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1. Конкурентни прави, определени от равностранен триъгълник. Мно-
го конструкции в равнината на равностранен триъгълник водят до забеляз-
ване на интересни геометрични закономерности. За да получим една такава 
закономерност, разглеждаме равностранен триъгълник 1 2 3A A A  с описана ок-
ръжност Γ , която има център O .
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1. Конкурентни прави, определени от равностранен триъгълник. Много 
конструкции в равнината на равностранен триъгълник водят до забелязване на 
интересни геометрични закономерности. За да получим една такава закономерност, 
разглеждаме равностранен триъгълник 1 2 3A A A  с описана окръжност  , която има 
център O . 

 

 
Разглеждаме произволна точка P  от  . Нека 1H , 2H  и 3H  са ортоцентровете 

съответно на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P . С помощта на Geometer’s 
Sketchpad (GSP) построяваме правите 1h , 2h  и 3h , които минават съответно през 1H , 

2H  и 3H  и са пърпендикулярни на 1OH , 2OH  и 3OH . Забелязваме, че правите 1h , 2h  и 

3h  се пресичат в една точка (фиг. 1). Ако правите 1g , 2g  и 3g  минават през 
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Разглеждаме произволна точка P  от Γ . Нека 1H , 2H  и 3H  са ортоцен-
тровете съответно на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P . С помощта на 
Geometer’s Sketchpad (GSP) построяваме правите 1h , 2h  и 3h , които минават 
съответно през 1H , 2H  и 3H  и са пърпендикулярни на 1OH , 2OH  и 3OH . 
Забелязваме, че правите 1h , 2h  и 3h  се пресичат в една точка (фиг. 1). Ако 
правите 1g , 2g  и 3g  минават през медицентровете 1G , 2G  и 3G  съответно на 
триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P  и са перпендикулярни съответно на 

1OG , 2OG  и 3OG , забелязваме, че тези прави също се пресичат в една точка 
(фиг. 2). След това през центровете 1E , 2E  и 3E  на Ойлеровата окръжност за 
триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P  построяваме прави 1e , 2e  и 3e , които 
са перпендикулярни съответно на 1OE , 2OE  и 3OE . Този път забелязваме, че 
правите 1e , 2e  и 3e  се пресичат в точката P  (фиг. 3). В разгледаните три случая 
са построени перпендикуляри през едноименни точки от Ойлеровите прави на 
триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P  към съответните Ойлерови прави. За-
това можем да предположим, че ако три точки са разположени по един и същи 
начин върху Ойлеровите прави на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P , 
то перпендикулярите през тези точки, построени към съответните Ойлерови 
прави, се пресичат в една точка. Как обаче да определим понятието еднакво 
разположени точки? Един начин за определяне на еднакво разположени точ-
ки върху Ойлеровите прави на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P  е като 
разглеждането на точки, които делят в едно и също отношение отсечките 1OH , 

2OH  и 3OH  (те лежат върху съответните Ойлерови прави).
Нека λ  е произволно реално число, точките 1P , 2P  и 3P  лежат върху Ой-

леровите прави съответно на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P  и са 

изпълнени равенствата 31 2

1 1 2 2 3 3

POPO P O
PH P H P H

λ= = = . През точките 1P , 2P  и 3P  

построяваме съответно прави 1p , 2p  и 3p , които са перпендикулярни на Ой-
леровите прави съответно на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P . На-
блюденията с GSP показват, че можем да формулираме следното

Твърдение 1. При всяка реална стойност на λ  правите 1p , 2p  и 3p  се 
пресичат в една точка T  (фиг. 4).

Формулираното твърдение 1 обобщава първоначалните наблюдения, на-
правени при λ = ∞ , 

1
2

λ = −  и 1λ = − . Очевидният случай, при който прави-

те 1p , 2p  и 3p  минават през O  се получава при 0λ = . На фиг. 4 са показани 
случаи при други три стойности, на λ . Освен свойството на правите, изразе-
но чрез твърдение 1, наблюденията с GSP ни дават основание да формулираме 
и следното

Твърдение 2. Ако P  е фиксирана точка от Γ  и числото λ  описва мно-
жеството на реалните числа, точката T  описва правата OP  (фиг. 4).
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По естествен начин възниква въпросът за разглеждане на подобни конфи-
гурации, свързани правилни n − ъгълници, когато 4n ≥ . За разледаме този 
въпрос е необходимо да се запознаем с понятието Ойлерова права на вписан 
многоъгълник.

2. Медицентър и ортоцентър на вписан многоъгълник. Преди да пока-
жем по какъв начин се получават Ойлеровата права и Ойлеровата окръжност, 
е необходимо да определим понятията център на тежестта и ортоцентър на 
вписан многоъгълник като аналози на съответните понятия от геометрията на 
триъгълника.

2.1. Център на тежестта. Центърът на тежестта G  на 1 2 3A A A∆  е пресе-
чната точка на правите, свързващи върховете 1A , 2A  и 3A  с центровете на 
тежестта на съответните им срещуположни страни 2 3A A , 3 1A A  и 1 2A A . За G  
е изпълнено равенството 

( )1 	 ( )1 2 3
1
3

OG OA OA OA= + +
   

.

Аналогично с помощта на GSP, можем да свържем върховете 1A , 2A , 
3A  и 4A  на четириъгълника 1 2 3 4A A A A  с центровете на тежестта 1G , 2G , 
3G  и 4G  съответно на триъгълниците 2 3 4A A A , 3 4 1A A A , 4 2 1A A A  и 1 2 3A A A  

(фиг. 5). Установяваме, че правите 1 1AG , 2 2A G , 3 3A G  и 4 4A G  минават 
през една точка G . С помощта на ( )1  получаваме и векторното равенство 

( )1 2 3 4
1
4

OG OA OA OA OA= + + +
    

, при произволна точка O  в пространство-

медицентровете 1G , 2G  и 3G  съответно на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P  и са 
перпендикулярни съответно на 1OG , 2OG  и 3OG , забелязваме, че тези прави също се 
пресичат в една точка (фиг. 2). След това през центровете 1E , 2E  и 3E  на Ойлеровите 
окръжност за триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P  построяваме прави 1e , 2e  и 3e , 
които са перпендикулярни съответно на 1OE , 2OE  и 3OE . Този път забелязваме, че 
правите 1e , 2e  и 3e  се пресичат в точката P  (фиг. 3). В разгледаните три случая са 
построени перпендикуляри през едноименни точки от Ойлеровите прави на 
триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P  към съответните Ойлерови прави. Затова можем 
да предположим, че ако три точки са разположени по един и същи начин върху 
Ойлеровите прави на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P , то перпендикулярите през 
тези точки, построени към съответните Ойлерови прави, се пресичат в една точка. Как 
обаче да определим понятието еднакво разположени точки? Един начин за определяне 
на еднакво разположени точки върху Ойлеровите прави на триъгълниците 2 3A A P , 

3 1A A P  и 1 2A A P  е като разглеждането на точки, които делят в едно и също отношение 
отсечките 1OH , 2OH  и 3OH  (те лежат върху съответните Ойлерови прави). 

Нека   е произволно реално число, точките 1P , 2P  и 3P  лежат върху Ойлеровите 
прави съответно на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P  и са изпълнени равенствата 

31 2

1 1 2 2 3 3

POPO P O
PH P H P H

   . През точките 1P , 2P  и 3P  построяваме съответно прави 1p , 2p  

и 3p , които са перпендикулярни на Ойлеровите прави съответно на триъгълниците 

2 3A A P , 3 1A A P  и 1 2A A P . Наблюденията с GSP показват, че можем да формулираме 
следното 

Твърдение 1. При всяка реална стойност на   правите 1p , 2p  и 3p  се 
пресичат в една точка T  (фиг. 4). 
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то. Получената по този начин точка G  наричаме център на тежестта (ме-
дицентър) на четириъгълника 1 2 3 4A A A A  (фиг. 5).

Формулираното твърдение 1 обобщава първоначалните наблюдения, направени 

при   , 1
2

    и 1   . Очевидният случай, при който правите 1p , 2p  и 3p  

минават през O  се получава при 0  . На фиг. 4 са показани случаи при други три 
стойности на  . Освен свойството на правите изразено чрез твърдение 1 наблюденията 
с GSP ни дават основание да формулираме и следното 

Твърдение 2. Ако P  е фиксирана точка от   и числото   описва 
множеството на реалните числа, точката T  описва правата OP  (фиг. 4). 

По естествен начин възниква въпросът за разглеждане на подобни кофигурации, 
свързани правилни n ъгълници, когато 4n  . За разледаме този въпрос е необходимо 
да се запознаем с понятието Ойлерова права на вписан многоъгълник. 

2. Медицентър и ортоцентър на вписан многоъгълник. Преди да покажем по 
какъв начин се получават Ойлеровата права и Ойлеровата окръжност, е необходимо да 
определим понятията център на тежестта и ортоцентър на вписан многоъгълник като 
аналози на съответните понятия от геометрията на триъгълника. 

2.1. Център на тежестта. Центърът на тежестта G  на 1 2 3A A A  е пресечната 
точка на правите, свързващи върховете 1A , 2A  и 3A  с центровете на тежестта на 
съответните им срещуположни страни 2 3A A , 3 1A A  и 1 2A A . За G  е изпълнено 
равенството  

 1   1 2 3
1
3

OG OA OA OA   . 

Аналогично с помощта на GSP, можем да свържем върховете 1A , 2A , 3A  и 4A  на 
четириъгълника 1 2 3 4A A A A  с центровете на тежестта 1G , 2G , 3G  и 4G  съответно на 
триъгълниците 2 3 4A A A , 3 4 1A A A , 4 2 1A A A  и 1 2 3A A A  (фиг. 5). Установяваме, че правите 

1 1AG , 2 2A G , 3 3A G  и 4 4A G  минават през една точка G . С помощта на  1  получаваме и 

векторното равенство  1 2 3 4
1
4

OG OA OA OA OA    , при произволна точка O  в 

пространството. Получената по този начин точка G  наричаме център на тежестта 
(медицентър) на четириъгълника 1 2 3 4A A A A  (фиг. 5). 

 
След това, с помощта на GSP свързваме върховете 1A , 2A , 3A , 4A  и 5A  на 

петоъгълника 1 2 3 4 5A A A A A  с центровете на тежестта 1G , 2G , 3G , 4G  и 5G  съответно на 
четириъгълниците 2 3 4 5A A A A , 3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  и 1 2 3 4A A A A  (фиг. 6). 
Установяваме, че правите 1 1AG , 2 2A G , 3 3A G , 4 4A G  и 5 5A G  минават през една точка G , 
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След това, с помощта на GSP свързваме върховете 1A , 2A , 3A , 4A  и 5A  
на петоъгълника 1 2 3 4 5A A A A A  с центровете на тежестта 1G , 2G , 3G , 4G  и 5G  
съответно на четириъгълниците 2 3 4 5A A A A , 3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  
и 1 2 3 4A A A A  (фиг. 6). Установяваме, че правите 1 1AG , 2 2A G , 3 3A G , 4 4A G  и 

5 5A G  минава през една точка G , за която е изпълнено векторното равенство 

( )1 2 3 4 5
1
5

OG OA OA OA OA OA= + + + +
     

, при произволна точка O  в прос-

транството. Точката G  наричаме център на тежестта (медицентър) на пе-
тоъгълника 1 2 3 4 5A A A A A  (фиг. 6). До подобни изводи стигаме и при разглеж-
дането на шестоъгълник 1 2 3 4 5 6A A A A A A  (фиг. 7). Така по индукция стигаме до 
извода, че ако 1 2 nA A A  е произволен n -ъгълник, правата, свързваща върха 

iA  с центъра на тежестта iG  ( )1, ,i n=   за 1n − -ъгълника, образуван от 
останалите върхове, минават през една точка G , за която е изпълнено вектор-
ното равенство

( ) 	 ( )1 2
1

nOG OA OA OA
n

= + + +
   

 ,
при произволна точка O  в пространството.

Равенството ( )2  по естествен начин обобщава ( )1  и еднозначно определя 
точка G , която се нарича център на тежестта (медицентър) за n -ъгълни-
ка 1 2 nA A A . Така за центъра на тежестта на n -ъгълника 1 2 nA A A  имаме 
индуктивна конструкция за построяване и аналитично представяне с ( )2 .

2.2. Ортоцентър. За определяне на ортоцентър на вписан в окръжност 
многоъгълник можем да приложим два подхода, основани на аналогии с по-
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строяването на центъра на тежестта. Първо разглеждаме вписан в окръжност 
четириъгълник 1 2 3 4A A A A . Аналогично на конструирането на центъра на те-
жестта G на 1 2 3 4A A A A  построяваме ортоцентровете 1H , 2H , 3H  и 4H  съ-
ответно на триъгълниците 2 3 4A A A , 3 4 1A A A , 4 2 1A A A  и 1 2 3A A A . След това по-
строяваме правите 1 1A H , 2 2A H , 3 3A H  и 4 4A H . Забелязваме, че тези прави се 
пресичат в една точка H  (фиг. 8). Нещо повече, четириъгълниците 1 2 3 4A A A A  
и 1 2 3 4H H H H  са симетрични спрямо точката H  (фиг. 8). Това наблюдение 
можем да изразим с векторните равенства i iHH HA= −

 

 ( )1,2,3,4i = . По-на-
татък да обърнем внимание, че ортоцентърът на 1 2 3A A A∆  лежи върху права-
та, която минава през центъра на тежестта на върха iA  (който съвпада с iA ), 
и е перпендикулярна на правата, определена от останалите два върха на 

1 2 3A A A∆ . Това ни дава основание при 1 2 3 4A A A A  да построим през центъра 
на тежестта на всяка от шестте двойки върхове (средите на свързващите ги 
отсечки) перпендикуляр към правата, определена от другата двойка върхове 
(фиг. 9). Оказва се, че получените шест прави се пресичат в същата точка H , 
получена при предишната конструкция (четириъгълниците 1 2 3 4A A A A  на фиг. 
8 и 9 са еднакви). Получената по този начин точка H  наричаме ортоцентър 
на четириъгълника 1 2 3 4A A A A  (фиг. 8, 9).

 
По-нататък, следвайки опита от изследванията върху четириъгълника, 

разглеждаме вписан в окръжност петоъгълник 1 2 3 4 5A A A A A . Построяваме 
ортоцентровете 1H , 2H , 3H , 4H  и 5H  съответно на четириъгълниците 2 3 4 5A A A A , 

3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  и 1 2 3 4A A A A . Забелязваме, че правите 1 1A H , 2 2A H , 3 3A H , 

4 4A H  и 5 5A H  минават през една точка H  (фиг. 10). Освен това H  е център на 
хомотетия за петоъгълниците 1 2 3 4 5A A A A A  и 1 2 3 4 5H H H H H , като са изпълнени 

векторните равенства 1
2i iHH HA    1,2,3,4,5i  . Подходът с центровете на тежестта 

се състои в следното: построяваме през центъра на тежестта на всеки от десетте 
триъгълника, образувани от върховете на 1 2 3 4 5A A A A A , права, перпендикулярна на 
страната, съдържаща останалите два върха на 1 2 3 4 5A A A A A . Тези десет прави се пресичат 
в същата точка H  (фиг. 11). Точката H  наричаме ортоцентър на 1 2 3 4 5A A A A A  (фиг. 10, 
11). 
 

 
По подобен начин разглеждаме и вписан в окръжност шестоъгълник 

1 2 3 4 5 6A A A A A A . Ако iH  е ортоцентъра на петоъгълника, образуван от върховете на 

1 2 3 4 5 6A A A A A A  без iA , правите i iA H   1,2,3,4,5,6i   се пресичат в точка H  (фиг. 12), 
която е център на хомотетия за шестоъгълниците 1 2 3 4 5 6A A A A A A  и 1 2 3 4 5 6H H H H H H . 

Фигура  
10 

Фигура  
11 

Фигура 
8 

Фигура 
9 

	 	
	   

           	 Фигура 8                                                Фигура 9

По-нататък, следвайки опита от изследванията върху четириъгълника, 
разглеждаме вписан в окръжност петоъгълник 1 2 3 4 5A A A A A . Построяваме 
ортоцентровете 1H , 2H , 3H , 4H  и 5H  съответно на четириъгълниците 

2 3 4 5A A A A , 3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  и 1 2 3 4A A A A . Забелязваме, че пра-
вите 1 1A H , 2 2A H , 3 3A H , 4 4A H  и 5 5A H  минават през една точка H  (фиг. 10). 
Освен това H  е център на хомотетия за петоъгълниците 1 2 3 4 5A A A A A  и 

1 2 3 4 5H H H H H , като са изпълнени векторните равенства 
1
2i iHH HA= −

 
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( )1,2,3,4,5i = . Подходът с центровете на тежестта се състои в следното: 
построяваме през центъра на тежестта на всеки от десетте триъгълника, об-
разувани от върховете на 1 2 3 4 5A A A A A , права, перпендикулярна на страната, 
съдържаща останалите два върха на 1 2 3 4 5A A A A A . Тези десет прави се пре-
сичат в същата точка H  (фиг. 11). Точката H  наричаме ортоцентър на 

1 2 3 4 5A A A A A  (фиг. 10, 11).

 
По-нататък, следвайки опита от изследванията върху четириъгълника, 

разглеждаме вписан в окръжност петоъгълник 1 2 3 4 5A A A A A . Построяваме 
ортоцентровете 1H , 2H , 3H , 4H  и 5H  съответно на четириъгълниците 2 3 4 5A A A A , 

3 4 5 1A A A A , 4 5 2 1A A A A , 5 1 2 3A A A A  и 1 2 3 4A A A A . Забелязваме, че правите 1 1A H , 2 2A H , 3 3A H , 

4 4A H  и 5 5A H  минават през една точка H  (фиг. 10). Освен това H  е център на 
хомотетия за петоъгълниците 1 2 3 4 5A A A A A  и 1 2 3 4 5H H H H H , като са изпълнени 

векторните равенства 1
2i iHH HA    1,2,3,4,5i  . Подходът с центровете на тежестта 

се състои в следното: построяваме през центъра на тежестта на всеки от десетте 
триъгълника, образувани от върховете на 1 2 3 4 5A A A A A , права, перпендикулярна на 
страната, съдържаща останалите два върха на 1 2 3 4 5A A A A A . Тези десет прави се пресичат 
в същата точка H  (фиг. 11). Точката H  наричаме ортоцентър на 1 2 3 4 5A A A A A  (фиг. 10, 
11). 
 

 
По подобен начин разглеждаме и вписан в окръжност шестоъгълник 

1 2 3 4 5 6A A A A A A . Ако iH  е ортоцентъра на петоъгълника, образуван от върховете на 

1 2 3 4 5 6A A A A A A  без iA , правите i iA H   1,2,3,4,5,6i   се пресичат в точка H  (фиг. 12), 
която е център на хомотетия за шестоъгълниците 1 2 3 4 5 6A A A A A A  и 1 2 3 4 5 6H H H H H H . 

Фигура  
10 

Фигура  
11 

Фигура 
8 

Фигура 
9 

            Фигура 10	 Фигура 11

По подобен начин разглеждаме и вписан в окръжност шестоъгълник 
1 2 3 4 5 6A A A A A A . Ако iH  е ортоцентърът на петоъгълника, образуван от 

върховете на 1 2 3 4 5 6A A A A A A  без iA , правите i iA H  ( )1,2,3,4,5,6i =  се 
пресичат в точка H  (фиг. 12), която е център на хомотетия за шестоъ-
гълниците 1 2 3 4 5 6A A A A A A  и 1 2 3 4 5 6H H H H H H . Изпълнени са векторните 

равенства 
1
3i iHH HA= −

 

 ( )1,2,3,4,5,6i = . Освен това всяка от петна-

десетте прави, минаваща през центъра на тежестта на четириъгълник, 
върховете на който са измежду точките 1A , 2A , 3A , 4A , 5A  и 6A , и пер-
пендикулярна на страната, определена от останалите два върха, минава 
през същата точка H  (фиг. 13). Точката H  наричаме ортоцентър на 

1 2 3 4 5 6A A A A A A  (фиг. 12, 13).

Изпълнени са векторните равенства 1
3i iHH HA    1,2,3,4,5,6i  . Освен това всяка от 

петнадесетте прави, минаваща през центъра на тежестта на четириъгълник, върховете 
на който са измежду точките 1A , 2A , 3A , 4A , 5A  и 6A , и перпендикулярна на страната, 
определена от останалите два върха, минава през същата точка H  (фиг. 13). Точката H  
наричаме ортоцентър на 1 2 3 4 5 6A A A A A A  (фиг. 12, 13). 

 
Така по индукция получаваме, че за вписания в окръжност n -ъгълник 1 2 nA A A  

съществува точка H , която притежава следните свойства: 
1) Правите, минаващи през центровете на тежестта за 2n -ъгълниците, 

образувани от точките 1A , 2A , …, nA , които са перпендикулярни на правите, свързващи 
останалите два върха, се пресичат в една точка H . 

2) Ако iH  е ортоцентъра на 1n -ъгълника, образуван от точките 1A , 2A , …, nA  
с изключение на iA , то правите i iA H   1,2, ,i n  се пресичат в H . 

3) Изпълнени са векторните равенства 1
3i iHH HA

n
 


. 

4) Многоъгълникът 1 2 nH H H  е хомотетичен на 1 2 nA A A . 
Ясно е, че 2) и 4) следват от 3). 
2.3. Ойлерова права и Ойлерова окръжност. Ако 1 2 nA A A  е многоъгълник, 

вписан в окръжност с център O , наблюденията с GSP показват, че точките H , G  и O  
лежат на една права, която се нарича права на Ойлер за 1 2 nA A A . На фиг. 14 са 
показани случаите при 4,5,6n  . По индукция се получава равенството 

 3   1 2
1

2 nOH OA OA OA
n

   


. 

От това равенство и  2  следва, че 

 4  
2

nOH OG
n




, 

Последното равенство доказва, че точките H , G  и O  лежат на една права. 
 

Фигура  
9 

Фигура 
13 

           Фигура 12	 Фигура 13
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Така по индукция получаваме, че за вписания в окръжност n-ъгълник 
1 2 nA A A  съществува точка H , която притежава следните свойства:

1) Правите, минаващи през центровете на тежестта за 2n − -ъгълниците, 
образувани от точките 1A , 2A , …, nA , които са перпендикулярни на правите, 
свързващи останалите два върха, се пресичат в една точка .

2) Ако iH  е ортоцентъра на 1n − -ъгълника, образуван от точките 
1A , 2A , …, nA  с изключение на iA , то правите i iA H  ( )1,2, ,i n=   се пре-

сичат в H .

3) Изпълнени са векторните равенства 
1

3i iHH HA
n

= −
−

 

.

4) Многоъгълникът 1 2 nH H H  е хомотетичен на 1 2 nA A A .
Ясно е, че 2) и 4) следват от 3).
2.3. Ойлерова права и Ойлерова окръжност. Ако 1 2 nA A A  е много-

ъгълник, вписан в окръжност с център O , наблюденията с GSP показват, че 
точките H , G  и O  лежат на една права, която се нарича права на Ойлер за 

1 2 nA A A . На фиг. 14 са показани случаите при 4,5,6n = . По индукция се 
получава равенството

( )3 	 ( )1 2
1

2 nOH OA OA OA
n

= + + +
−

   

 .

От това равенство и ( )2  следва, че

( )4 	
2

nOH OG
n

=
−

 

,

Последното равенство доказва, че точките H , G  и O  лежат на една права.

 
Нека iG  е центърът на тежестта на 1n -ъгълника, образуван от точките 1A , 2A , 

…, nA  с изключение на iA   1,2, ,i n . Наблюденията с GSP показват, че точките iG  
 1,2, ,i n  лежат на окръжност, която се нарича окръжност на Ойлер за 1 2 nA A A . 
На фиг. 14 са показани случаите при 4,5,6n  . За центъра E  на Ойлеровата окръжност 

е изпълнено векторното равенство  1 2
1

1 nOE OA OA OA
n

   


. Оттук векторното 

равенство  3  за H  и векторното равенство  2  за G  следват: 

 5  1
1

HE HO
n




, 

 6  1
1

GE GO
n

 


. 

Равенствата  5  и  6  показват, че H  и G  са центрове на хомотетия за 
описаната и Ойлеровата окръжности. 

3. Конкурентни прави, определени от правилен многоъгълник. След като 
сме запознати с понятията медицентър, ортоцентър и Ойлерова права на вписан в 
окръжност многоъгълник, можем да продължим изследванията си върху 
перпендикуляри, минаващи през точки от Ойлеровите прави на многоъгълници, 
породени върховете на правилен многоъгълник и точка от описаната му окръжност. 

 
Фигура 
15 

Фигура 
14 Фигура 14

Нека iG  е центърът на тежестта на 1n − -ъгълника, образуван от точки-
те 1A , 2A , …, nA  с изключение на iA  ( )1,2, ,i n=  . Наблюденията с GSP 
показват, че точките G1  ( )1,2, ,i n=   лежат на окръжност, която се нари-
ча окръжност на Ойлер за 1 2 nA A A . На фиг. 14 са показани случаите при 

4,5,6n = . За центъра  E на Ойлеровата окръжност е изпълнено векторното 
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равенство ( )1 2
1

1 nOE OA OA OA
n

= + + +
−

   

 . Оттук векторното равенство 

( )3  за H  и векторното равенство ( )2  за G  следват:

( )5 	

1
1

HE HO
n

=
−

 

,

( )6 	

1
1

GE GO
n

= −
−

 

.

Равенствата ( )5  и ( )6  показват, че H  и G  са центрове на хомотетия за 
описаната и Ойлеровата окръжност.

3. Конкурентни прави, определени от правилен многоъгълник. След 
като сме запознати с понятията медицентър, ортоцентър и Ойлерова права на 
вписан в окръжност многоъгълник, можем да продължим изследванията си 
върху перпендикуляри, минаващи през точки от Ойлеровите прави на мно-
гоъгълници, породени от върховете на правилен многоъгълник, и точка от 
описаната му окръжност.

 
Нека iG  е центърът на тежестта на 1n -ъгълника, образуван от точките 1A , 2A , 

…, nA  с изключение на iA   1,2, ,i n . Наблюденията с GSP показват, че точките iG  
 1,2, ,i n  лежат на окръжност, която се нарича окръжност на Ойлер за 1 2 nA A A . 
На фиг. 14 са показани случаите при 4,5,6n  . За центъра E  на Ойлеровата окръжност 

е изпълнено векторното равенство  1 2
1

1 nOE OA OA OA
n

   


. Оттук векторното 

равенство  3  за H  и векторното равенство  2  за G  следват: 

 5  1
1

HE HO
n




, 

 6  1
1

GE GO
n

 


. 

Равенствата  5  и  6  показват, че H  и G  са центрове на хомотетия за 
описаната и Ойлеровата окръжности. 

3. Конкурентни прави, определени от правилен многоъгълник. След като 
сме запознати с понятията медицентър, ортоцентър и Ойлерова права на вписан в 
окръжност многоъгълник, можем да продължим изследванията си върху 
перпендикуляри, минаващи през точки от Ойлеровите прави на многоъгълници, 
породени върховете на правилен многоъгълник и точка от описаната му окръжност. 

 
Фигура 
15 

Фигура 
14 

Фигура 15

Нека 1 2 3 4A A A A  е квадрат, вписан в окръжност Γ  с център O  и P  е точка 
от Γ . Ако точките 1H , 2H , 3H  и 4H  са ортоцентровете, съответно на чети-
риъгълниците 2 3 4A A A P , 3 4 1A A A P , 4 1 2A A A P  и 1 2 3A A A P , а точките 1P , 2P , 

3P  и 4P  лежат върху Ойлеровате прави съответно на 2 3 4A A A P , 3 4 1A A A P , 

4 1 2A A A P  и 1 2 3A A A P , така че 31 2 4

1 1 2 2 3 3 4 4

POPO P O P O
PH P H P H P H

λ= = = =  (λ  е про-

изволно реално число), построяваме правите  p1,  p2, p3, и p4, през точките 1P , 
2P , 3P  и 4P , които са перпендикулярни на Ойлеровите прави съответно на 
2 3 4A A A P , 3 4 1A A A P , 4 1 2A A A P  и 1 2 3A A A P . Наблюденията с GSP показват, че 
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при произволна стойност на λ правите 1p , 2p , 3p  и 4p  се пресичат в една 
точка T  (фиг. 15). Освен това, когато λ  описва реалната права, точката T  
описва правата OP  (фиг. 15).

Експериментите с GSP върху съответните конструкции, определени от 
правилни петоъгълници и правилни шестоъгълници, показват, че и в тези 
случаи се наблюдават такива конкурентни перпедикуляри (фиг. 16 – 17). Така 
индуктивно стигаме до идеята, че извършените наблюдения могат да се обоб-
щят за произволен правилен n − ъгълник.

Нека 1 2 nA A A  е правилен n − ъгълник, вписан в окръжност Γ  с цен-
тър O  и P  е произволна точка от Γ . С 1H , 2H , , nH  означаваме ор-
тоцентровете съответно на n − ъгълниците 2 3 nA A A P , 3 4 1A A A P ,  , 

1 2 1nA A A P− . Ако λ  е реално число, точките 1P , 2P ,  , nP  опредля-
ме върху Ойлеровите прави съответно на n − ъгълниците 2 3 nA A A P , 

3 4 1A A A P ,  , 1 2 1nA A A P− , така че да са изпълнени равенствата 

1 2

1 1 2 2

n

n n

P OPO P O
PH P H P H

λ= = = = . Правите, които минават съответно през точ-

ките 1P , 2P , , nP  и са перпендикулярни на Ойлеровите прави съответно на 
n − ъгълниците 2 3 nA A A P , 3 4 1A A A P ,  , 1 2 1nA A A P− , означаваме с 

1p , 2p ,  , np . Изпълнени са следните твърдения.
Твърдение 3. При всяка реална стойност на λ  правите 1p , 2p ,  , np  

се пресичат в една точка T  (фиг. 4, 15, 16, 17).
Твърдение 4. Ако P  е фиксирана точка от Γ  и числото λ  описва множе-

ството на реалните числа, точката T  описва правата OP  (фиг. 4, 15, 16, 17).
Твърдения 1 и 2 се получават от последните при 3n = . По този начин от-

криваме техни обобщения.

 

 
4. Доказателство на твърдения 3 и 4. След като твърдения 3 и 4 са 

формулирани благодарение на експериментите с GSP, следва те да бъдат строго 

доказани. От равенството k

k k

P O
P H

   1,2, ,k n  следва 
1k kOP OH





. Освен това, 

когато 1 2 nA A A  е правилен n ъгълник и O  е неговият център, е изпълнено 

равенството 1 2 0nOA OA OA    . Оттук и  3  следва, че  1
2k kOH OP OA

n
 


. 

Разглеждаме точката T , за която е изпълнено векторното равенство 

 7  
  

2
2 1

OT OP
n





 

. 

От последните равенства получаваме 
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Фигура 
17 

Фигура 16
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казани. От равенството k

k k

P O
P H

λ=  ( )1,2, ,k n=   следва 
1k kOP OHλ

λ
=

−

 

. 

Освен това, когато 1 2 nA A A  е правилен n − ъгълник и O  е неговият център, 
е изпълнено равенството 1 2 0nOA OA OA+ + + =

   

 . Оттук и ( )3  следва, че 

( )1
2k kOH OP OA

n
= −

−

  

.

Разглеждаме точката T , за която е изпълнено векторното равенство

( )7 	
( )( )

2
2 1

OT OP
n

λ
λ

=
− −

 

.
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( )( )
2

2 1 1k k kP T OT OP OP OH
n

λ λ
λ λ

= − = − =
− − −

    

( )( ) ( )( ) ( ) ( )( ) ( )2 .
2 1 2 1 2 1k kOP OP OA OP OA

n n n
λ λ λ
λ λ λ

= − − = +
− − − − − −

    

Сега за скаларното произведение на векторите kP T


 и kOH


 получаваме

( )( ) ( ) ( )
( ) ( ) ( )2 2

. .
2 1 2 2 1

k k k k kP T OH OP OA OP OA OP OA
n n

λ λ
= + − = −

− − − − −

        .
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Тъй като точките P  и kA  лежат върху Γ , то 
2 2

kOP OA=
 

 ( )1,2, ,k n=  . 
Следователно . 0k kP T OH =

 

. Това означава, че за всяко 1,2, ,k n=   е из-
пълнено k kP T OH⊥

 

, т.е. k kp OH⊥ . С това твърдение 3 е доказано. Освен 
това, като вземем предвид равенството ( )7 , забелязваме, че точката T  винаги 
лежи върху правата OP . С това е доказано и твърдение 4.

Като използваме равенството ( )7 , можем да установим кои са точките kP , 
при които съответните прави kp  ( )1,2, ,k n=   минават през точката P . 

Това се случва точно когато 
( )( )

2 1
2 1n
λ
λ

=
− −

, т.е. 
2
4

n
n

λ −
=

−
. От ( )5  следва, 

че за центровете kE  ( )1,2, ,k n=   на Ойлеровите окръжности съответно 
на 2 3 nA A A P , 3 4 1A A A P ,  , 1 2 1nA A A P−  са изпълнени равенствата 

( )2k kOE n HE= − −
 

, т.е. ( )2k

k k

E O n
E H

= − − . Следователно перпендикуляри-

те през точките kE  ( )1,2, ,k n=   се пресичат в точката P  тогава и само 

тогава, когато ( )2 2
4

n n
n
−

= − −
−

, т.е. 3n = . Това означава, че случаят, показан 

на фиг. 3, е единственият, при който перпендикулярите през центровете на 
Ойлеровите окръжности се пресичат в точката P .

5. Успоредни прави в равнината на равностранен триъгълник. От 
твърдение 3 и неговото доказателство (по-точно от равенството ( )7 ) следва, 
че не съществува точка P  от Γ , за която правите 1p , 2p ,  , pn са успо-
редни. Следователно, ако съществуват точки в равнината на правилния мно-
гоъгълник 1 2 nA A A , за които перпендикулярите към Ойлеровите прави на 
многоъгълниците 2 3 nA A A P , 3 4 1A A A P ,  , 1 2 1nA A A P−  са успоред-
ни, те не лежат върху Γ . Тъй като за точките P , нележащи върху Γ , нито 
една от Ойлеровите прави на многоъгълниците 2 3 nA A A P , 3 4 1A A A P , 
 , 1 2 1nA A A P−  не съществува при 4n ≥ , то въпросът за успоредност на 
перпендикулярите към Ойлеровите прави има смисъл само когато 3n = , т.е. 
за равностранен триъгълник. Така стигаме до търсенето на точките P  в рав-
нината на равностранен триъгълник 1 2 3A A A , за които перпендикулярите 1p , 

2p  и 3p  към Ойлеровите прави на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P  
през точките 1P , 2P  и 3P , разположени по един и същи начин върху тези пра-
ви, са успоредни.
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.

 
Множеството на тези точки се открива, ако се вземе предвид, че когато точката 

Q  описва окръжността   с център O  и радиус два пъти по-голям от този на  , 
изогоналната точка P  на Q  спрямо 1 2 3A A A  описва крива k  от четвърта степен (фиг. 
18). Ойлеровите прави на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P , когато P k , са 
успоредни (фиг. 18). Следователно всяка тройка прави, които са перпендикулярни на 
Ойлеровите прави на триъгълниците 2 3A A P , 3 1A A P  и 1 2A A P , когато P k , са 
успоредни (фиг. 18). 
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CONCURRENT PERPENDICULARS, DETERMINED  
BY REGULAR POLYGONS

Abstract. The paper is a secondary student elaboration under the guidance of 
Assoc. Prof. Veselin Nenkov. It contains new results on the topic, which brought the 
first award to the authors during the national round of the International competition 
MITE (Methodology and information technologies in education) in February, 2020. 
The elaboration is dedicated to concurrent lines generated by points on Euler lines 
of in-polygons.
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