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Аннотация. В статье предлагается новая серия олимпиадных задач по 
математике. Приводится обзор олимпиадных задач, содержание которых 
направлено на исследования качественного (возможного, допустимого) или 
количественного расположения ладьи или ладей на шахматной доске. Фор-
мулировки новых задач связаны с исследованием сочетания шахматной до-
ской с пронумерованными клетками и расставленными четырьмя ладьями. 
Ладьи располагаются на шахматной доске таким образом, что каждая бьет 
две ладьи из трех оставшихся. Другими словами, клетки шахматной доски, 
в которых расположены ладьи, являются вершинами прямоугольника, сто-
ронами которого являются вертикальные и горизонтальные клетки доски. 
Всем клеткам шахматной доски сопоставлены числа. Подсчитывается полу-
сумма чисел, закрытых ладьями. Следует определить возможные значения 
таких полусумм. Шахматной доске с пронумерованными клетками сопо-
ставляется матрица. Прямоугольникам доски сопоставляются соответству-
ющие прямоугольники матрицы, которые называются ее квадратами. Полу-
суммы называются суммами квадратов матрицы. Вводится величина, равная 
количеству квадратов матрицы, равных определенному числу. Исследуется 
эта величина на возможные ее значения и симметричность относительно 
некоторого числа, если ее рассматривать как функцию одной переменной. 
Свойства этой величины относится к числовым характеристикам квадратов 
матрицы. Задачей о четырех ладьях является задача об определении число-
вых характеристик квадратов матрицы. В статье разбирается пример реше-
ния задачи о четырех ладьях и приводится обзор решенных подобных задач 
с определенными нумерациями клеток.

Ключевые слова: олимпиада по математике; шахматы; шахматная ладья; 
квадрат матрицы, сумма квадрата матрицы

1. Введение
Олимпиада по математике – интеллектуальное соревнование, выявляющее 

не только математические знания за определенный класс или курс, но и уме-
ния применять знания в нестандартных ситуациях, требующих творческого 
мышления.
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Первая математическая олимпиада в СССР прошла в 1935 году в Москве. 
Первая Всероссийская олимпиада по математике была проведена в 1960 году, 
а Всесоюзные олимпиады начинают историю с 1967 года.

Одна из серий олимпиадных задач связана с шахматами. Это и не удиви-
тельно. Испокон веков на Руси, в Российской империи, в СССР и в совре-
менной России шахматам уделяли и уделяют большое внимание. В любом 
сборнике олимпиадных задач по математике можно найти задачи с шахмата-
ми (Grozdev, 2007), (Galperin & Tolpygo, 1986), (Gorbachev, 2004), (Zaslavsky 
et al., 2009), (Prassolov, 1991), (Fedorov et al., 2006), (Yakovlev et al., 1992). 
Первая задача такого содержания появилась в XIII Московской олимпиаде 
1950 года со следующей формулировкой: «Имеется шахматная доска с обыч-
ной раскраской (границы квадратов считаются окрашенными в черный цвет). 
Начертить на ней окружность наибольшего радиуса, целиком лежащую на 
черных полях, и доказать, что большей окружности того же рода начертить 
нельзя» (Galperin & Tolpygo, 1986).

Первая задача, в которой исследуется движение шахматной фигуры – это 
задача XVI Московской олимпиады для учеников X классов1953 года: «На 
бесконечной шахматной доске стоит конь. Найти все клетки, куда он может 
попасть ровно за n2  ходов» (Galperin & Tolpygo, 1986), (Popov, 2018). Такая 
фигура как ладья впервые появляется в задаче № 4 XXII Московской олимпи-
аде для VII класса: «Как должна двигаться ладья на шахматной доске, чтобы 
побывать на каждом поле по одному разу и сделать наименьшее число пово-
ротов?» (Galperin & Tolpygo, 1986).

Целью статья является предложение новой серии задач, связанных с шах-
матной доской с пронумерованными полями и расположенными на ней че-
тырьмя ладьями. Под шахматной доской можно понимать не только доску 
размером 88× , но доску размером nm× , где m  и n  – натуральные числа.

Одной из шахматных фигур является ладья. Как известно, ладья может 
двигаться по прямым (по горизонтали или вертикали) на любое расстояние, 
но не может перескакивать через фигуры, стоящие на ее пути.

Будем использовать следующие словосочетания: мирные ладьи; ладьи, не 
бьющие друг друга. В каждом случае понимается то, что ладьи расположены 
в разных строках и столбцах шахматной доски. В противовес этим понятиям 
можно рассмотреть такие понятия как атакующие, бьющие, друг друга ладьи.

Клетки шахматной доски называются запрещенными, если на них нельзя 
ставить фигуры.

2. Обзор олимпиадных задач
При составлении олимпиадных задач с шахматной тематикой возможны 

сочетания элементов шахмат (доска, фигуры) и математических объектов 
(например, чисел). С общими методами решения олимпиадных задач можно 
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ознакомиться в работах (Grozdev, 20017), (Kanel-Belov et al., 2008), (Prasolov, 
1991). Отметим, что одним из методов решения является метод раскраски в 
шахматном порядке. В решении следующей задачи как раз используется этот 
метод.

Задача. Докажите, что доску размером 10x10  клеток нельзя разрезать 
на фигурки в форме буквы «Т», состоящей из четырех клеток (Prasolov, 
1991: 145).

Раскрасим доску в шахматном порядке. Если предположить, что сделать 
это возможно, то каждая фигурка содержит либо 1, либо 3 черные клетки, то 
есть нечетное число. Самих фигурок будет при этом 25 штук. Поэтому они в 
совокупности содержат нечетное число черных клеток. Но при этом количе-
ство черных клеток равно 50. Получили противоречие. ■

2.1. Шахматная доска и ладьи
А. Самой, наверное, известной задачей о ладьях является следующая (Gik, 

1983: 34), (Ivanov, 2001: 11), (Savelev, 1979: 128):
Задача. Сколькими способами можно расставить n мирных ладей на шах-

матной доске размерности nn× ?
Ответом является число nn ⋅⋅⋅= 21! . В частности, 40320!8 = . ■

Многие задачи на расстановку или подсчет количества расстановок ладей 
на шахматной доске можно переформулировать в задачи по различным раз-
делам математики (комбинаторике, теории групп, теории чисел и так далее). 
Например, рассмотренная задача эквивалентна задаче о назначениях.

Задача. Пусть требуется назначить n рабочих на n  различных работ, при-
чем каждая работа должна выполняться только одним рабочим. Сколькими 
способами можно осуществить такое назначение? (Gik, 1983: 34).

В общем случае задача о мирных ладьях звучит следующим образом.
Задача. Сколькими способами можно расставить k  мирных ладей на 

шахматной доске размером nm× ? (Ivanov, 22001: 11-12).

Ответом является число !kCC k
m

k
n ⋅⋅ , где 

)!(!
!

mnm
nCm

n 
   – биноми-

альный коэффициент.
В противовес этой задаче можно сопоставить задачу о максимальном чис-

ле ладей, каждая из которых бьет не более двух других (Zaslavsky et al., 2009: 
336, № 3).

Б. Чаще всего в задачах предполагается, что фигуры имеют один цвет. 
Если же рассматриваются фигуры разного цвета (черного и белого), то коли-
чество вариантов расположения меняется.
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Задача. Сколькими способами можно расставить n  мирных ладей на 
шахматной доске размерности nn× , если k  из них – белые и kn −  – чер-
ные? (Zaslavsky et al., 2009: 336, № 3).

Искомое число равняется k
nCn ⋅! . Для доски 88×  получаем kC840320 ⋅  

возможностей. ■

В. Также встречаются задачи с ограничениями на расстановку ладей на 
шахматной доске или на их число.

Задача. Сколькими способами можно расставить n  мирных ладей на 
шахматной доске размерности nn×  так, чтобы ни одна из них не стояла на 
главной диагонали? (Gik, 1983).

Л. Эйлер предложил рекуррентное соотношение
3,1,0),)(1( 2121   nAAAAnA nnn  

где nA  – число указанных расстановок ладей. В частности,
1854,265,44,9,2,1,0 7654321 ======= AAAAAAA .

Верна формула










 −
++−+−⋅=

!
)1(

!5
1

!4
1

!3
1

!2
1!

n
nA

n
n  , 0≥n .

Для обычной шахматной доски 88× получаем результат: 148338 =A . ■
Клетки, которые являются запрещенными для постановки в них ладей, 

могут быть определены следующим образом. Предположим, что на шахмат-
ной доске 88×  в одной из ее клеток расположен король (или слон). Следует 
определить количество способов расстановки 8 ладей таким образом, чтобы 
ни одну из них не бил король (слон). Такого сорта задачи (Ivanov, 2001: 251, 
№ 131, 132).

Задача. Сколькими способами можно расставить на шахматной доске раз-
мера nm×  две мирные ладьи?

Эта задача равносильна следующей задаче.
Задача. Сколькими способами можно расставить на шахматной доске че-

тыре ладьи, каждая из которых бьет две из оставшихся трех? (Popov, 2018)

Ответом является число
4

)1)(1(  nmmn
 , так как четыре ладьи следует 

расставлять в вершинах прямоугольника, количество которых вычисляется по 
указанной формуле. Для обычной шахматной доски 784 способами можно 
расставить ладьи указанным способом. ■
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Г. При решении задач с запрещенными клетками могут помочь ладей-
ные многочлены (Gik, 1983), (Ivanov, 2001), (Riordan, 1963). Многочлен 

∑
∞+

=

=
0

)(
k

k
k xxL  называется ладейным, если k  – число способов расста-

новки k  мирных ладей на выделенных клетках доски, считая, что 10 =  
и ладьи являются неразличимыми. Например, если на доске  размерности 

nn×  разрешается расставить k  мирных ладей только на ее одной из диа-
гоналей, то ладейный многочлен имеет вид nxxL )1()( +=  (Ivanov, 2001: 
61). Используя бином Ньютона (Ivanov, 2001: 18), получаем, что для коэффи-

циентов многочлена )(xL справедливо: k
nk C= при nk ≤≤0  и 0=k  

при nk > , поэтому расставить k  мирных ладей на диагонали можно k
nC  

способами, если nk ≤≤0 .

Д. Формулируются задачи об обходе ладьей полей шахматной доски с 
определенными условиями, в частности, с условием минимальности прой-
денных клеток шахматной доски или с условием обхода всех клеток доски.

Можно сформулировать задачу об обходе ладьей всей шахматной до-
ски с условием, что нужно побывать на каждой клетке доски только один 
раз. При этом следует рассматривать замкнутые и незамкнутые маршруты  
(Gik, 1983: 41).

Задача.  В углу шахматной доски размером nn×  стоит ладья. При каких 
n , чередуя горизонтальные и вертикальные ходы, она может за 2n  ходов по-
бывать на всех полях доски и вернуться на место? Учитываются только поля, 
на которых ладья останавливалась, а не те, над которыми она проносилась во 
время хода. За каждым горизонтальным ходом должен следовать вертикаль-
ный, а за каждым вертикальным – горизонтальный (Fedorov et al., 2006: 30).

Можно показать, что при четных n  задача имеет решение, при нечетных 
n  задача не разрешима. ■

Задача. Чему равно число кратчайших путей, по которым ладья может пе-
рейти из одного углового поля на шахматной доске в другое, диагонально 
противоположное? (Gardner, 1999: 39), (Popov, 2018).

Ответом является число 3432, равное 7
14C  . Решение задачи тесно связано с 

треугольником Паскаля (Gardner, 1999: 41). ■
Также рассматриваются задачи о минимальных путях с «преградами», то 

есть ряд клеток шахматной доски для ладьи являются запрещенными в том 
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смысле, что на них не только нельзя останавливаться, но и «пролетать». Такие 
задачи можно найти на сайте https://kopilkaurokov.ru/vneurochka/meropriyatia/
konspiekt-stsienariia-dlia-piervogho-ghoda-obuchieniia-shakhmatnyi-turnir.

Е. Можно выделить олимпиадные задачи о выработке стратегии в играх с 
использованием ладьи или ладей.

Задача. В углу шахматной доски размером nm×  полей стоит ладья. 
Двое по очереди передвигают ее по вертикали или по горизонтали на любое 
число полей; при этом не разрешается, чтобы ладья стала на поле или прошла 
через поле, на котором она уже побывала (или через которое уже проходила). 
Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить 
себе победу: начинающий или его партнер, и как ему следует играть? (Fedorov 
et al., 2006: 31).

Стратегия заключается в том, что первому достаточно все время делать 
наиболее длинные ходы. ■

Подобные задачи (Zaslavsky et al., 2009: 331, № 6, 332, № 8, 9, p. 331, № 1).
Ж. Для шахматных фигур выделяется серия задач об «обстреле» кле-

ток шахматной доски. Для ладьи подобная задача звучит следующим об-
разом.

Задача. Сколькими способами можно расставить n  мирных ладей на до-
ске nn×  так, чтобы они держали под обстрелом все поля доски? (Gik, 1983: 
36).

Ответом является число !2 nnn − . В случае 8=n  получаем 33514312 
способов. ■

2.2. Шахматная доска, ладьи и числа
В клетки (поля) шахматной доски могут вписываться числа. Расстановке 

ладей можно сопоставить набор чисел или некоторое число. Приведем при-
меры таких задач.

Задача. Пусть на каждом поле шахматной доски 88×  записано произ-
ведение номеров горизонтали и вертикали, которым оно принадлежит. Рас-
ставить восемь мирных ладей так, чтобы сумма чисел на полях, занимаемых 
ими, была наибольшей (Gik, 1983: 39).

Ладей следует расположить вдоль главной диагонали и ответом на задачу 
будет число 204. Обобщая задачу на доску размером nn× , получаем ответ, 

равный 
6

)12)(1(321 2322 


nnnn  . ■

Задача. На полях шахматной доски вписаны подряд числа от 1 до 64 (на 
первой горизонтали слева направо – от 1 до 8, на второй – от 9 до 16 и так 
далее). Поставим на доску восемь мирных ладей. Какие значения может при-
нимать сумма чисел на полях, занятых ладьями? (Gik, 1983: 41). 
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Ответом является число 260. Для случая доски nn×  получаем число 

2

3 nn +
 или )1(

2

3
−⋅+

+ annn
, если записываются последовательные 

числа, начиная с числа a  (Gik, 1983: 24). ■
Задача. В клетках шахматной доски размером nn×  расставлены чис-

ла: на пересечении k -й строки и m -го столбца стоит число kma  . При лю-
бой расстановке на этой доске n  мирных ладей, сумма закрытых чисел 
равна одному и тому числу. Докажите, что существует два набора чисел 

nxxx ,,, 21   и nyyy ,,, 21  , что при всех k  и m  выполняется равен-

ство mkkm yxa    (Galperin & Tolpygo, 1986:121).
Следует показать, что справедливо равенство mkkm aaaa 1111   .
Пусть 1≠k  и 1≠m  (если 1=k  или 1=m , то равенство справедливо). 

Расставим n  мирных ладей так, что одна ладья закроет число 11a  , а другая – 
число kma  . Обозначим символом Σ  сумму всех чисел, закрытых остальными 

2−n  ладьями. Переставив только две выбранные ладьи так, что первая ладья 
будет закрывать число 1ka , вторая – число ma1 , получим по условию зада-
чи равенство  mkkm aaaa 1111  , значит, mkkm aaaa 1111   . 
Поэтому mkmkkm aaaaaaa 11111111 )()(   . Обозначив 

1kk ax =  и 111 aay mm    или 111 aax kk −=  и mm ay 1= , получаем 
требуемое. ■

Эту задачу можно считать обратной задачей к задаче о составлении ква-
дратов доски размерности nn×  с постоянной суммой чисел, записанных на 
ее полях, и закрытых n мирными ладьями (Gik, 1983: 23).

Шахматную доску с пронумерованными клетками можно воспринимать 
как матрицу (таблицу).

Задача. Пусть в матрице R  размерности nm×  расставлены числа от 0 
до 1mn   следующим образом:





























−+−+−+−−

−+−+−+−−

−+++
−+++

−

=

)1()1()1(1)1()1(

)1()1()1(1)1()1(

)1(22122
)1(1

110

nnmsnmnmnm

nnisninini

nnsnnn
nnsnnn

ns

R















.
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В матрице R выделяется квадратную подматрицу из последовательных 
строк и столбцов размерности tt × , где };min{1 nmt ≤≤ . Пусть это ма-
трица























−++−++−+−

−+++++
−+++++

−++

=

1)1(1)1()1(

12122
11

11

);(

tsntsntsnt

tsnsnsn
tsnsnsn

tsss

tsR











,

где tntmns −+−≤≤ )(0 . На числа матрицы );( tsR  расставим t  мир-
ных ладей. Суммой );(sum tsR  матрицы );( tsR  назовем число, равное сум-
ме чисел, закрытых ладьями.

Элементы матрицы );( tsR  могут быть получены как суммы чисел двух 
наборов )1;;2;1;( −+++ tssss   и ))1(;;2;;0( sntnn +− , записав 
первый набор горизонтально, а второй – вертикально. Отсюда получаем, что 
сумма );(sum tsR  равна сумме чисел из наборов, и, в частности, равна сумме 
чисел, стоящих на главной диагонали этого квадрата, а именно равна сумме

))1)(1(2(
2

)1)1(()22()1(  ntsttsntsnsns   .

Тогда

))1)(1(2(
2

sum );(  ntst
tsR  .

Заметим, что
tttsRtsRnts ,1,1 );();()1)(1(2   ,

где 1,1);( tsR  и tttsR ,);(  – 1,1  - и tt, -элементы матрицы );( tsR  соот-
ветственно. Поэтому

));();((
2

sum ,1,1);( tttsR tsRtsRt
+⋅= .

Если t  является нечетным и 12 += kt , где Nk∈ , то для числа 
1,1);( ++ kktsR , стоящего на пересечении диагоналей матрицы );( tsR , 

верно равенство ));();((
2
1);( ,1,11,1 ttkk tsRtsRtsR +⋅=++ , поэтому в этом 

случае
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1,1);( );(sum ++⋅= kktsR tsRt .

Например, пусть матрица R  имеет размерность 85× ,

























3938373635343332
3130292827262524
2322212019181716
15141312111098
76543210

R  

Для матриц

 
 

 
 





















38373635
30292827
22212019
14131211

)4;11(R  

 

и

 

 
 

 
 

  























3837363534
3029282726
2221201918
1413121110
65432

)5;2(R  

справедливо: 98)3811(
2
4sum )4;11( R   и 100)382(

2
5sum )5;2( R  . 

Если мирные ладьи выставлены в указанных скобками местах, то сумма за-
крываемыми ими числами равна в первом случае 98, во втором случае – 100. 
Для матрицы )5;2(R  справедливо: 1002055sum 3,3)5;2(  rR  . ■

3. Задача о четырех ладьях
Сформулируем следующую задачу о четырех ладьях на шахматной доске 

с пронумерованными клетками (кратко эту задачу будем называть задачей о 
четырех ладьях).

Общая формулировка задачи. Пусть на шахматной доске размера nm×  
расставлены четыре ладьи так, что каждая бьет две из трех оставшихся. В 
клетках доски записаны числа. Определяется число (sum)v , равное количе-
ству одинаковых полусумм sum чисел, закрытых ладьями. Следует опреде-
лить характеристики величины (sum)v .

Пример. Будем рассматривать шахматную доску как матрицу. Пусть четы-
ре ладьи закрывают клетки с отмеченными числами в матрице
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







=








=

]3[75]1[
]9[55]7[

3]7[5]1[
9]5[5]7[

A .

В двух указанных случаях полусумма выделенных чисел равна

10
2

9731
2

7751






 .

Других вариантов расстановки ладей, в вершинах некоторого прямоу-
гольника, чтобы полусумма закрываемых чисел равнялась 10, нет. Поэтому 

2)10( v  .
Для матрицы A  справедливо: 1)9( =v , 2)10( v  , v(11 = 2  и 1)12( v  , во 

всех остальных случаях 0=v . ■
Определяемыми характеристиками величины (sum)v  могут быть:
1) множество ее значений;
2) свойство симметричности: справедливость равенства

(sum)sum)2( vav =−
для некоторого числа  a  и всех возможных указанных в задаче полусумм 
sum;

3) наибольшее (наименьшее) значение величины v .
Отдельным вопросом является выяснение области изменения полусумм 

чисел, которые могут быть закрыты ладьями.
Из условия задачи следует, что ладьи расположены в вершинах некоторого 

прямоугольника, составленного из полей доски.
Определим следующие понятия.

Подматрицу 








jtjs

itis
aa
aa

  матрицы A  размерности nm× , где 

mi ≤≤1 , mj ≤≤1 , ns ≤≤1 , nt ≤≤1 , tsji << , , назовем квадра-
том и обозначим ),;,;,;,( tjsjtisiA . По формуле 4/)1)(1(  nmmn   
вычисляется количество квадратов матрицы A . Сумма квадрата 

),;,;,;,( tjsjtisiA  – число, равное 2/)( jsitjtis aaaa   , которое обо-
значим )),;,;,;,(Sum( tjsjtisiA  (Popov, 2014), (Popov, 2018).

Количество квадратов матрицы A , сумма каждого из которых равна sum , 
обозначим (sum)Av .

Число, которое является суммой некоторого квадрата данной матрицы, на-
зовем возможным значением суммы квадрата этой матрицы. Можно сказать, 
что число sum  является возможным значением суммы некоторого квадрата 
матрицы A , если 1(sum) ≥Av .
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Если множество всех возможных значений сумм квадратов матрицы A  
обозначить AV , то справедливо равенство

4
)1)(1((sum)

sum






nmmnv
AV

 .

Рассмотрим пример сформулированной задачи о четырех ладьях.
Задача. В клетках первой, второй и так далее строках шахматной доски раз-

мером nm×  записаны последовательные целые числа от некоторого числа 
a  до 1−+ na . На шахматную доску ставятся четыре ладьи так, что каждая 
бьет две из трех оставшихся. Вычисляется полусумма чисел, закрытых ладья-
ми. Определите количества совпадений получаемых таким образом полусумм.

Если шахматной доске с расставленными числами сопоставить матрицу 
)(aR  размерности nm× , то матрица будет иметь вид:



















−++

−++
−++

=

)1(1

)1(1
)1(1

)(

naaa

naaa
naaa

aR









.

Примерами являются следующие матрицы:
















=

43210
43210
43210

)0(R , 



















=

765
765
765
765

)5(R , 








−
−

=−
432101
432101

)1(R .

Квадрат матрицы )(aR  имеет вид:









++
++

jaia
jaia

,

где ji < , 20 −≤≤ ni  и 11 −≤≤ nj . Сумма квадрата равна jia ++2 . 
Видим, что сумма квадрата матрицы )(aR  не зависит от выбора строк этой 
матрицы.

Выбрать две строки из m  строк можно 
2

)1(2 mmCm
−

=  способами.

Определим множество возможных значений сумм квадратов матрицы 
)(aR  (множество значений сумм, которые могут получаться в результате пе-

ребора всех квадратов матрицы )(aR ).
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Изменяя j  от 1 до 1−n  при 0=i , получаем значения сумм квадратов 
12,,22,12 −+++ naaa  . Придавая теперь i  значения от 0 до 2−n , 

получаем значения сумм квадратов 322,,12,2 −++++ nanana  . 
Получаем, что суммы квадратов матрицы )(aR  принимают все целые зна-
чения из отрезка

]322;12[ −++ naa .
Количество возможных значений равно 321)12()322( −=++−−+ nana , 

то есть равно 32 −n . Видим, что количество возможных значений нечетно. 
Серединой отрезка ]322;12[ −++ naa  является число 12 −+ na .

Определим значения величины (sum))(aRv .
Если ]322;12[sum −++∈ naa , то для некоторых i  и j  верно ра-

венство jia ++= 2sum . Найдем ограничения на величину i . Так как 
iaj −−= 2sum , ji < , 20 −≤≤ ni  и 11 −≤≤ nj , то









−−<
−≤≤

−≤−−≤

,2sum
,20

,12sum1

iai
ni

nia









−<
−≤≤

−−≤≤+−−

.2sum/
,20

,12sum12sum

ai
ni

aina

Сравним величины 12sum −− a  и a−2sum/ .

Если sum  – четное число, то 1
2

sum
−−≤ ai и 

02/)(2/)2(2sum/)12(sum/)12(sum >+=−++=−=−−−−− jiajiaaaa ,
значит, 12sum12sum/ −−<−− aa .

Если sum  – нечетное число, то ai −
−

≤
2

1sum
 и 

02/)1(12/)1(sum)2/)1((sum)12(sum ≥−+=−−+=−−−−− jiaaa ,
значит, 12sum2/)1(sum −−≤−− aa .

Получаем решение системы относительно величины i :
– если sum  – четное число, то

	 }12sum/;2min{}12sum;0max{ −−−≤≤+−− anina ;
– если sum  – нечетное число, то

	 }2/)1(sum;2min{}12sum;0max{ anina −−−≤≤+−− .
Возможное число изменений величины i  равно возможному числу ква-

дратов с суммой sum , то есть равно (sum))(aRv .
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Найдем более простые формулы для подсчета (sum))(aRv .
Рассмотрим случай, в котором 0=a . Множество возможных значений 

сумм квадратов матрицы )0(R  имеет вид: ]32;1[ −n .
Величины i  и j  принимают 1−n  значений каждая, так как 20 −≤≤ ni  

и 11 −≤≤ nj . Рассмотрим матрицу X  размерности )1()1( −×− nn , 
элементы которой равны суммам ji + , если ji < , и «x» – в противном 
случае,

322

152
1431

123210
12321\

−××××−

+××
−×

−−
−−

=

nn

nn
nn

nn
nnji

X













На главной диагонали матрицы X  – ),1( ji + -элементы, являющиеся не-
четными числами.

Пусть ]32;1[sum −∈ n . Величина (sum))0(Rv  равна количеству чи-
сел sum  в матрице X , и для нее верно свойство симметричности относи-
тельно числа 1−n : 

sum))1(2((sum) )0()0( −−= nvv RR , ]32;1[sum −∈ n .

Действительно, числа sum  и sum)1(2 −−n  расположены в матрице 
X  симметрично относительно побочной диагонали, и их количества в ма-
трице X  равны.

Рассмотрим два случая.
А) Пусть sum  – нечетное число. Тогда 1sum ≥ .

Распишем число sum  в виде суммы: 
2

1sum
2

1sumsum +
+

−
= . Обо-

значим 
2

1sum−
=i  и 

2
1sum+

=j . Видим, что 0≥i , 1≥j  и ji < . Так 

как 
2

1sum1 +
=+i , то );1( ji + -элемент матрицы X  находится на глав-

ной диагонали.
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Все элементы в матрице X , идущие вверх параллельно побочной диаго-
нали от );1( ji + -элемента, равны числу sum . Количество таких элементов 
в матрице X  равно };1min{ jni −+ . Тогда







 +

−
+

⋅
−

=
2

1sum;
2

1summin
2

)1((sum))0( nmmvR .

Если ]1;1[sum −∈ n , то 
2

1sum
2

1sum +
−≤

+ n  и тогда

2
1sum

2
)1((sum))0(

+
⋅

−
=

mmvR ,

то есть при нечетном числе sum  верно равенство

4
)1(sum)1((sum))0(

+⋅⋅−
=

mmvR , ]1;1[sum −∈ n .

Если sum  – нечетное число из отрезка ]32;1[ −− nn , то

sum))1(2((sum) )0()0( −−= nvv RR .

Б) Пусть sum  – четное число. Тогда 2sum ≥ .
Учитывая симметричность величины )0(Rv  относительно числа 1−n , 

можем считать, что ]1;1[sum −∈ n .

Обозначим 
2

2sum−
=i  и 

2
2sum+

=j . Видим, что 0≥i , 2≥j , ji <  

и ji +=sum . При этом 
2

sum1=+i  и 
2

sum1=−j . Тогда )1;1( −+ ji

-элемент в матрице X  расположен на ее главной диагонали. Количество эле-
ментов, равных числу sum  в матрице X , равно количеству элементов этой 
матрицы, равных числу 1sum− . Действительно, так как

)()()2()2()1()1(sum ijiijijiji ++−==++−=++−=+=  ,

то в матрице X  элементы  );1( ji + , )1;( +ji , )2;1( +− ji , …, );1( ij +  
равны числу sum , и их количество равно 1+i . Заметим, что ji +  является 
номером матрицы X , так как 1sum1 −≤=+≤ nji .

Далее, так как sum=+ ji , то 1sum)1( −=−+ ji . По условию sum  
– четное число; в матрице X  элементы главной диагонали – нечетные числа. 
Поэтому 2≥j , значит, 1−j  есть номер столбца матрицы X . Из равенств
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))1(()()1()2()1()1(1sum −++−==++−=+−=−+=− ijiijijiji  ,
получаем, что элементы )1;1( −+ ji , );( ji , )1;1( +− ji , …, 

))1(;1( −+ ij  равны числу 1sum− , и их количество равно 1+i . 
Заметим, что )1( −+ ij  является номером столбца матрицы X , так как 

21)1(1sum)1( −=−−≤−=−+ nnij .
Следовательно, количества элементов, равных sum и 1sum− , совпада-

ют и равны 1+i .
Учитывая, что 1sum−  – нечетное число, то справедливо:

4
sum)1(

4
)1)1((sum)1()1(sum(sum) )0()0(

⋅⋅−
=

+−⋅⋅−
=−=

mmmmvv RR ,
то есть при четном числе sum  верно равенство

4
sum)1((sum))0(
⋅⋅−

=
mmvR ,   ]1;1[sum −∈ n .

Если sum  – четное число из отрезка ]32;1[ −− nn , то

sum))1(2((sum) )0()0( −−= nvv RR .
Рассмотрим теперь общий случай относительно числа a .
Рассмотренную матрицу X  обозначим )0(X . По числу a  составим ма-

трицу )(aX , получаемую из матрицы )0(X  путем прибавления ко всем ее 
элементам числа a2 . Элементы в матрице )(aX  есть всевозможные суммы 
квадратов матрицы )(aR .

Очевидно, что количество элементов в матрице )(aX , равных sum , 
равно количеству элементов в матрице )0(X , равных a2sum− . Поэтому 
для матрицы )(aR  получаем:

)2(sum(sum) )0()( avv RaR −= , ]322;12[sum −++∈ naa .

Величина )(aRv  симметрична относительно числа 12 −+ na , поэтому
sum))12(2((sum) )()( −−+= navv aRaR , ]322;12[sum −++∈ naa .

Окончательно,
– если sum  – четное число из отрезка ]12;12[ −++ naa , то

4
)2(sum)1((sum))(

ammv aR
−⋅⋅−

= ;

– если sum  – нечетное число из отрезка ]12;12[ −++ naa , то

4
)12(sum)1((sum))(

+−⋅⋅−
=

ammv aR ;
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– если sum  – число из отрезка ]322;12[ −+−+ nana , то
sum))12(2((sum) )()( −−+= navv aRaR .

Величина (sum))(aRv  в обоих случаях есть линейная функция от
sum . Тогда максимальное значение величины (sum))(aRv  равно 

)12()( −+ nav aR :

– 
4

)1()1()12()(
−⋅⋅−

=−+
nmmnav aR , если n  – нечетное число;

– 
4
)1()12()(

nmmnav aR
⋅⋅−

=−+ , если n  – четное число.

Пример. Для матрицы )3(−R  размерности 73× ,

















−−−
−−−
−−−

=−
2210123
3210123
3210123

)3(R ,

определим числовые характеристики ее квадратов.
Возможными значениями сумм квадратов матрицы )3(−R  являются все 

числа из отрезка ]5;5[− .
Определить значения величины v  можно двумя способами: по матрице 

)3(−X  или по полученным выше формулам.
А. Определим значения величины v  по матрице )3(−X .
В данном случае

                                                      ,      

























×××××
××××

×××
−××

−−−×
−−−−−

=−

5
43
321
2101
10123
012345

)3(X
.

Матрица )3(−X  получается из матрицы )0(X  путем прибавления ко 
всем ее элементам числа 62 −=a .

В матрице )3(−X  число 5−  встречается один раз. В матрице )3(−R  

выбрать две строки из трех можно 3
2

32
2

)1(
=

⋅
=

− mm
 способами. Тогда 



































11
109
987
8765
76543
654321

)0(X  
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число квадратов матрицы )3(−R , сумма каждого из которых равна 5− , рав-
но 331 =⋅ . Рассуждая аналогичным образом, по матрице )3(−X  получаем 
таблицу 1 значений сумм квадратов матрицы и количества квадратов с данной 
суммой.

Таблица 1. Суммы квадратов и количество квадратов матрицы )3(73 −×R

996633(sum)
012345sum
996633(sum)
012345sum

v

v
−−−−−

Б. Определим значения величины v  аналитически.
В данном случае:

– 
2

)6(sum3(sum))3(
+⋅

=−Rv , если sum  – четное число из отрезка 

]0;5[− , то есть }0;2;4{sum −−∈ ;

– 
2

)7(sum3(sum))3(
+⋅

=−Rv , если sum  – нечетное число из отрезка 

]0;5[− , то есть }1;3;5{sum −−−∈ .
Тогда

3)4()3( =−−Rv , 6)2()3( =−−Rv , 9)0()3( =−Rv ,

3)5()3( =−−Rv , 6)3()3( =−−Rv , 9)1()3( =−−Rv .

Середина отрезка ]5;5[−  – число 0. Тогда величина v  симметрична отно-
сительно числа 0, поэтому справедливо равенство:

sum)((sum) −= vv , ]5;5[sum −∈ .
Используя вычисленные значения величины v  на отрезке ]0;5[−  и по-

следнее равенство, получаем таблицу 1.
Наибольшее значение величины (sum))3(−Rv  равно 9)0()3( =−Rv . ■

4. Обзор решенных задач о четырех ладьях
Рассмотрим задачи о четырех ладьях для шахматной доски размером 

nm× , для которых уже известны числовые характеристики величины v . В 
задачах о четырех ладьях следует только указывать, какие и как расставлены 
числа в клетках шахматной доски.
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1. Неотрицательные целые числа от 0 до mn –1  расставлены в клетках 
шахматной доски таким образом, что в первой строке расставлены числа от 0 
до 1−n , во второй – от n  до 12 −n  и так далее (Popov, 2018).

2. Неотрицательные целые числа от 0 до mn –1, где n  – четное число, 
расставленыв клетках шахматной доски таким образом, что в первой строке 
расставлены числа от 0 до 1−n , во второй – от n  до 12 −n  и так далее, при 
этом нечетные числа берутся со знаком минус (Popov, 2018).

3. Натуральные целые степени натурального числа a таким образом, 

что в первой строке расставлены числа naaa ,,, 2
 , во второй – чис-

ла nnn aaa 221 ,,, 

++  и так далее, или числа Фибоначчи 321 ,, fff  и 

так далее, где 11 =f , 12 =f , nnn fff += ++ 12 , 3≥n (Popov, 2018). 
Обозначим матрицы, соответствующие шахматной доске с данными рас-
ставленными числами, )(aA  и F .Значимо то, что для каждого квадрата 

),;,;,;,)(( tjsjtisiaA   и ),;,;,;,( tjsjtisiF  матриц )(aA  и F  
их сумма является уникальной, то есть

1))),;,;,;,)(((Sum( =tjsjtisiaAv  и 1))),;,;,;,((Sum( =tjsjtisiFv .

Поэтому количество элементов во множествах )(aAV  и FV  равно количе-

ству квадратов в этих матрицах, то есть равно числу
4

)1)(1(  nmmn
 .

5. Заключительные замечания
В статье рассмотрены задачи, в формулировках которых участвуют шах-

матная доска и ладья. Также предложена новая серия олимпиадных задач с 
шахматной тематикой.

Возможны вариации задачи о четырех ладьях. Во-первых, решение задачи 
меняется от способа нумерации клеток шахматной доски. Во-вторых, в каче-
стве шахматной фигуры можно выбрать не ладью, а любую другу шахматную 
фигуру. В третьи, можно предложить другие способы движения шахматных 
фигур на шахматной доске. Все это может привести к формулировкам новых 
олимпиадных задач.
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A NEW SERIES OF OLYMPIAD CHESS PROBLEMS: 
CHESS BOARD, ROOK AND NUMBERS

Abstract. The present article proposes a new series of Olympiad problems in 
Mathematics. It provides an overview of the Olympiad problems, the content of 
which aims at studying qualitative (possible, acceptable) or quantitative locations 
of a rook or rooks on a chessboard. The formulations of new tasks are related to the 
study of combinations of a chessboard with numbered cells and four rooks on it. 
The rooks are placed on the chessboard in such a way that each of them beats two 
of the remaining three. All cells of the chessboard are supplied with numbers. The 
sum of the numbers covered by the rooks is calculated and is called half-sum. It is 
necessary to determine the possible values of such half-sums. A matrix is juxteposed 
to a chessboard with numbered cells. The rectangles of the chessboard are associated 
with corresponding rectangles of the matrix, which are called its squares. The half-
sum is called a sum of square matrices. Enter a number equal to the number of the 
square matrices. This number is studied for its possible values and its symmetry 
with respect to a certain number, if it is considered as a function of one variable. 
The properties of this number refer to the numerical characteristics of the square 
matrices. The four rooks problem turns out to be a problem of determining the 
numerical characteristics of the square matrices. The article deals with an example 
of solving the four rooks problem and provides an overview of such problems 
solved for certain cell numbers.

Keywords: olympiad math problem; chess; chess rook; square of the matrix, 
sum of the squares of a matrix
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