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Резюме. В работата се разглеждат някои аспекти на обучението по прог
рамиране. Набляга се на занимателния момент при подбора на подходящи 
примери за демонстрация на отделните езикови конструкции и структури 
от данни. Такъв пример е разгледаният алгоритъм за решаване на широко 
разпространената в последно време главоблъсканица судоку. Това е напра-
вено във връзка с понятието множество и неговото приложение в програ-
мирането.
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Настоящата работа е замислена да подпомогне преподавателя по програ-
миране в стремежа му да даде съдържателен, интересен и забавен пример 
за ползата на понятието множество в програмирането. За целта обучаемите 
трябва добре да познават основните дефиниции от теория на множествата и 
да владеят основните операции с множества. Оттук следва и добре известният 
факт, че за да си добър програмист, е необходимо (но не и достатъчно) да си 
добър математик.

Класически пример за използването на множества в програмирането е 
станала програмната реализация на задачата за намиране на прости числа 
по метода, наречен „Решето на Ератостен“ (Jensen & Wirth, 1985; Nakov & 
Dobrikov, 2005; Stoyanova & Gochev, 1994). Тук сме длъжни да отбележим, че 
в (Stoyanova & Gochev, 1994) при реализацията на този алгоритъм е допус-
ната грешка, причислявайки числото 1 към множеството на простите числа. 
Подобна грешка е недопустима за едно учебно помагало, тъй като би довела 
до объркване от страна на ползващите го.

Тук ще се спрем на занимателна и актуална задача, която се приема 
с голям интерес от страна на учащите – алгоритми за решаване на су-
доку. Това е широко разпространена в днешно време главоблъсканица, 
неизменно присъстваща в развлекателните страници на повечето вестни-
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ци и списания и в развлекателни интернет сайтове. Судоку е игра, коя-
то развива у човек най-вече математическите способности, логическото 
мислене, комбинативността, въображението, умението за прогнозиране 
и други качества.

Ние няма да се спираме на програмната реализация на разглежданата от 
нас задача. Това до голяма степен зависи от езика за програмиране, избран 
от учебното заведение. Удобен за програмната реализация на разглеждания 
от нас алгоритъм е езикът „Паскал“, тъй като в него има вградени средства 
за работа с множества (Jensen & Wirth, 1985; Stoyanova & Gochev, 1994). 
Същият все още се избира от някои учебни заведения в системата на средно-
то образование в качеството му на първи език за програмиране. Изложените 
идеи могат да бъдат реализирани и на произволен друг език за програмира-
не, например C++. Но в този случай трябва да търсим допълнителни сред-
ства за работа с множества – например реализираните в Standard Template 
Library (STL) асоциативни контейнери set и multiset (Azalov, 2008). Също 
така може да се използва и шаблонният клас set от системата за компютър-
на алгебра “Symbolic C++”, чийто програмен код е даден в подробности в 
(Tan, Steeb & Hardy, 2000). Разбира се, с учебна цел би могло да се създаде 
и собствен клас множество, като се опишат функциите, реализиращи теоре-
тико-множествените операции (Todorova, 2011-a), (Todorova, 2011-b). Това 
би било прекрасно упражнение, като се има предвид и фактът, че базово-
то („универсално“) множество е с относително малка мощност. Например 
стандартната главоблъсканица судоку е с базово множество целите числа от 
1 до 9, плюс празното множество.

Тук ще разгледаме само математическия модел на алгоритъма. По този 
начин съставянето на компютърна програма, решаваща произволна главо
блъсканица судоку, се превръща в една нелоша тема за разработка на курсов 
проект по програмиране за ученици и студенти. Много често, както и в слу-
чая, описанието на математическия модел е достатъчно за програмната реа-
лизация на съответния алгоритъм.

Математически модел на алгоритъма
Нека n  е произволно цяло положително число и нека 2nm = . Нека 
( )jisS = , 2,1 nmji =≤≤  е квадратна mm×  матрица (квадратна таблица, 

двумерен масив), всички елементи на който са цели числа, принадлежащи 
на затворения интервал ],1[ m . С помощта на 1−n  хоризонтални и 1−n  
вертикални линии, прекарани съответно между някои от редовете и ня-
кои от стълбовете,  матрицата S  e разделена на 2n  непресичащи се nn ×  
квадратни подматрици, които ще наричаме блокове. На фиг. 1 е показана 
матрицата S  при 3=n .
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където с  x  сме означили както обикновено функцията цяла част на реалното число x . 
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където с [ ]x  сме означили както обикновено функцията цяла част на реалното 
число x .

Ще казваме, че ( )jisS = , 2,1 nmji =≤≤  е судоку-матрица, ако във всеки 
ред, всеки стълб и всеки блок съществува точно по едно число от множество-
то { }2,,2,1 nmZm ==  .

Широко разпространена е главоблъсканицата, наречена судоку. Дадена е 
судоку-матрица, на която са изтрити някои от елементите. Липсващите еле-
менти на S  ще отъждествяваме с 0. Задачата на главоблъсканицата се състои 
в това да се възстановят липсващите елементи на судоку-матрицата. Предпо-
лага се, че авторите на конкретната главоблъсканица така са подбрали липс-
ващите елементи, че задачата да има единствено решение. Това условие ще 
пропуснем и няма да се съобразяваме с него. Нещо повече, препоръчваме в 
заданието към обучаемите да бъде поставено условието да бъде намерен и 
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броят на възможните решения. Ако задачата няма решение, то този брой ще 
бъде нула.

Най-разпространените главоблъсканици судоку са при 3=n , т.е. при 9=m .
Тук ще направим математически модел, описващ алгоритъм за създава-

не на компютърна програма, намираща всички решения (ако съществуват) на 
произволна главоблъсканица судоку. За целта съществено ще използваме поз
нанията от теория на множествата.

Разглеждаме множествата iR , jC  и lkB , където 2,1 nmji =≤≤ ,  
nlk ≤≤ ,1 . За всяко mi ,,2,1 = , множеството iR  се състои от всички 

липсващи числа в i -я ред на матрицата. Аналогично дефинираме и множес
твата jC , mj ,,2,1 =  съответно за липсващите числа в j -я стълб и  

lkB , nlk ,,2,1, =  съответно за липсващите числа в блоковете lkA  на S . По 
такъв начин, ако стартираме програмата и дадем нулеви стойности на всички 
елементи на матрицата 𝑆, то с помощта на създадената програма ще получим 
всевъзможните mm× судоку-матрици.

Началото на алгоритъма се състои в многократното обхождане на всички 
елементи Ss ji ∈ , такива че 0=jis , т.е. това са елементите, чиито истински 
стойности трябва да открием.

Нека 0=jis  и нека lkji As ∈ . Полагаме
lkji BCRP ∩∩= .

Тогава са възможни следните три случая:
i) φ=P  (празното множество). В този случай задачата няма решение.
ii) { }dP = , { }mZd m ,,2,1 =∈ , т.е. броят P  на елементите на P  е ра-

вен на 1 ( P  е едноелементно множество). Тогава единствената възможност за 
jis  е ds ji = , т.е. в този случай сме открили неизвестната стойност на jis .  

Премахваме общия елемент d  от множествата iR , jC  и lkB , след което пре-
минаваме към следващия нулев елемент на матрицата S  (ако съществува такъв).

iii) 2≥P . Тогава нищо не можем да кажем за неизвестната стойност на 
jis  и преминаваме към следващия нулев елемент на матрицата S .
Обхождането на нулевите елементи на матрицата S  продължава, докато не 

настъпи едно от следните събития:
е1) за някои },,2,1{, mji ∈  е изпълнено 0=jis , но φ=∩∩= lkji BCRP .  

В този случай задачата няма решение;
е2) всички елементи на S  станат различни от нула (строго положителни). 

Намерили сме едно решение на главоблъсканицата;
е3) обходени са всички нулеви елементи на S , но не е настъпило нито 

събитие е1, нито събитие е2. С други думи, при всички оставащи нулеви еле-
менти на S  винаги е в сила описаният по-горе случай iii.

В случай че настъпи едно от събитията е1 или е2, то процедурата спира 
своята работа и извежда получения резултат.
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В случай че настъпи събитие e3, то алгоритъмът трябва да продължи, из-
ползвайки други способи, например да приложим метода на „пробите и греш-
ките“. В конкретния случай този метод се състои в следното.

Избираме произволно Ss ji ∈ , такова че 0=jis  и нека 11
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Pdr ∈ , tr ,,2,1 =  полагаме rji ds = . Такова полагане ще наричаме случай-
на проба. (Добре би било в програмната реализация на алгоритъма да броим 
и всички случайни проби до достигане на дадено решение.) След това реша-
ваме задачата за намиране на неизвестните елементи на судоку-матрицата с 
един неизвестен елемент по-малко. Тук е удобно използването на рекурсия. 
База на рекурсията, т.е. ще излезем от процедурата, ако настъпи събитие e1 
или e2. Това неминуемо би трябвало да се получи (т.е. няма да попаднем във 
„вечен цикъл“), тъй като при случайните проби намаляваме броя на нулевите 
елементи с 1.

На базата на описания тук модел ние реализирахме компютърна програма, 
която намира решението на произволно судоку (Yordzhev, 2014).

Стартирахме създадената програма при нулеви стойности на всички 
клетки. При 𝑛 = 2 получихме, че броят на всички 4 X 4 судоку-матрици 
е равен на 288. При това, за да се получи този резултат, компютърът е на-
правил 568 случайни проби. При 𝑛 = 3 получихме, че съществуват точно 
96 670 903 752 021 072 936 960 на брой 9 X 9 судоку матрици. Този резултат 
е известен и напълно съвпада с резултата, получен от други учени, вероятно 
и с други методи. На нас не ни е известен броят на всички 16 X 16 судоку-
матрици и смятаме, че това е открит за науката проблем. Но за да бъде ре-
шен този проблем, за целта е необходимо да ползваме много мощни и много 
бързи компютри. 
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HOW DOES THE COMPUTER SOLVE SUDOKU –  
A MATHEMATICAL MODEL OF THE ALGORITHM

Abstract. Some aspects of programming education are examined in this work. 
The emphasis is on the entertainment value. The most appropriate examples are 
chosen to demonstrate the different language constructions and data structures. Such 
an example is the demonstrated algorithm for solving the widespread nowadays 
sudoku puzzle. This is made because of the connection with the term set and putting 
it into practice in the programming.
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