:

(3.71)	 ( ,0) 1G x ≥
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 И 
(3.72)	

2(1 )( , ) 1
4

G x θ−
≥ .

(3.71) 1),(1 ≥⇔ θxg , където 22
1 )1()146(2),( θθθ −++−= xxxg . 

Да отбележим, че x  и θ  не зависят едно от друго. 

От (3.71) 1( , )g x
x

θ∂
⇒ =

∂

2 2 2

12 4 1 10 ( ( ; ) )
3 2(6 4 1) (1 )

x x
x xθ θ

−
> ∈

− + + −
. Следователно 1( , )g x θ  е 

растяща по отношение на x . Тогава (3.71) следва от:
2

2
1 1

1( , ) ( , ) 2 (1 ) 1
3 3

g x g θθ θ θ> = + − ≥ , което точно е доказаното по-го-

ре (3.64).
(3.72) ⇔
(3.73)	 1),(2 ≥θxg ,

Където 
2

2 2
2 2

5(5 2 5) (1 ) (1 2 ) (1 )( , ) 2 (6 4 1)
2 3 (8 7 2) 2

x xg x x x
x x x

θ θ θθ θ
θ

− − − −
= + − + +

− − − +
. 

Oт (3.73) получаваме:
2 2

2
2 2 2

2

( , ) 5(5 2 5) (1 )[9 8 2 (1 )(3 1)] 4 (3 1)
[2 3 (8 7 2)] (1 )(6 4 1)

2

g x x x x x x
x x x x

x x

θ θ θ θ θ
θ θθ

∂ − − − + + − − −
= +

∂ − − − + −
− + +

>0

(защото 
1 1( ; )
3 2

x ∈  и 
4(0; )
5

θ ∈ ). Тогава 2 ( , )g x θ  е растяща по отно-
шение на x  и е достатъчно да докажем:

(3.74)	 2
1( , ) 1
3

g θ ≥ .

Но (3.74) е еквивалентно на 25(5 2 5) (1 ) 6 5 6 3 1
9 5 3

θ θ θ θ
θ

− −
+ − + ≥

−
, 

т.е. на (3.65), което е доказано по-горе.
2 3 2

3
1 1 1( ) (1 2 3 ) , ( 2 ) , (0; ) ,
4 4 3

ii t x x p x x x x x x= + − = − + ∈ = .

След заместване на ,t p  в (3.61) получаваме (3.69) ⇔
(3.75)	 1),( ≥δxH ,

където 


 2)1()123(
2

2
))(1()31(

)(525(5),( 22
2

2

2





 xx

xxx
xxxH  . 

От 
2

2 0H
δ

∂
<

∂
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(
2 2 2 2

2 2 3 2
2 2 3

10(5 2 5)(1 ) ( ) (1 3 ) 2
[ (1 3 ) (1 )( )]

[ (3 2 1) (1 ) 2 ]
2

H x x x
x x x

x x

θ θ
δ δ θ θ θ θ δ

∂ − − − +
= − −

∂ + + − −
− + + − −

)

 
получаваме,че (3.75) ще следва от верността на следните две неравенства:

(3.76)	 ( ,0) 1H x ≥  
и 
(3.77)	

2(1 )( , ) 1
4

H x θ−
≥ .

Припомняме, че 
1(0; )
3

x ∈ , 
2(1 )(0; ]

4
θδ −

∈  и 
4(0; )
5

θ ∈ .

Доказателство на (3.76):
(3.76) ⇔
(3.78)	 1),( ≥θxh ,

където 22
2

1 )1()123(
2

2),( θθθ −++−= xxxh . 

От 
2

1
2

2 2

( , ) (3 1) 0
(3 2 1) (1 )

2

h x x
x

x x

θ θ

θ θ

∂ −
= <

∂
− + + −

 следва, че 1( , )h x θ  е на-

маляваща по отношение на x . Тогава, за да е вярно (3.78), е достатъчно да 
докажем: 1

1( , ) 1
3

h θ ≥ , което е еквивалентно на доказаното по-горе 

(3.64)	
2

22 (1 ) 1
3

θ θ+ − ≥ .

Доказателство на (3.77):
(3.77)	 1),(2 ≥θxh , където 

2
2 2 2

2 2
5(5 2 5) (1 )( )( , ) 2 (3 2 1) (1 )

1 3 (4 1)
x xh x x x

x x x
θ θθ θ θ
θ

− − −
= + − + + −

+ − − +
.

Последователно получаваме:

(3.79)	 ),()31(),(2 θθ
θ xrx

x
xh

−=
∂

∂
,

Където 
2

2 2 2 2

5(5 2 5)(1 ) ( 1) 2.( , )
[3 1 (4 1)] (3 2 2) 2 1

xr x
x x x x x

θ θθ
θ θ θ

− − +
= −

+ − − + − + − +
. 

След пресмятане и опростяване получаваме:

(3.80)	 ( , )r x
x

θ∂
=

∂
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2 2 3

2 3 2 2 3

5(5 2 5)(1 ) [ 3 5 3 (4 5 1)] 2. (3 1)
[3 1 (4 1)] [ (3 2 2) 2 1]

x x x x
x x x x x

θ θ θ
θ θ θ

− − − − + + − −
+

+ − − + − + − +
.

От 
1(0; )
3

x ∈  и
 

4(0; )
5

θ ∈  следва 

(3.81)	 0)154(353 2 <−++−− xxx θ .
Сега от (3.81) и (3.80) следва, че ( , )r x θ  е намаляваща по отношение на x . 

От последното и от (3.79) получаваме, че са възможни следните три случая:

0),()1( 2 



x
xhii    за )

3
1;0(∈x ,

0),()2( 2 



x
xhii    за );0( 0xx ∈  и 0),(2 <

∂
∂

x
xh θ

 за )
3
1;( 0xx ∈ ,

0),()3( 2 



x
xhii    за )

3
1;0(∈x .

От ( 1) ( 3)ii ii−  следва, че за да докажем (3.77), е достатъчно да докажем: 

1),0(2 ≥θh  и 1),
3
1(2 ≥θh . Но последните две неравенства са еквивалентни съ-

ответно на вярното неравенство 2 2 22. (1 ) 1 ( (2 1) 0)θ θ θ+ − ≥ ⇔ − ≥  
и на доказаното по-горе (3.65). С това приключва доказателството на Теорема 1.5.

Заб. Oт доказателството следва, че равенство се достига само когато всич-
ки числа са равни.

Заб. В доказателството на Теорема 1.5 в случаите, когато 
2(1 )

4
θδ −

= , от 

наредбата на числата , , , ,a b c d e  следва, че 
3(0; )
5

θ ∈ . Но последното не вли-

яе на доказателството, защото считаме, че θ  принадлежи на по-широк интер-
вал, а именно 

4(0; )
5

.

4. Някои забележки и геометрични неравенства
Заб. От монотонността на pM  и от доказаните теореми в горния параграф 

например следват:
В случая, когато n = 3

Теорема 4.1 За ( ;0)p ∈ −∞  неравенството (1 ). .n p nA M Sλ λ≥ − + е изпъл-

нено ⇔
3

3
λ ≤ .
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Теорема 4.2 За ( ;0)p ∈ −∞  неравенството
 

(1 ). .n p nA M S      е из-

пълнено ⇔
6

3
λ ≥ .

В случая, когато n = 4
Теорема 4.3 За ( ; 1)p ∈ −∞ −  неравенството (1 ). .n p nA M Sλ λ≥ − +  е из-

пълнено ⇔
1
2

λ ≤ .

Теорема 4.4 За ( ; 1)p ∈ −∞ −  неравенството (1 ). .n p nA M Sλ λ≤ − +  е из-

пълнено ⇔
3

2
λ ≥ .

Прилагайки метода, използван при доказателствата на теоремите от 
горния параграф, могат да се доказват и хомогенни симетрични геометрични 
неравенства. Това става по следния начин. Нека означим с , , , , , , ,x y z s r R S  
съответно дължините на страните, полупериметъра, радиуса на вписаната 
окръжност, радиуса на описаната окръжност и лицето на произволен триъ-
гълник. Полагаме , ,x a b y b c z c a= + = + = + . Тъй като неравенствата са 
хомогенни относно , ,x y z  , то те са хомогенни и относно , ,a b c . Затова мо-
жем да считаме, че 1a b c+ + = . Тогава при приетите означения получаваме

(4.1)	
2( ) 1

2 2
x y z a b cs + + + +

= = = ,

( )( )( ) ( )S s s x s y s z a b c abc p= − − − = + + = , 
Sr p
s

= = , 

( )( )( ) (1 )(1 )(1 ) 1 ( ) ( )
4 4 4 4 4
xyz a b b c c a c a b a b c ab bc ca abc t pR

S p p p p
+ + + − − − − + + + + + − −

= = = = =

Пример (вж. следствие 4.2 от Niculesco, 2000). За произволен триъгълник е 
изпълнено неравенството

(4.2)	 2 2 2 2 3( 2 10 ) 4 ( 2 )s R Rr r R R r− − + ≤ −
Доказателство: за краткост ще пропуснем пресмятанията. За равностра-

нен триъгълник се достига равенство. За неравностранен триъгълник от (4.1) 
получаваме, че

(4.2) ⇔
(4.3)	 0)( ≥tf , където 223 274184)( pppttttf   . Раз-

глеждаме функцията ( )f t , определена в (4.3) при фиксирано p , 
1(0; )
27

p ∈

за [ ; ]t m M∈ , където ,m M  са определени в Теорема 1. От (4.3) следва 
2( ) 12 2 18f t t t p′ = − + + . Явно уравнението ( ) 0f t′ =  има корени 1 20t t< < . 

( ; 1)p ∈ −∞ −( ; 1)p ∈ −∞ −
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Ще покажем, че
(4.4)	 ( ) 0f m   .
Разглеждайки съответните два случая, получаваме, че последното нера-

венство е еквивалентно съответно на следните две верни неравенства:
))

3
1;0((0)32(6)13( 11

2
1

2
1 ∈>−+− xxxx  и ))1;

3
1((0)13)(1( 4

3
44  xxx  .

От (4.4) следва, че е достатъчно да проверим верността на следните неравен-
ства: ( ) 0f m ≥  и ( ) 0f M   . Разглеждайки съответните четири случая, получава-
ме, че последните неравенства са всъщност тъждествата ( ) 0f m    и ( ) 0f M   ! 
(Т.е. неравенството (4.2) за положителните числа rR,  е НДУ да съществува три-
ъгълник с радиус на описаната окръжност, равен на R , и радиус на вписаната 
окръжност, равен на r ). От последното, (2.19) и (2.20) следва, че равенство се 
достига за произволен равнобедрен триъгълник (което е добре известно).

Заб. Други доказателства на (4.2) могат да се намерят например в (Niculesco, 
2000) и (Blundon, 1965).

Заб. Oт (4.2) следват неравенството на Ойлер и неравенствата на Blundon.
Предлагаме следните проблеми.
Да се намерят оптималните константи, при които са верни неравенствата

2 1 3
(1 ). .p p pM M M     ,

2 1 3
(1 ). .p p pM M M      за 1 2 3p p p   .

1.За 1 2 33 , 1 , 1 , 3, 4,5...n p p p= = − = =
2.За 1 2 33 , 0 , 1 , 3, 4,5...n p p p= = = =
3.За 1 2 33 , 1 , 2 , 3n p p p= = = = .
За 1 3 33 , , ,n p p p=  са произволни.
Аналогични неравенства за 4n = .
Следвайки доказателството на  Теорема 1.3.1, да се докаже, че 

5 5 5(1 ). .A H Sλ λ≥ − +  е изпълнено ⇔  
5

5
λ ≤ .

Предположение:
за 3 , 1n p≥ >

1 1(1 ). .n n pA G Mλ λ≤ − +  и 2 2(1 ). .n n pA G Mλ λ≥ − +  са изпълнени ⇔

p
p

n
n 1

1 )1(
−

−
≥λ  и p

p

n
−

≤
1

2λ  съответно.

5. Доказателство на Теорема 1
Първо ще докажем следната:
Лема 1. Нека ( ) , ( )f x g x  са непрекъснати и растящи (или намаляващи) 

функции в интервала ( ; )α β  и са изпълнени следните:
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(5.1) ( ) ( ) 0f x g x− >  за
 ( ; )x α β∀ ∈

(5.2) , , , ( ; )a b c d α β∃ ∈ , за които ( ) ( ) , ( ) ( )f a g b f c g d= = .
Тогава е изпълнено неравенството
(5.3) ( )( ) 0a b c d− − > .
Доказателство: ще разгледаме случая, когато ( ) , ( )f x g x  са растя-

щи. Допускаме противното, т.е. ,a b c d> < . Тогава от (5.2) получа-
ваме ( ) ( ) ( )g a d b f a> = , откъдето (5.3) ( ) ( )g a f a> . Аналогично 

( ) ( ) ( )f c g d d c= > , откъдето (5.4) ( ) ( )f c g c .
Разглеждаме функцията ( ) ( ) ( ) , ( ; )F x f x g x x α β= − ∈ . От (5.3) и (5.4) 

следва, че ( ) 0F a <  и ( ) 0F c   . Тогава от теоремата на Вайерщрас следва, че 
0 ( ; )x     , за което 0( ) 0F x   . Последното противоречи на (5.1), следовател-

но (5.3) е доказано. Случаят, когато функциите са намаляващи, се разглежда 
аналогично.

Теорема 1. Нека p  е фиксирано число от интервала
1(0; )
27

. Тогава:

( )i 	 Уравненията 3 22 0x x p− + =  и 3 22 4 0x x x p− + − =  имат 
точно по два корена в интервала (0;1)  съответно 1 2,x x  и 3 4,x x , при което са 
изпълнени неравенствата

(2.13)	 3 1 2 4
10 1
3

x x x x< < < < < <
и
(2.14)	 2

1
2

x < .
( )ii Нека , ,a b c  са положителни числа, поне две от които са различ-

ни, 1 ,a b c abc p+ + = = . Тогава множеството от стойности на 
t ab bc ca= + +  съвпада с интервала [ ; ]m M , където 

(2.15)	 1 4min{ ( }, ( )}m g x h x= ,
(2.16)	 2 3max{ ( ) , ( )}M g x h x=

2 21( ) 2 3 , ( ) (1 2 3 )
4

g x x x h x x x= − = + − , 1 2 3 4, , ,x x x x  са определени 
в ( )i .

( )iii 	 Изпълнени са неравенствата

(2.17)	 3m p>
и 

(2.18)	
1 9

4
pM +

< .
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Освен това, когато:
(2.19) 2

1 12 3t m x x    , то 2 3
1 12p x x   , 2

2 22 3t M x x    , то 2 3
2 22p x x   

(2.20)	 2
4 4

1 (1 2 3 )
4

t m x x= = + − , то 3 2
4 4 4

1 ( 2 )
4

p x x x= − +
2

3 3
1 (1 2 3 )
4

t M x x= = + −  ,  то 
 

3 2
3 3 3

1 ( 2 )
4

p x x x= − + ,

1 2 3 4, , ,x x x x   са определени в ( ) , ,m M  са определени в ( )ii .
( )iv
(2.21)	 Когато са изпълнени (2.19) или (2.20), точно две от числата 

, ,a b c  са равни помежду си.
Доказателство: разглеждаме функцията 3 2

1( ) 2f x x x p= − + . Oт 
2

1( ) 6 2f x x x′ = −  получаваме
(5.5)	 1( )f x е растяща за )1;

3
1(),0;(x   и е намаляваща за 

1(0; )
3

x ∈ .

От (5.5) и от неравенствата:

 1 1 1 1
1 1 1(0) 0 , ( ) 0 , (1) 1 0 , ( ) 0
3 27 2

f p f p f p f p= > = − < = + > = > , следва, че

(5.6)	 1 2 1 1 1 2 1 2
1 1, : ( ) ( ) 0 , 0 1
3 2

x x f x f x x x∃ = = < < < < < .
Аналогично доказваме, че
(5.7)	 3 4 2 3 2 4 3 4

1, : ( ) ( ) 0 , 0 1
3

x x f x f x x x∃ = = < < < < ,

където 3 2
2 ( ) 2 4f x x x x p= − + − . Разглеждаме функциите 

2

2
(1 ) 1( ) ( )

4 4
x xF x f x p−

= = +  и 2
1( ) (1 2 ) ( )G x x x f x p= − = − +  за 

1(0; )
3

x ∈ . Лесно се проверява, че те са растящи в разглеждания интервал. 

Ако 
1 1, (0; ) : ( ) ( )
3 32

a b F a G b∈ = = , то лесно се проверява, че 
1
4

a b< < .  

Уравнението ( ) ( )F x G x=  няма решение в посочения интервал, защото е ек-
вивалентно на 2(1 3 ) 0x x− = . От последните разглеждания и от (5.6), (5.7) 
следва, че можем да приложим Лема 1 за функциите ( ) , ( )F x G x , числата 

1 3, , ,a b x x  и интервала 
1(0; )
3

.
Оттук получаваме, че
(5.8)

	
3 1

10
3

x x    .
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Разглеждаме ( )F x  и ( )G x ,
 
дефинирани по-горе за 

1( ;1)
3

x ∈ .
Лесно се проверява, че тези функции са намаляващи в разглеждания ин-

тервал. От 11 0
2

lim ( ) lim ( )
x x

F x p G x
→ − →

= =  и от равномерната непрекъснатост на 

непрекъснатите функции ( )F x  и ( )G x  в интервала 
1[ ;1]
3

 следва, че
1, : , , 1 , ( ) ( )
2

c d c d c d G c F dε δ∃ < = − = − = ,

където ε  и δ  са достатъчно малки. Прилагаме Лема 1 за функциите 

( ) , ( )F x G x , числата 2 4, , ,c d x x  и интервала 
1( ;1)
3

, откъдето получаваме:
(5.9)	 4 2x x> .
От (5.8) и (5.9) следва  верността на (2.13) и (2.14).  

От 1 ,a b c abc p+ + = =  последователно получаваме
2 2 2 3(1 ) ( ) .4 4 2 4 0a a a b c a bc p a a a p− = + ≥ = ⇒ − + − ≥  т.е.

2 ( ) 0f a ≥  и от по-горе следва, че
(5.10)	 3 4[ ; ]a x x∈ .
От 1 ,a b c abc p+ + = =  също следва 2 3

( ) (1 ) ( )p a a pt ab bc ca a b c bc a a H a
a a

− +
= + + = + + = − + = = , 

2 3

( ) x x pH x
x

 
  .

Тогава съгласно (5.10) разглеждаме ( )H x  за 3 4[ ; ]x x x∈ .
2 3

1
2 2

( )2( ) f xx x pH x
x x

− −′ = = − . От (5.5) и (5.6) следва, че

(5.11)	 0)( >′ xH  за );( 21 xxx ∈  и 0)( <′ xH  за );(),;( 4213 xxxxx ∈ .
От (5.11) следва, че [ ; ]t m M∈ , където 1 4min{ ( ) , ( )}m H x H x= , но

2 3 2 3 2 3
21 1 1 1 1 1

1 1 1 1
1 1

2( ) 2 3 ( )x x p x x x xH x x x g x
x x

− + − + −
= = = − =  ( използвах-

ме 1 1( ) 0f x = ), 
където ( )g x е определена в ( )ii ,

3 2
2 3 4 4 4

2 3 4 4
24 4

4 4 4 4
4 4

2
14( ) (1 2 3 ) ( )
4

x x xx xx x pH x x x h x
x x

− +
− +− +

= = = + − =

(използвахме 2 4( ) 0f x   ), където ( )h x е определена в ( )ii . Аналогично по-
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лучаваме, че 2 3max{ ( ) , ( )}M H x H x= , )()( 22 xgxH =  и )()( 33 xhxH = . 
С това приключва доказателството на (2.15) и (2.16). (2.19) и (2.20) след-
ват от дефинирането на mxxxx ,,,, 4321  и M . Ще докажем (2.21) само в 
един от възможните четири случая. Нека 2

11 32 xxmcabcabt   и 
3
1

2
1 2xxabcp −==  (съгласно (2.19)). Тогава , ,a b c  са корените на уравне-

нието (припомняме, че 1a b c+ + = ) 3 2 2 3 2
1 1 1 1(2 3 ) 2 0Z Z x x Z x x− + − + − = .

Лесно се проверява, че корените на това уравнение са 1 2 1 3 1, 1 2Z Z x Z x= = = −
. Последното доказва верността на (2.21).

Останалите три случая се разглеждат аналогично. Oстава да докажем 
(2.17) и (2.18). За да докажем (2.17), съгласно (2.19) е достатъчно да проверим 
верността на неравенствата pxg 3)( 1 >  и pxh 3)( 4 > . Лесно се проверя-
ва, че те са еквивалентни на следните две верни неравенства: 0)13( 1

2
1 >−xx  

и 0)13()1( 2
4

2
4 >−− xx  ( 1 4

1 1(0; ) , ( ;1)
3 3

x x∈ ∈  съгласно (2.13)). Ана-

логично (2.18) следва от проверката на неравенствата 
4
91)( 2

pxg +
<  и 

4
91)( 3

pxh +
< . Лесно се проверява, че те са еквивалентни на следните две 

верни неравенства:
0)21()13( 2

2
2 >−− xx  и 0)13( 2

33 >−xx  ( 2 3
1 1 1( , ) , (0; )
3 2 3

x x∈ ∈  съ-
гласно (2.13) и (2.14)).

С това приключва доказателството на теоремата.
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SOME NEW INEQUALITIES AMONG THE ARITHMETIC, 
GEOMETRIC, HARMONIC AND QUADRATIC MEANS

Abstract. Let nnn SHA ,,  be the arithmetic, harmonic and quadratic 
means respectivity for the positive real numbers 1 2, ,..., na a a . In this article 
we prove the following theorems:

Theorem 1. For 3n =  we have 
3(1 ). .

3n n nA H Sλ λ λ≥ − + ⇔ ≤  and 

6(1 ). .
3n n nA H Sλ λ λ≤ − + ⇔ ≥ .

Theotrem 2. For 4n =  we have
1(1 ). .
2n n nA H S         and 

3(1 ). .
2n n nA H Sλ λ λ≤ − + ⇔ ≥ .

Theorem 3.For 5n =  we have 
2 5(1 ). .

5n n nA H Sλ λ λ≤ − + ⇔ ≥ .

Some open problems are proposed too.
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