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КОНКУРСНИ Задачи

Рубриката се води от д-р Светлозар Дойчев 
и д-р Веселин Ненков

Задача 1. Покажете, че кубът на всяко рационално число може да се пред-
стави като сума от кубовете на три рационални числа.

Йонуц Иваненску, Крайова, Румъния

Задача 2. Във вътрешността на триъгълник ABC е взета точка P и през нея 
са построени отсечки A1B2, B1C2 и C1A2, съответно успоредни на AB, BC и CA, като 
A1, A2 Î BC, B1, B2 Î CA и C1, C2 Î AB.

а) Да се докаже, че лицата на триъгълниците A1B1C1 и A2B2C2 са равни.
б) Да се определи положението на P така, че лицата на DA1B1C1  и DA2B2C2 

да бъдат максимални.
Христо Лесов, Казанлък

Задача 3. Нека A1, A2, ... , An, ... е редица от точки върху полуокръжността k 
с диаметър OA0 = 1, дефинирана с равенствата A0An = ln.OAn, (n = 1,2,3,...), където 
l е дадено положително число. Да се докаже, че:

а) правите минават през една точка Tn;

б) точките  Tn (n = 1,2,3,...) лежат на една права.
Хаим Хаимов, Варна

Краен срок за изпращане на решения 31 юли 2012 г.
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РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 5, 2010 

Задача 1. Да се намерят естествените числа x, y и z, за които са верни равен-
ствата: а) x2 + y2 + z4 = 2010; б) x2 + y4 + z4 = 2010; в) x4 + y4 + z4 = 2010 .

Христо Лесов, Казанлък
Решение: Ясно е, че ако намерим всички решения на уравнението от а), ще 

определим веднага и решенията на уравненията от б) и в). Като използваме, че 74 = 
2401 > 2010, както и сравнения по модул 3, намираме, че числото z може да приема 
стойностите 1; 2; 4 и 5. Остава да намерим представянията на числата 2010 - 14 = 2009, 
2010 - 24 = 1994, 2010 - 44 = 1754 и 2010 - 54 = 1385 като сбор от два квадрата. По 
този начин достигаме до решенията (4;37;5), (37;4;5), (19;32;5), (32;19;5), (23;35;4), 
(35;23;4), (25;37;2), (37;25;2), (28;35;1), (35;28;1). Оттук веднага следва, че уравнението 
от б) има решения (37;2;5) и (37;5;2), а уравнението от в) няма решение.

Задача 2. Корените на уравнението f (x) = x3 + Ax + Bx + C = 0 са три различ-
ни квадрата на естествени числа. Да се докаже, че съществува естествено число P 
такова, че |f (p)| е точен квадрат на цяло число.

Николай Белухов, студент
Решение (Николай Белухов): Да означим корените на уравнението f (x) = 

0 с a2, b2 и c2. Тогава f (x) = (x - a2) (x - b2) (x - c2). Нека за определеност a да е 
най-голямото измежду трите числа. Полагаме p = ab - bc + ca = b(a - c) + ca > 
1; очевидно p е естествено число. След заместване получаваме 

, 
което очевидно е точен квадрат. С това задачата е решена: една възможно стойност 
за p е p = ab - bc + ca. 

Задача 3. Да се докаже, че за произволни реални положителни числа a, b и 
c е вярно неравенството:

Веселин Ненков, Бели Осъм
Решение (Веселин Ненков): Лесно се проверява, че разглежданото неравенство 

е еквивалентно с неравенството

Последното неравенство е очевидно.

Конкурсни задачи
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РЕШЕНИЯ НА ЗАДАЧИТЕ ОТ БРОЙ 6, 2010

Задача 1. В окръжност са построени две успо-
редни хорди с дължини съответно 10 и 14. Разстоянието 
между хордите е 6. Да се намери дължината на хордата 
в окръжността, която е успоредна на двете дадени и се 
намира на разстояние 3 от всяка от тях.

Решение: Нека разстоянията от центъра на окръж-
ността до хордите с дължини 10 и 14 са съответно x и 
y. Нека r е радиусът на окръжността. От Питагоровата 
теорема следват равенствата x2 + 25 = r2 и y2 + 49 = r2, 
откъдето получаваме, че x2 - y2 = 24. Ако двете хорди 
се намират от една и съща страна спрямо центъра на окръжността, то x - y = 6. 
Но тогава x + y = 4, което е невъзможно. Следователно центърът на окръжността 
се намира между двете хорди, откъдето получаваме, че x + y = 6 и x - y = 4. Сле-
дователно x = 5, y = 1 и r = 5Ö

_
2. Оттук лесно следва, че дължината на търсената 

хорда е 2Ö
___
4
_
6.

Задача 2. Нека x и y са реални числа такива, че x2 + y2 = 14x + 6y + 6. Да се 
намерят най-малката и най-голямата стойности на израза 3x + 4y.

Решение: Нека a е произволна стойност на израза 3x + 4y. Тогава сис-

темата  има поне едно решение в реални числа (x;y). Като 

използваме теоремата за заместване, получаваме, че y е решение на уравнението 

25z2 + (114  -  8a) z + a2 - 42a - 54 = 0, чиято дискриминанта е неотрицателна при 
a Î [-7;73]. Полученият интервал се състои от всички стойности, които приема 
изразът 3x + 4y. Следователно най-малката и най-голямата стойност на израза са 
съответно -7 и 73.

Задача 3. Едно положително реално число ще наричаме специално, ако в 
записа му като десетична дроб не участват други цифри, освен 0 и 7. Например 
числата  и 77,007са специални. Да се намери най-малкото естествено 

число n, за което числото 1 може да се представи като сбор на n специални числа.
Решение :  Да  отбележим,  че  числата  ,   , 

 и  са специални. Равенството

Светлозар Дойчев, Веселин Ненков
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   показва, че търсеното n 

е не повече от 8. Да допуснем сега, че за някое n < 8 е изпълнено равенството 1 = 
x1 + x2 + .... + xn, където x1, x2, ...., xn са специални числа. Нека за всяко естествено 
k с ak да означим броя на числата от множеството {x1, x2, ...., xn}, чиято k-та ци-

фра е 7. Тогава е вярно равенството  . Но оттук следва, че 

 В частност a1 = 1, a2 = 4, a3 = 2, a4 = 8,...  Но 

равенството a4 = 8 противоречи на n < 8. Ето защо търсеното n е 8.

Конкурсни задачи


