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Резюме. В статията са описани някои свойства на точката на Микел за пъл-
ния четириъгълник и връзките ѝ с други забележителни точки на четириъгъл-
ника.
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Точката на Микел на четириъгълника е открита през XIX век. Открива-
нето й е свързано с една теорема, публикувана от Микел през 1838 г., от-
където идва и името ѝ. Характеризира се с различни забележителни свой-
ства, някои от които са отбелязани в (Шарыгин, 1986, стр. 68, зад. 263). 
Точката на Микел, както е показано в (Haimov, 2001), е тясно свързана с 
брокарианите на четириъгълника. Нещо повече, при разглеждането на ред 
въпроси е удобно тя да се третира като трета брокариана. В настоящата 
статия точката на Микел е разгледана в един по-различен аспект и така са 
открити нейни нови свойства. Особено значение има откриването на едно 
преобразувание в равнината на четириъгълник, свързано с тази точка. То 
може да се разглежда като разширение на преобразуванието изогонална 
спрегнатост (Alexandrov & Haimov, 2003) в цялата равнина на четириъгъл-
ника, защото съвпада с него в дефиниционното му множество. Изобразява 
върховете на четириъгълника в срещуположните им върхове, а някои забе-
лежителни точки – в други. Композиция е от осева симетрия и инверсия, 
които имат съответно ос на симетрия и полюс и степен на инверсия, пряко 
свързани с четириъгълника. Благодарение на него от свойства на едни за-
бележителни точки в четириъгълника се извеждат свойства на други – об-
рази на първите при преобразуванието. С помощта му се получават важни 
връзки между някои забележителни точки в четириъгълника, като принад-
лежността им на една права или пък на една окръжност. Интересно е, че 
преобразуванието позволява да се обобщи известната теорема на Микел за 
пълния четириъгълник.
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1. Теорема на Микел и точка на Микел. Преди да дефинираме точката 
на Микел, ще докажем две леми. Без ограничение на общността навсякъде 
по-нататък ще считаме, че продълженията на страните AD и BC на разглежда-
ния четириъгълник ABCD  се пресичат в точка U , а страните AB  и CD  – в 
точка V  (фиг. 1). Ще считаме още, че върхът C  лежи между точките B  и U
, както и между точките D  и V .

Лема 1. Нека ABCD  е изпъкнал четириъгълник. Втората обща точка M  
на описаните окръжности ABU∆  и CDU∆  е единствената точка от въ-
трешността на UCV , за която е изпълнено условието ~ADM BCM∆ ∆ .

Доказателство. Първо ще докажем, че ако M  е от вътрешността на ъгъл 
UCV , за която е изпълнено условието ~ADM BCM∆ ∆ , то M  съвпада с 

втората обща точка на описаните окръжности ABU∆  и CDU∆  (фиг. 1). От ус-
ловието ~ADM BCM∆ ∆  имаме DAM CBM=  , т.е. UAM UBM= 

. Следователно четириъгълник ABMU  е вписан в окръжност. Можем да 
заключим, че точката M  лежи на описаната окръжност на ABU∆ . От ус-
ловието ~ADM BCM∆ ∆  имаме още ADM BCM=  , откъдето следва, 
че UDM UCM=  . Следователно четириъгълникът DCMU  е вписан в 
окръжност, т.е. точката M  лежи и на описаната окръжност на DCU∆ . Убе-
дихме се, че M  е обща точка на описаните окръжности на триъгълниците 
ABU  и DCU . С помощта на същите разсъждения, проведени в обратен ред, 
се доказва, че обратно, за втората обща точка M  на тези окръжности е изпъл-
нено ~ADM BCM∆ ∆ .

окръжност на DCU . Убедихме се, че M  е обща точка на описаните окръжности на 
триъгълниците ABU  и DCU . С помощта на същите разсъждения, проведени в обратен 
ред, се доказва, че обратно, за втората обща точка M  на тези окръжности е изпълнено 

~ADM BCM  . 

 
Забележка 1. Аналогично се доказва, че втората обща точка M  на описаните 

окръжности на триъгълниците ADV  и BCV  (фиг. 1) е единствената точка от 
вътрешността на ъгъл UCV , за която триъгълниците ABM  и DCM  са подобни. 

Лема 2. Нека ABCD е изпъкнал четириъгълник. Ако за точката M  от 
вътрешността на ъгъл UCV  е изпълнено условието ~ADM BCM  , то за нея е 
изпълнено и ~ABM DCM  . 

Доказателство. Тъй като ~ADM BCM  , то DM AM
CM BM

  и DMA CMB  

(Фиг. 1). Затова имаме DMC DMA AMC CMB AMC AMB     , т.е. 
DMC AMB . Като вземем предвид и получената пропорция, се убеждаваме, че 

~ABM DCM  . 
Теорема 1 (Микел). Ако ABCD е изпъкнал четириъгълник, то описаните 

окръжности на четирите триъгълника ABU , DCU , ADV  и BCV  имат обща точка 
M . 

Доказателство. Нека M  е втората обща точка на описаните окръжности ABU  
и DCU  (фиг. 1). По лема 1 за нея е изпълнено условието ~ADM BCM   и тя лежи в 

UCV . Тогава за нея е изпълнено и условието ~ABM DCM   (по лема 2). Но 
единствената точка от вътрешността на UCV , отговаряща на последното условие, 
както следва от забележка 1, е втората обща точка на описаните окръжности на 
триъгълниците ADV  и BCV . Следователно M  е обща точка на описаните окръжности 
и на четирите триъгълника ABU , DCU , ADV  и BCV , с което теоремата е доказана. 

Определение 1. Ако ABCD  е изпъкнал четириъгълник, общата точка M  на 
описаните окръжности на триъгълниците ABU , DCU , ADV  и BCV  се нарича точка 
на Микел на четириъгълника ABCD (фиг. 1). 

Ще разгледаме някои свойства на точката на Микел. 

Фигура 
1 

Фигура 1

Забележка 1. Аналогично се доказва, че втората обща точка M  на опи-
саните окръжности на триъгълниците ADV  и BCV  (фиг. 1) е единствената 
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точка от вътрешността на ≮UCV , за която триъгълниците ABM  и DCM  са 
подобни.

Лема 2. Нека ABCD  е изпъкнал четириъгълник. Ако за точката M  от 
вътрешността на UCV  е изпълнено условието ~ADM BCM∆ ∆ , то за 
нея е изпълнено и ~ABM DCM∆ ∆ .

Доказателство. Тъй като ~ADM BCM∆ ∆ ,то DM AM
CM BM

=  и DMA CMB=   (фиг. 

1). Затова имаме DMC DMA AMC CMB AMC AMB= + = + =      , 
т.е. DMC AMB=  . Като вземем предвид и получената пропорция, се убеж-
даваме, че ~ABM DCM∆ ∆ .

Теорема 1 (Микел). Ако ABCD  е изпъкнал четириъгълник, то описаните 
окръжности на четирите триъгълника ABU , DCU , ADV  и BCV  имат 
обща точка M .

Доказателство. Нека M  е втората обща точка на описаните окръж-
ности ABU∆  и DCU∆  (фиг. 1). По лема 1 за нея е изпълнено условието 

~ADM BCM∆ ∆  и тя лежи в UCV . Тогава за нея е изпълнено и услови-
ето ~ABM DCM∆ ∆  (по лема 2). Но единствената точка от вътрешността 
на UCV , отговаряща на последното условие, както следва от забележка 1, 
е втората обща точка на описаните окръжности на триъгълниците ADV  и 
BCV . Следователно M  е обща точка на описаните окръжности и на чети-
рите триъгълника ABU , DCU , ADV  и BCV , с което теоремата е дока-
зана.

Определение 1. Ако ABCD  е изпъкнал четириъгълник, общата точка M  
на описаните окръжности на триъгълниците ABU , DCU , ADV  и BCV  се 
нарича точка на Микел на четириъгълника ABCD  (фиг. 1).

Ще разгледаме някои свойства на точката на Микел.
Свойство 1М. Точката на Микел M  за четириъгълника ABCD  е 

единствената точка от вътрешността на UCV , за която триъгълниците 
~ADM BCM∆ ∆ . Точката M  е единствената точка от вътрешността на 

UCV , за която ~ABM DCM∆ ∆ .
Доказателство. Точката на Микел M  е обща на описаните окръжности 

на триъгълниците ABU , DCU , ADV  и BCV  (по определение 1) (фиг. 1).  
В частност, тя съвпада с втората обща точка на описаните окръжности на 

ABU∆  и DCU∆ . По лема 1 можем да заключим, че точката на Микел е 
единствената точка в UCV , за която ~ADM BCM∆ ∆ . Това, че тя е 
единствената точка в UCV , за която ~ABM DCM∆ ∆ , следва от забележка 
1.

Свойство 2М. Ако M  е точката на Микел за четириъгълника ABCD , то 
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~DUM VBM∆ ∆ .
Доказателство. Точката на Микел M  на четириъгълника ABCD  лежи 

върху описаните окръжности на триъгълниците DCU  и BCV  (по опре-
деление 1). Следователно четириъгълниците DCMU  и BVMC  са вписа-
ни (фиг. 1). Тогава имаме DUM MCV=   (от четириъгълника DCMU ) 
и MCV MBV=   (вписани ъгли). Следователно DUM MBV=  . 
От друга страна, имаме DMU DCU BCV= = =   BMV= , т.е. 

DMU BMV=  . В триъгълниците DUM  и VMB  получихме две двойки 
съответно равни ъгли, следователно те са подобни.

Свойство 3М. Ако M  е точката на Микел за четириъгълника ABCD, то 
са изпълнени равенствата:

( )1 	 2. . .MA MC MB MD MU MV r= = = ,
където r  e положителна константа, свързана с четириъгълника.
Доказателство. За точката на Микел M  е изпълнено условието 

~ADM BCM∆ ∆  (от свойство 1М) (фиг. 1). Тогава 
MA MB
MD MC

= , откъде-
то имаме . .MA MC MB MD= . В същото време за точката на Микел е из-
пълнено и условието ~DUM VBM∆ ∆  (от свойство 2М) (фиг. 1). Тогава
MD MV
MU MB

= , откъдето получаваме . .MB MD MU MV= . Така се убедихме, че 

. . .MA MC MB MD MU MV= = .
Определение 2. Числото r  от равенство ( )1  ще наричаме константа на 

Микел за четириъгълника ABCD .
Свойство 4М. Ако M  е точката на Микел за четириъгълника ABCD , то 

ъглите AMC , DMB  и UMV  имат обща ъглополовяща m .
Доказателство. Тъй като за точката на Микел имаме ~ADM BCM∆ ∆  

(от свойство 1М), то DMA BMC=   (фиг. 1). Следователно ъглите DMB  
и AMC  имат обща ъглополовяща m . Понеже ~DUM VBM∆ ∆  (от свойс-
тво 2М), то DMU BMV=  . Следователно ъглополовящата m  на DMB  
е ъглополовяща и на UMV . Така се убедихме, че и трите ъгъла имат обща 
ъглополовяща m .

Определение 3. Ако M  е точката на Микел за четириъгълника ABCD , 
общата ъглополовяща m  на ъглите AMC , DMB  и UMV  ще наричаме ос 
на Микел.

2. Инверсна симетрия. Сега ще припомним едно известно преобра-
зувание в равнината, аналитичният вид на което в комплексната равнина 
се дава с функцията 

1
z

. Както ще видим, то е тясно свързано с точката на 
Микел.

Определение 4. Нека M  е точка в равнината, m  – права през М, и 
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r  – дадено положително число. Композицията от симетрията g  спрямо 
правата m  и инверсията Y  с полюс M  и степен 2r  се нарича инверсна 
симетрия с полюс M , ос m  и степен 2r , която ще бележим с Y g .

Ще докажем няколко свойства на инверсната симетрия, които ще са ни 
необходими по-нататък.

Свойство 1I. Нека Y g  е инверсна симетрия с полюс M , ос m  и степен 
2r . Ако 1X  е образът на точката X M≠  при преобразуванието Y g , то лъ-

чът 1MX →  е симетричен на лъча MX →  спрямо оста m  и 
2

1
rMX

MX
= .

Доказателство. Образът на точката X  при инверсната симетрия Y g  

се получава, като към X  приложим първо симетрията g  с ос m  (фиг. 2). 
Получаваме точката X ′  от лъча MP→ , симетричен на лъча MX →  спрямо 
оста m , такава, че MX MX′ = . Образът на X  при инверсната симетрия 
Y g  получаваме окончателно, след като към точката X ′  приложим инвер-
сията Y  с полюс M  и степен 2r . Получената точка 1X  лежи на лъча MP→  

и 2
1.MX MX r′ = , т.е. 

2

1
rMX

MX
=

′
. От последното равенство и равенството 

1MX MX ′=  следва, че 
2

1
rMX

MX
= . Така се убедихме, че лъчът 1MX →  е си-

метричен на лъча MX →  спрямо оста m  и 
2

1
rMX

MX
= .

с полюс M  и степен 2r  се нарича инверсна симетрия с полюс M , ос m  и степен 2r , 
която ще бележим с Y g . 

Ще докажем няколко свойства на инверсната симетрия, които ще са ни 
необходими по-нататък. 

Свойство 1I. Нека Y g  е инверсна симетрия с полюс M , ос m  и степен 2r . 
Ако 1X  е образът на точката X M  при преобразованието Y g , то лъчът 1MX   е 

симетричен на лъча MX   спрямо оста m  и 
2

1
rMX

MX
 . 

Доказателство. Образът на точката X  при инверсната симетрия Y g  се 
получава, като към X  приложим първо симетрията g  с ос m  (фиг. 2). Получаваме 
точката X   от лъча MP , симетричен на лъча MX   спрямо оста m , такава че 
MX MX  . Образът на X  при инверсната симетрия Y g  получаваме окончателно 
след като към точката X   приложим инверсията Y  с полюс M  и степен 2r . 

Получената точка 1X  лежи на лъча MP  и 2
1.MX MX r  , т.е. 

2

1
rMX

MX



. От 

последното равенство и равенството 1MX MX   следва, че 
2

1
rMX

MX
 . Така се 

убедихме, че лъчът 1MX   е симетричен на лъча MX   спрямо оста m  и 
2

1
rMX

MX
 . 

 
Свойство 2I. Нека Y g  е инверсна симетрия с полюс M , ос m  и степен 2r . 

Ако A  и B  са точки, нележащи на една права с точката M , и техните образи при 
преобразованието Y g  са съответно C  и D , то ~DCM ABM  . 

Доказателство. Имаме  Y g A C  и  Y g B D  (по условие) (фиг. 3). 
Тогава лъчите MC  и MD  са симетрични съответно на лъчите MA  и MB  спрямо 

оста m   и 
2rMC

MA
 , 

2rMD
MB

  (от току-що доказаното свойство 1I). От симетрията на 

споменатите лъчи следва, че CMD AMB , а от получените равенства след 

почленно деление намираме пропорцията MC MB
MD MA

 . Затова можем да заключим, че 

~DCM ABM  . 
Следващото свойство на инверсната симетрия изяснява връзката на 

преобразуванието с точката на Микел. 
Свойство 3I. Нека Y g  е инверсна симетрия с полюс M , ос m  и степен 2r , а 

A  и B  са точки, нележащи на една права с точката M . Ако C  и D  са образите 
съответно на точките A  и B  при преобразованието Y g , а полюсът му M  лежи в 

Фигура 
4 

Фигура 
3 

Фигура
  2 

      Фигура 2                             Фигура 3	 		     Фигура 4

Свойство 2I. Нека Y g  е инверсна симетрия с полюс M , ос m  и степен 
2r . Ако A  и B  са точки, нележащи на една права с точката M , и техните об-

рази при преобразованието Y g  са съответно C  и D , то ~DCM ABM∆ ∆ .
Доказателство. Имаме ( )Y g A C=  и ( )Y g B D=  (по условие) (фиг. 3). 

Тогава лъчите MC→  и MD→  са симетрични съответно на лъчите MA→  и 
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MB→  спрямо оста m   и 
2rMC

MA
= , 

2rMD
MB

=  (от току-що доказаното свойс-

тво 1I). От симетрията на споменатите лъчи следва, че CMD AMB=  , 
а от получените равенства след почленно деление намираме пропорцията 
MC MB
MD MA

= . Затова можем да заключим, че ~DCM ABM∆ ∆ .
Следващото свойство на инверсната симетрия изяснява връзката на преоб-

разуванието с точката на Микел.
Свойство 3I. Нека Y g  е инверсна симетрия с полюс M , ос m  и степен 

2r , а A  и B  са точки, нележащи на една права с точката M . Ако C  и D  са 
образите съответно на точките A  и B  при преобразованието Y g , а полю-
сът му M  лежи в UCV  (U AD BC= ∩ , V AB CD= ∩ ), то M  е точката 
на Микел на четириъгълника ABCD .

Доказателство. Понеже  ( )Y g A C= , ( )Y g B D=  и точките A  и B  
не лежат на една права с полюса M  (по условие), имаме ~DCM ABM∆ ∆  
(от току-що доказаното свойство 2I) (фиг. 3). Но единствената точка M  в 

UCV  с това свойство е точката на Микел на четириъгълника ABCD  (от 
свойство 1М). С това се убедихме, че полюсът M на инверсната симетрия 
Y g  е точка на Микел на четириъгълника ABCD .

3. Инверсна изогоналност. Сега ще дефинираме една специална инверсна 
симетрия в равнината на изпъкнал четириъгълник.

Определение 5. Нека ABCD  е изпъкнал четириъгълник, а M , m  и r  
са съответно точката, оста и константата на Микел за ABCD . Инверсната 
симетрия Y g  с полюс M , ос m  и степен 2r  ще наричаме инверсна изого-
налност относно ABCD .

Както ще видим, инверсната изогоналност изобразява свързания с нея че-
тириъгълник в себе си.

Свойство 4I (Пл. Александров). Нека ABCD  е изпъкнал четириъгъл-
ник. Ако Y g  е инверсната изогоналност спрямо него, то ( )Y g B D= , 

( )Y g A C=  и ( )Y g U V= .
Доказателство. Ще докажем, че ( )Y g B D=  (фиг. 3). Другите две ре-

лации се доказват аналогично. Инверсната изогоналност Y g  спрямо че-
тириъгълника ABCD  е инверсна симетрия с ос – оста m  на Микел на че-
тириъгълника (по определение 5). Последната е ъглополовяща на DMB  
(определение 3). Следователно лъчът MD→  е симетричен на лъча MB→  от-
носно оста m . Тогава, ако ( )

1Y g B B= , точката 1B  лежи на лъча MD→  

(от свойство 1М). От същото свойство имаме 
2

1
rMB

MB
= , където 2r  е сте-

пента на инверсната симетрия Y g ,или с други думи – константата на 
Микел на ABCD . Последната дефинирахме в определение 2 с равенствата 
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2. . .MA MC MB MD MU MV r= = = . Оттук в частност имаме 2.MB MD r=  

и 
2rMD

MB
= . От получените равенства следва, че 1MB MD= . Като вземем 

предвид, че при това точката 1B  лежи на лъча MD→  (по доказаното по-горе), 
заключаваме, че 1B D≡ . Следователно ( )Y g B D= .

Ако две точки се изобразяват една в друга при инверсната изогоналност, 
ще ги наричаме инверсно изогонални. Както ще видим, разстоянията от ин-
версно изогоналните точки до върховете на четириъгълника са свързани с 
прости зависимости.

Теорема 2. Нека дължините на страните AB , BC , CD  и DA  на чети-
риъгълника ABCD  са съответно a , , c  и d . Ако точките 1X  и 2X  са 
инверсно изогонални, то са изпълнени равенствата:

( )2 	 2 1

2 1

.AX CX d
BX DX b

= , 2 1

2 1

.BX DX a
CX AX c

= , 2 1

2 1

.CX AX b
DX BX d

= , 2 1

2 1

.DX BX c
AX CX a

= .

Доказателство. Нека Y g  е инверсната изогоналност относно ABCD . 
Следователно ( )1 2Y g X X= , ( )Y g C A=  и ( )Y g D B=  (от свойство 
4I) (фиг. 4). Тогава ( )1 2Y g CX AX=  и ( )1 2Y g DX BX= . По формулата за 

преобразуване на разстоянията при инверсия получаваме 
2

1
2

1

.
.

CX rAX
CM X M

= , 
2

1
2

1

.
.

DX rBX
DM X M

= . Разделяме почленно тези равенства и получаваме 

2 1

2 1

.AX CX DM
BX DX CM

= . Понеже ~ADM BCM∆ ∆  (от свойство 1М), същевре-

менно имаме 
DM AD
CM BC

= , т.е. 
DM d
CM b

= . Заместваме в последното равенство 

и получаваме 2 1

2 1

.AX CX d
BX DX b

= . С това доказахме първото от равенствата ( )2 . 

Аналогично се доказват и останалите равенства.
Както ще видим сега, ъглите, под които срещуположните страни на чети-

риъгълника се виждат от две инверсно изогонални точки, са тясно свързани.

разстоянията при инверсия получаваме 
2

1
2

1

.
.

CX rAX
CM X M

 , 
2

1
2

1

.
.

DX rBX
DM X M

 . Разделяме 

почленно тези равенства и получаваме 2 1

2 1

.AX CX DM
BX DX CM

 . Понеже ~ADM BCM   (от 

свойство 1М), същевременно имаме DM AD
CM BC

 , т.е. DM d
CM b

 . Заместваме в 

последното равенство и получаваме 2 1

2 1

.AX CX d
BX DX b

 . С това доказахме първото от 

равенствата  2 . Аналогично се доказват и останалите равенства. 
Както ще видим сега, ъглите, под които срещуположните страни на 

четириъгълника се виждат от две инверсно изогонални точки, са тясно свързани. 

 
Свойство 5I. Ако X  и 1X  са инверсно изогонални точки в четириъгълника 

ABCD  и AUB  , AVD  , то са изпълнени равенствата: 
 3  1AX B DXC   , 1AXD BX C   . 

Доказателство. Нека M  е точката на Микел на четириъгълника ABCD  (фиг. 5). 
Ще разгледаме случая, когато точката X  не лежи на правата MC . Имаме 

 
1Y g X X  (по условие) и  Y g D B  (от свойство 4I). Към точките X  и D , които 

не могат да лежат на една права с точката на Микел M , защото M  лежи в UCV , а X  
в четириъгълника, прилагаме свойство 2I на инверсната симетрия и получаваме, че 

1 ~BX M XDM  . Следва, че 
 4  1MBX MXD . 

Аналогично от  
1Y g X X  (по условие) и  Y g C A  (от свойство 4I), като 

вземем предвид, че точките X  и C  не лежат на една права с точката на Микел 
M (според направената уговорка), получаваме 1 ~X AM CXM   (от свойство 2I). 
Следва, че 
 5  1MAX MXC . 

Точката на Микел M  на четириъгълника ABCD  лежи върху описаната 
окръжност на ABU  (по определение 1), следователно AMB AUB   . Като 

Фигура 
5 

Фигура 
6 

 

Фигура 2                         Фигура 3
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Свойство 5I. Ако X и X1 са инверсно изогонални точки в четириъгълника 
ABCD  и AUB ϕ= , AVD ψ= , то са изпълнени равенствата:
( )3 	 1AX B DXC ϕ= +  , 1AXD BX C ψ= +  .
Доказателство. Нека M  е точката на Микел на четириъгълника ABCD  

(фиг. 5). Ще разгледаме случая, когато точката X  не лежи на правата MC . 
Имаме ( )

1Y g X X=  (по условие) и ( )Y g D B=  (от свойство 4I). Към 
точките X  и D , които не могат да лежат на една права с точката на Микел 
M , защото M  лежи в UCV , а X – в четириъгълника, прилагаме свойство 
2I на инверсната симетрия и получаваме, че 1 ~BX M XDM∆ ∆ . Следва, че

( )4 	 1MBX MXD=  .
Аналогично от ( )

1Y g X X=  (по условие) и ( )Y g C A=  (от свойство 
4I), като вземем предвид, че точките X  и C  не лежат на една права с точката 
на Микел M (според направената уговорка), получаваме 1 ~X AM CXM∆ ∆  
(от свойство 2I). Следва, че

( )5 	 1MAX MXC=  .
Точката на Микел M  на четириъгълника ABCD  лежи върху описаната ок-

ръжност на ABU∆  (по определение 1), следователно AMB AUB ϕ= =  . 
Като вземем предвид равенства ( )4  и ( )5 , последното равенство и означим с 
P  произволна точка от продължението на отсечката 1MX , получаваме:

( ) ( )1 1 1 1 1 1 1AX B AX P BX P AMX MAX BMX MBX= + = + + + =     

( )1 1 1 1AMX BMX MAX MBX AMB MXC MXD= + + + = + + =      

( )AMB MXC MXD AUB DXC DXCϕ= + + = + = +      .
Така се убедихме, че 1AX B DXC ϕ= +  , с което първото от равенствата 

( )3  е доказано. Аналогично се доказва и второто равенство.
Преди да разгледаме други важни свойства на инверсната изогоналност, 

ще приведем още едно определение.
Определение 6. Нека AB  е произволна отсечка в равнината. Ще казваме, 

че точките X  и Y  са изогонални спрямо отсечката AB , ако те лежат на 
окръжност, минаваща през точките A  и B .

Лема 3. Нека ABCD  е изпъкнал четириъгълник, а Y  е произволна точка 
в него. Нека X  е точката, изогонална на Y  спрямо всяка от страните AD  и 
BC , а 1X  – точката, изогонална на Y  спрямо всяка от страните AB  и DC . 
Ако точките X  и 1X  лежат в четириъгълника и AUB ϕ= , AVD ψ= , то 
са изпълнени равенствата:

( )6 	 1AX B DXC ϕ= +  , 1AXD BX C ψ= +  .
Доказателство. Точките 1X  и Y  са изогонални спрямо страната AB  и 

лежат в четириъгълника (по условие). Следователно те лежат на дъга от ок-
ръжност с краища точките A  и B  (фиг.6). Тогава имаме:

( )7 	 1AYB AX B=  .
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Точките X  и  Y са изогонални спрямо страните AD и BC и лежат в четири-
ъгълника (по условие). Следователно те лежат на дъга от окръжност с краища 
точките A  и D  и на дъга от окръжност с краища точките B  и C . Означава-
ме с P  произволна точка от продължението на отсечката XY . От вписаните 
четириъгълници AYXD  и BYXC  имаме:

( ) ( )AYB AYP BYP ADX BCX DXU DUX CXU CUX= + = + = + + + =        

( ) ( )DXU CXU DUX CUX DXC DUC DXC ϕ= + + + = + = +       .
От полученото равенството AYB DXC ϕ= +   и ( )7  следва  

1AX B DXC ϕ= +  , т.е. първото от равенства ( )6 . Аналогично се доказва 
и второто равенство.

Следващата теорема дава достатъчно условие две точки в четириъгълника 
да са инверсно изогонални.

Теорема 3. Нека ABCD  е изпъкнал четириъгълник, а X  и 1X  са две точки 
в него, за които съществува точка Y , изогонална на X  спрямо страните AD  и 
BC  и изогонална на 1X  спрямо страните AB  и CD . Ако точката Y  и инверсно 
изогоналната точка *X  на *

1X X   лежат в четириъгълника, то *
1X X≡ , 

т.е. точката 1X  е инверсно изогонална на X .
Доказателство. Означаваме AUB ϕ=  и AVD ψ=  (фиг. 6). Точката X 

в четириъгълника е изогонална на Y  спрямо всяка от страните AD  и BC , 
а точката 1X  е изогонална на Y  спрямо всяка от страните  AB  и CD  (по 
условие). Затова според лема 3 са изпълнени равенствата:

( )8 	 1AX B DXC ϕ= +  , 1AXD BX C ψ= +  .
Точката X  и инверсно изогоналната ѝ *X  лежат в четириъгълника (по 

условие). Затова от свойство 5I следват равенствата:
( )9 	 *AX B DXC ϕ= +  , *AXD BX C ψ= +  .
От ( )8  и ( )9  следват равенствата *

1AX B AX B=   и *
1BX C BX C=  . 

Освен това точките X  и *X  лежат по условие в четириъгълника. Оттук зак-
лючаваме, че те лежат на дъга от окръжност с краища точките A  и B  и върху 
дъга от окръжност с краища точките B  и C . Освен точката B  тези дъги имат 
още само една обща точка, поради което *X  и 1X  съвпадат. Следователно 
инверсно изогоналната точка *X  на X  съвпада с 1X , т.е. 1X  е инверсно 
изогонална на X .

Следващата теорема, както ще видим, е обобщение на теоремата на Микел 
за пълния четириъгълник (теорема 1).

Теорема 4. Нека X  и 1X  са инверсно изогонални точки в изпъкналия 
четириъгълник ABCD . 

а) Описаните окръжности на триъгълниците 1AX B , 1CX D , AXD  и CXB  
се пресичат в една точка. 

б) Описаните окръжности на триъгълниците AX1D, 1BX C , AXB  и CXD  
се пресичат в една точка.
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Доказателство. Означаваме втората обща точка на описаните окръжности 
1k  и 2k  съответно на 1AX B∆  и 1CX D  с Y  (фиг. 6). Ще покажем, че през 

нея минават и описаните окръжности 3k  и 4k  съответно на AXD и CXB∆ , 
с което ще бъде доказано, че и четирите описани окръжности 1k , 2k , 3k  и 4k  
минават през една точка. Точката Y  е изогонална на X  спрямо страните AB  
и CD  (по определение 6). Нека X ′ е изогоналната точка на Y  спрямо стра-
ните AD  и BC . За точките 1X  и X ′  съществува точка, а именно точката Y  
такава, че 1X  и Y  са изогонални спрямо страните AB  и  CD , а X ′  и Y  са 
изогонални спрямо страните AD  и BC . По теорема 3 можем да заключим, че 
инверсно изогоналната точка на X  съвпада с X ′ . Но точката Y  бе изогонал-
на на X ′  спрямо страните AD  и BC  и затова тя е изогонална на X  спрямо 
тези страни. Следователно описаните окръжности на AXD∆  и BXC∆  също 
минават през Y . С това твърдение а) е доказано. Аналогично се доказва б).

Забележка. От свойство 4I на инверсната изогоналност имаме, че в част-
ност точките U  и V  са инверсно изогонални (фиг. 6). Като приложим току-
що доказаната теорема 4 към тези точки, получаваме, че описаните окръжнос- 
ти на четирите триъгълника ABU , CDU , ADV  и BCV  минават през една 
точка. Но това е точно формулировката на теорема 1 (теоремата на Микел). 
Виждаме, че теоремата на Микел за пълния четириъгълник е частен случай от 
теорема 4, т.е. теорема 4 е обобщение на теоремата на Микел.

Както ще видим сега, някои забележителни точки в четириъгълника се изоб- 
разяват при инверсната изогоналност в други. Ще ни е необходима следната

Лема 4. Нека ABCD  е изпъкнал четириъгълник с пресечна точка на диа-
гоналите T . Ако 1K  и 2K  са брокарианите, а O  е псевдоцентърът на ABCD , 
то са изпълнени следните свойства. 

а) Точките 1K  и T  са изогонални спрямо страните AB  и CD , а точките 
2K  и T  са изогонални спрямо страните AD  и BC . 
б) Точките O  и 1K  са изогонални спрямо страните AD  и BC , а точките 

O  и 2K  са изогонални спрямо страните AB  и CD .
Доказателство. Брокарианата 1K  е втората обща точка на описаните ок-

ръжности за ABT  и CDT∆  – по определение 1 от (Haimov, 2005) (фиг. 7). 
Затова точките 1K  и T  са изогонални спрямо страните AB  и CD  (по опре-
деление 6). Аналогично се доказва, че точките 2K  и T  са изогонални спрямо 
страните AD  и BC . Псевдоцентърът O  и брокарианата 1K  лежат на окръж-
ност, минаваща през точките A  и D , и на окръжност, минаваща през точките 
B  и C  – според забележката след теорема 1 от (Хаимов, 2010). Това означава, 
че точките O  и 1K  са изогонални спрямо страните AD  и BC . Аналогично се 
доказва, че точките O  и 2K  са изогонални спрямо страните AB  и CD .
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б) Точките O  и 1K  са изогонални спрямо страните AD  и BC , а точките O  и 2K  
са изогонални спрямо страните AB  и CD . 

Доказателство. Брокарианата 1K  е втората обща точка на описаните 
окръжности за ABT  и CDT  (по определение 1 от (Haimov, 2005)) (фиг. 7). Затова 
точките 1K  и T  са изогонални спрямо страните AB  и CD  (по определение 6). 
Аналогично се доказва, че точките 2K  и T  са изогонални спрямо страните AD  и BC . 
Псевдоцентърът O  и брокарианата 1K  лежат на окръжност, минаваща през точките A  
и D , и на окръжност, минаваща през точките B  и C  (според забележката след теорема 
1 от (Хаимов, 2010)). Това означава, че точките O  и 1K  са изогонални спрямо страните 
AD  и BC . Аналогично се доказва, че точките O  и 2K  са изогонални спрямо страните 
AB  и CD . 

 
Теорема 5. Нека Y g  е инверсната изогоналност спрямо изпъкналия 

четириъгълник ABCD . Ако T  е пресечната точка на диагоналите, 1K  и 2K  са 
Брокарианите, а O  е псевдоцентърът на ABCD , то  1 2Y g K K  и  Y g T O . 

Доказателство. Ще разгледаме случая, когато точките 1K , 2K  и  1Y g K  
лежат в четириъгълника (фиг. 7). Другите случаи се разглеждат аналогично. За точките 

1K  и 2K  съществува точка (а именно точката Т), изогонална на 1K  спрямо страните 
AB  и CD  и изогонална на 2K  спрямо страните AD  и BC  (по лема 4). При това 
точките 1K , 2K  и  1Y g K според направената уговорка лежат в четириъгълника. По 
теорема 3 можем да заключим, че  1 2Y g K K . Аналогично се доказва, че 

 Y g T O . 
Следствие. Нека 1K  и 2K  са брокарианите на изпъкналия четириъгълник 

ABCD . Ако четириъгълникът 2 1AK CK  е изпъкнал, неговата точка на Микел съвпада с 
точката на Микел за ABCD . 

Доказателство. Ще разглеждаме случая, когато точките A  и 1K  не лежат на 
една права с точката на Микел M  за четириъгълника ABCD  (фиг. 7). Нека Y g  е 
инверсната изогоналност спрямо ABCD . Имаме  1 2Y g K K  (по теорема 5) и 

Фигура 
8 

Фигура 
7 

                          Фигура 7 	 Фигура 8

 Теорема 5. Нека Y g  е инверсната изогоналност спрямо изпъкналия че-
тириъгълник ABCD . Ако T  е пресечната точка на диагоналите, 1K  и 2K  
са брокарианите, а O  е псевдоцентърът на ABCD , то ( )1 2Y g K K=  и 

( )Y g T O= .
Доказателство. Ще разгледаме случая, когато точките 1K , 2K  и ( )1Y g K  

лежат в четириъгълника (фиг. 7). Другите случаи се разглеждат аналогично. 
За точките 1K  и 2K  съществува точка (а именно точката Т), изогонална на 

1K  спрямо страните AB  и CD  и изогонална на 2K  спрямо страните AD  
и BC  (по лема 4). При това точките 1K , 2K  и ( )1Y g K според направена-
та уговорка лежат в четириъгълника. По теорема 3 можем да заключим, че 

( )1 2Y g K K= . Аналогично се доказва, че ( )Y g T O= .
Следствие. Нека 1K  и 2K  са брокарианите на изпъкналия четириъгълник 

ABCD . Ако четириъгълникът 2 1AK CK  е изпъкнал, неговата точка на Микел 
съвпада с точката на Микел за ABCD .

Доказателство. Ще разглеждаме случая, когато точките A  и 1K  не лежат 
на една права с точката на Микел M  за четириъгълника ABCD  (фиг. 7). Нека 
Y g  е инверсната изогоналност спрямо ABCD . Имаме ( )1 2Y g K K=  (по 
теорема 5) и ( )Y g A C=  (свойство 4I). При това Y g  е инверсна симетрия 
с полюс M . Можем да използваме свойство 3I на инверсната симетрия и да 
заключим, че полюсът M  на инверсната симетрия Y g  е точка на Микел на 
четириъгълника 2 1AK CK .  Следователно точката на Микел на четириъгълни-
ка ABCD  е точка на Микел и за четириъгълника 2 1AK CK .

Накрая с помощта на инверсната изогоналност ще докажем една връзка 
между две забележителни точки в четириъгълника.



92

Веселин Ненков, Станислав Стефанов, Хаим Хаимов

Теорема 6. Нека М е точката на Микел за изпъкналия четириъгълник 
ABCD . Ако правите AC  и BD  не минават през M , то точката M  и 
псевдоцентърът O  на ABCD  лежат на окръжност, минаваща през точките 
A  и C , и на окръжност, минаваща през точките B  и D .

Доказателство. При инверсната изогоналност Y g  права, не минаваща 
през полюса M , се изобразява в окръжност, минаваща през М (от известно 
свойство на инверсията). Понеже ( )Y g A C=  и ( )Y g C A=  (свойство 
4I) (фиг. 8), правата AC  се изобразява в окръжност, минаваща през C , A  
и M , т.е. в описаната окръжност 1k  на ACM∆ . Аналогично правата BD  
се изобразява в описаната окръжност 2k  на BDM∆ . Общата точка T  на 
правите AC  и BD  се изобразява при преобразуванието Y g  в обща точка 
на окръжностите 1k  и 2k . Но точката T  се изобразява при инверсната изо-
гоналност Y g  в псевдоцентъра O  (по теорема 5). Следователно именно 
псевдоцентърът O  е втората обща точка на описаните окръжности 1k  и 2k  
на триъгълниците ACM  и BDM .  Следователно точките O  и M  лежат 
на окръжност. 
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GEOMETRY OF THE QUADRILATERAL,
MIQUEL POINT, INVERSION ISOGONALITY

Abstract. The paper describes some properties of Miquel point for the complete 
quadrilateral and relations with other notable points of the quadrilateral.
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