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Аннотация. В статье представлены результаты работы Российской 
подкоманды из города Архангельска – части международной команды учащихся. 
Эта команда была создана для реализации сетевого исследовательского проекта 
«Энциклопедия замечательных плоских кривых: пишем сами». Исследование 
проводилось с использованием ИГС GeoGebra. Для доказательства полученных 
гипотез использовались методы аналитической геометрии. Для организации 
сетевого взаимодействия участников – облачные сервисы Google.
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1. Кинематическое определение кардиоиды. Рассмотрим задачу: Пусть 
окружность катится с внешней стороны по другой окружности того же 
радиуса. Нарисуйте кривую, которую описывает при этом точка, закреплён-
ная: на окружности; на радиусе внутри катящейся окружности; на продол-
жении радиуса катящейся окружности (Smirnova & Smirnov, 2004).

Для решения используем интерактивную геометрическую среду GeoGebra. По-
строив модель катящейся окружности по другой окружности, получаем следую-
щий результат: точка B’ катящейся окружности описывает кривую, изображённую 
на рис. 1. Полученную кривую из-за схожести своих очертаний со стилизованным 
изображением сердца назвали кардиоидой. Открытие кривой приписывается гол-
ланскому математику Коерсма. Название ввел итальянский ученый Кастилион в 
1741 г. в статье “De curva cardioïde”. Термин составлен из греческих слов καρδια  
(сердце) и oειδ ς  (вид) – буквальный смысл – похожая на сердце. 

Плоская кривая, которая описывается точкой окружности радиуса r, 
катящейся по окружности с таким же радиусом, называется кардиоидой.

Точка A – касп кардиоиды или точка возврата1), точка V – вершина кардио-
иды, окружности – производящие (Akopyan).

2. Кардиоида как частный случай улитки Паскаля. Изменив в модели 
положение точки B’, получим следующее: Если точку B’ брать не на катящейся 
окружности, а на радиусе или его продолжении, то получим кривые, изобра-
жённые на рисунках 2 и 3. Первую из них называют укороченной, а вторую 
— удлинённой кардиоидой.
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1. Кинематическое определение кардиоиды. Рассмотрим задачу: Пусть 

окружность катится с внешней стороны по другой окружности того же радиуса. 
Нарисуйте кривую, которую описывает при этом точка, закреплённая: на 
окружности; на радиусе внутри катящейся окружности; на продолжении радиуса 
катящейся окружности (Smirnova & Smirnov, 2004). 

Для решения используем интерактивную геометрическую среду GeoGebra. 
Построив модель катящейся окружности по другой окружности, получаем следующий 
результат: точка B’ катящейся окружности описывает кривую, изображённую на рис. 1. 
Полученную кривую из-за схожести своих очертаний со стилизованным изображением 
сердца назвали кардиоидой. Открытие кривой приписывается голланскому математику 
Коерсма. Название ввел итальянский ученый Кастилион в 1741 г. в статье “De curva 
cardioïde”. Термин составлен из греческих слов   (сердце) и o   (вид) – 
буквальный смысл – похожая на сердце.  

Плоская кривая, которая описывается точкой окружности радиуса r, 
катящейся по окружности с таким же радиусом, называется кардиоидой. 

Точка A – касп кардиоиды или точка возврата1), точка V – вершина кардиоиды, 
окружности – производящие (Akopyan). 

2. Кардиоида как частный случай улитки Паскаля. Изменив в модели 
положение точки B’, получим следующее: Если точку B’ брать не на катящейся 
окружности, а на радиусе или его продолжении, то получим кривые, изображённые на 
рисунках 2 и 3. Первую из них называют укороченной, а вторую — удлинённой 
кардиоидой. 

                       
Рисунок 1    Рисунок 2   Рисунок 3 			 Рисунок 1		  Рисунок 2		  Рисунок 3

Все три вида кривых получили название улиток Паскаля. Такое название 
им дал французский математик Жюль Роберваль (1602 – 1675) по имени их 
открывателя Этьена Паскаля – отца Блеза Паскаля (Vilenkin & al., 1996).

Сформулируем определение Улитки Паскаля следующим образом: Пло-
ская кривая, которая описывается точкой, лежащей на луче с вершиной 
в центре окружности радиуса r, катящейся по неподвижной окружности 
с таким же радиусом, называется улиткой Паскаля (Savelov, 1960).

Таким образом, кардиоида является частным случаем улитки Паскаля.
3. Уравнение кардиоиды в полярной системе координат. Выведем уравне-

ние кардиоиды в полярной системе координат. Пусть окружность (А, АО) – непод-
вижная, а окружность (В, ВМ) – подвижная, АО=ВМ=r. Пусть полюс О полярной 
системы координат находится на неподвижной окружности и совпадает с началом 
движения подвижной, а полярная ось совпадает с направлением луча ОА. Пусть 
M — произвольная точка на кардиоиде с полярными координатами (r, j). Выразим 
r через j ползуясь равенством .

Все три вида кривых получили название улиток Паскаля. Такое название им дал 
французский математик Жюль Роберваль (1602 – 1675) по имени их открывателя 
Этьена Паскаля – отца Блеза Паскаля (Vilenkin & al., 1996). 

Сформулируем определение Улитки Паскаля следующим образом: Плоская 
кривая, которая описывается точкой, лежащей на луче с вершиной в центре 
окружности радиуса r, катящейся по неподвижной окружности с таким же 
радиусом, называется улиткой Паскаля (Savelov, 1960). 

Таким образом, кардиоида является частным случаем улитки Паскаля. 
3. Уравнение кардиоиды в полярной системе координат. Выведем уравнение 

кардиоиды в полярной системе координат. Пусть окружность (А, АО) – неподвижная, а 
окружность (В, ВМ) – подвижная, АО=ВМ=r. Пусть полюс О полярной системы 
координат находится на неподвижной окружности и совпадает с началом движения 
подвижной, а полярная ось совпадает с направлением луча ОА. Пусть M — 
произвольная точка на кардиоиде с полярными координатами (, ). Выразим  через  
ползуясь равенством . 

 
 

1. Рассмотрим четырехугольник . Имеем HA = AO = r; GB = BM = r. Значит, 
прямые HG, AB, OM параллельны (по теореме, обратной теореме Фалеса). Тогда, 
AB OM, значит AOMB – трапеция; 

2.    – равнобедренная трапеция и ; 
3. Рассмотрим . Здесь    – равнобедренный, 

, ; 
4. По теореме косинусов найдем МС: . 

Преобразуем сумму, используя формулы приведения и двойного угла для косинуса: 
= =  , откуда 

; 
5. По свойству параллелограмма  значит, 

= . 
Так получили уравнение кардиоиды в полярной системе координат: 

. 
4. Параметрические уравнения кардиоиды. После постоновки уравнением 

кардиоиды в полярной системе координат в равенствах ;  
получаются следующие параметрические уравнения кардиоиды 

Рисунок 4 Рисунок  4
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1. Рассмотрим четырехугольник . Имеем HA = AO = r; GB = BM = 
r. Значит, прямые HG, AB, OM параллельны (по теореме, обратной теореме 
Фалеса). Тогда, AB OM, значит AOMB – трапеция;

2.    – равнобедренная трапеция и 
;

3. Рассмотрим . Здесь    – равнобедренный, 
, ;

4. По теореме косинусов найдем МС: 
. Преобразуем сумму, используя 

формулы приведения и двойного угла для косинуса:
= =  , 

откуда  ;
5. По свойству параллелограмма  значит,  

= .
Так получили уравнение кардиоиды в полярной системе координат:

.
4. Параметрические уравнения кардиоиды. После постоновки уравне-

нием кардиоиды в полярной системе координат в равенствах ; 
 получаются следующие параметрические уравнения кардиоиды

.

В ИГС GeoGebra можно задать в строке ввода координаты точки М с по-
мощью полученных формул, а саму кривую построить с помощью инстру-
ментов Оставлять след  или Локус  (рис. 6). Если изменить в пара-
метрическом задании кардиоиды знак плюс на знак минус, то получится та 
же самая кардиоида. Обоснуем полученный факт с помощью компьютерного 
эксперимента. В первом случае построение кардиоиды начинается из полюса 
кардиоиды, а во втором – из каспа или точки возврата. Таким образом, урав-
нение кардиоиды имеет вид:

.
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. 

В ИГС GeoGebra можно задать в строке ввода координаты точки М с помощью 
полученных формул, а саму кривую построить с помощью инструментов Оставлять 

след  или Локус  (рис. 6). Если изменить в параметрическом задании 
кардиоиды знак плюс на знак минус, то получится та же самая кардиоида. Обоснуем 
полученный факт с помощью компьютерного эксперимента. В первом случае 
построение кардиоиды начинается из полюса кардиоиды, а во втором – из каспа или 
точки возврата. Таким образом, уравнение кардиоиды имеет вид: 

. 
 

             
             Рисунок 5                              Рисунок 6                             Рисунок 7 
 
5. Уравнение кардиоиды в декартовой системе координат. Выведем 

уравнение кардиоиды в декартовой системе координат. Из ОАМ (рис. 5) имеем: 
,  

Подставим данные равенства в уравнение кардиоиды с учётом знаков ±: 

 
Преобразуем уравнение. Сначала избавимся от дроби, а потом от иррациональности: 

, 

, 
, 

 
Итак, кардиоида — алгебраическая кривая четвёртого порядка, имеющая в 

прямоугольной декартовой системе координат уравнение:  
. 

Кардиоиду в ИГС GeoGebra можно построить, введя её уравнение в строку ввода. 
6. Преобразование кардиоиды в улитку Паскаля. Раскроем скобки в уравнении 

кардиоиды  и заменим слагаемое 2r на параметр а: 
. Координаты точки М, лежащей на этой кривой будут задаваться 

уравнениями: 

 – параметрические уравнения улитки Паскаля. 

Проведём компьютерный эксперимент: будем менять численные значения 
параметра и наблюдать, как при этом меняется форма кривой. В ходе компьютерного 
исследования, мы получили следующие результаты: 

1) если , то полученная кривая является удлинённой кардиоидой рис. 8; 

                Рисунок 5                         Рисунок 6                        Рисунок 7

5. Уравнение кардиоиды в декартовой системе координат. Выведем 
уравнение кардиоиды в декартовой системе координат. Из ∆ОАМ (рис. 5) 
имеем:

, 

Подставим данные равенства в уравнение кардиоиды с учётом знаков ±:

Преобразуем уравнение. Сначала избавимся от дроби, а потом от ирраци-
ональности:

,
,

,

Итак, кардиоида — алгебраическая кривая четвёртого порядка, имеющая в 
прямоугольной декартовой системе координат уравнение: 

.
Кардиоиду в ИГС GeoGebra можно построить, введя её уравнение в строку 

ввода.
6. Преобразование кардиоиды в улитку Паскаля. Раскроем скобки в 

уравнении кардиоиды  и заменим сла-
гаемое 2r на параметр а: . Координаты точки М, лежащей на 
этой кривой будут задаваться уравнениями:
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 – параметрические уравнения улитки Паскаля.

Проведём компьютерный эксперимент: будем менять численные значения 
параметра и наблюдать, как при этом меняется форма кривой. В ходе ком-
пьютерного исследования, мы получили следующие результаты:

1) если , то полученная кривая является удлинённой кардиоидой рис. 8;
2) если  — кардиоидой рис.9;
3) если , — укороченной кардиоидой рис.10.

2) если  — кардиоидой рис.9; 
3) если , — укороченной кардиоидой рис.10. 
 

 
      Рисунок 8                                      Рисунок 9                               Рисунок 10 
 
Вывод уравнения улитки Паскаля в декартовой системе координат аналогичен 

уравнению кардиоиды. В результате проведённых преобразований, получим: 
. 

7. Свойства и признаки кардиоиды. Решение следующих задач (Vasilev & 
Gutenmaher, 2000) даёт ещё несколько способов построения кардиоиды и 
формулировки её определения.  

Задача 1. Что представляет собой множество оснований перпендикуляров, 
опущенных из точки данной окружности на всевозможные касательные к ней? 

 
Решение данной задачи в ИГС, показывает, что получается кардиоида. Докажем 

этот факт геометрически. Пусть дана окружность радиуса R, a – касательная к 
окружности в т. B. Обозначим через  величину угла BOF. Построим . 
Докажем, что множество всех точек, построенных таким образом, являются 
кардиоидой. Для этого выразим CD через угол . Имеем , . 
Рассмотрим прямоугольный     . 

 Пусть С – полюс полярной системы координат, тогда 
= – уравнение кардиоиды с производящей окружностью радиуса . 
Таким образом, точка D кардиоиде. Геометрическое место таких точек – кардиоида. 

 
Задача 2. Что представляет собой множество всех точек, симметричных 

определённой точке данной окружности относительно всевозможных касательных к 
этой окружности? 

Рисунок 11 

     

Рисунок 8                           Рисунок 9                         Рисунок 10

Вывод уравнения улитки Паскаля в декартовой системе координат ана-
логичен уравнению кардиоиды. В результате проведённых преобразований, 
получим:

.

7. Свойства и признаки кардиоиды. Решение следующих задач (Vasilev 
& Gutenmaher, 2000) даёт ещё несколько способов построения кардиоиды и 
формулировки её определения. 

Задача 1. Что представляет собой множество оснований перпендикуля-
ров, опущенных из точки данной окружности на всевозможные касательные 
к ней?
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2) если  — кардиоидой рис.9; 
3) если , — укороченной кардиоидой рис.10. 
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Вывод уравнения улитки Паскаля в декартовой системе координат аналогичен 

уравнению кардиоиды. В результате проведённых преобразований, получим: 
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7. Свойства и признаки кардиоиды. Решение следующих задач (Vasilev & 
Gutenmaher, 2000) даёт ещё несколько способов построения кардиоиды и 
формулировки её определения.  

Задача 1. Что представляет собой множество оснований перпендикуляров, 
опущенных из точки данной окружности на всевозможные касательные к ней? 

 
Решение данной задачи в ИГС, показывает, что получается кардиоида. Докажем 

этот факт геометрически. Пусть дана окружность радиуса R, a – касательная к 
окружности в т. B. Обозначим через  величину угла BOF. Построим . 
Докажем, что множество всех точек, построенных таким образом, являются 
кардиоидой. Для этого выразим CD через угол . Имеем , . 
Рассмотрим прямоугольный     . 

 Пусть С – полюс полярной системы координат, тогда 
= – уравнение кардиоиды с производящей окружностью радиуса . 
Таким образом, точка D кардиоиде. Геометрическое место таких точек – кардиоида. 

 
Задача 2. Что представляет собой множество всех точек, симметричных 

определённой точке данной окружности относительно всевозможных касательных к 
этой окружности? 

Рисунок 11 Рисунок 11

Решение данной задачи в ИГС, показывает, что получается кардиои-
да. Докажем этот факт геометрически. Пусть дана окружность радиуса 
R, a – касательная к окружности в т. B. Обозначим через  величину угла 
BOF. Построим . Докажем, что множество всех точек, по-
строенных таким образом, являются кардиоидой. Для этого выразим CD 
через угол j. Имеем , . Рассмотрим прямо-

угольный     . 

 Пусть С – полюс полярной системы 
координат, тогда r= – уравнение кардиоиды с производящей 
окружностью радиуса . Таким образом, точка D∈ кардиоиде. Геометри-
ческое место таких точек – кардиоида.

Задача 2. Что представляет собой множество всех точек, симметрич-
ных определённой точке данной окружности относительно всевозможных 
касательных к этой окружности?

Пусть ω – данная окружность, О – определённая точка окружности, а – ка-
сательная к ω, М – точка, симметричная точке О относительно прямой а. По-
строим окружность ω', симметричную данной ω относительно касательной, 
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проходящей через точку В1. Тогда ω′ можно рассматривать как окружность, 
катящуюся по ω. Кроме того, ω и ω′ имеют одинаковые радиусы, а точка  
M ∈ ω′. Следовательно, множество всех таких точек М является кардиоидой 
(кинематическое определение кардиоиды).

Пусть  – данная окружность, О – определённая точка окружности, а – 
касательная к , М – точка, симметричная точке О относительно прямой а. Построим 
окружность , симметричную данной  относительно касательной, проходящей через 
точку В1. Тогда  можно рассматривать как окружность, катящуюся по . Кроме того, 
 и  имеют одинаковые радиусы, а точка М  . Следовательно, множество всех 
таких точек М является кардиоидой (кинематическое определение кардиоиды). 

 
Задача 3. Если на каждой прямой l, проходящей через точку A данной 

окружности δ радиуса r, отложить от точки Q пересечения l и δ (A ≠ Q) отрезок QM 
длины 2r, то множество всех полученных таким образом точек M будет кардиоидой. 

Пусть QAC=, точка С диаметрально противоположна точке А. AQC – 
прямоугольный, AQ=2rcos. Тогда АМ=AQ+QM=2rcos+2r=2r(cos+1). В полярной 
системе координат будем иметь: =2r(cos+1) – уравнение кардиоиды. Следует 
заметить, что если QM2r, то точка М будет описывать удлинённую или укороченную 
кардиоиду. 

 
Итак, моделирование в ИГС GeoGebra позволило наглядно продемонстрировать 

различные определения кардиоиды, рассмотреть способы её построения в системе 
координат. 
ПРИМЕЧАНИЯ 
1. https://www.sites.google.com/site/pisemsami/ 
2. Акопян, А. Геометрия кардиоиды, МЦНМО. 
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Итак, моделирование в ИГС GeoGebra позволило наглядно продемонстри-
ровать различные определения кардиоиды, рассмотреть способы её построе-
ния в системе координат.

ПРИМЕЧАНИЯ
1	 .Точка, в которой две различные ветви кривой имеют общую касательную и 

расположены по разные стороны от касательной, называется точкой возврата.
2.	 https://www.sites.google.com/site/pisemsami/
3.	 Акопян, А. Геометрия кардиоиды, МЦНМО. http://www.mccme.

ru/~akopyan/papers/cardioid.pdf.
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CARDIOIDE

Abstract. The paper presents the results of the work of the Russian sub-team 
from the city of Arkhangelsk – a part of the international team of students. The 
team was created in connection with the realization of the net research project 
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“Encyclopedia of Notable Plane Curves: We Write by Ourselves”. The research was 
made by using the software program GeoGebra. Methods from Analytical Geometry 
were applied for proving the corresponding hypothesis. The net interaction between 
the participants was carried out in Google Cloud service.

Keywords: circle; curve; trajectory; cardioidе
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