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ГЕОМЕТРИЧНИ МЕСТА, ПОРОДЕНИ  
ОТ РАВНОСТРАННИ ТРИЪГЪЛНИЦИ  

С ВЪРХОВЕ ВЪРХУ ОКРЪЖНОСТ

Борислав Борисов, Деян Димитров,  
Николай Нинов, Теодор Христов

Природо-математическа гимназия – Ловеч

Резюме. Статията е ученическа разработка под ръководството на доц. д-р 
Веселин Ненков. Новите резултати в нея получиха отлична оценка по време на 
представянето є в международния конкурс „Методология и информационни 
технологии в образованието“ през 2019 г. и разработката беше удостоена с 
първа награда. Тя е посветена на геометрични места, определени от забеле-
жителни точки в триъгълник, получен от равностранни триъгълници с вър-
хове върху постоянна окръжност. Конструкцията на триъгълника е подобна 
на тази от стартовата задача в първия международен „Мрежов изследовател-
ски проект“ с участието на България, Казахстан и Русия. Основната разлика 
в двете конструкции се състои в разположението на две двойки върхове на 
равностранните триъгълници – в първоначалната задача те лежат върху посто-
янна права, а в настоящата – върху окръжност. Получените геометрични места 
са окръжности, елипса и крива от четвърта степен.

Keywords: equilateral triangle; circle; ellipse; curve of fourth degree

1. Увод. През 2015 – 2016 г. в рамките на международния проект MITE е 
проведен първият „Мрежов изследователски проект“, в който участват отбо-
ри, съставени от представители на България, Казахстан и Русия. Отборът „Ог-
ньовете на Светия Елм“ участва в мрежовата игра „Геометрически Scrabble 
в облаците“. Тази игра се състои в разработване на различни идеи за реша-
ване, обобщаване и изменение на условието на следващата задача. Точка C  
лежи върху отсечката AB . Върху отсечките AC  и BC  са построени рав-
ностранни триъгълници ACM  и BCN , лежащи в една полуравнина относ-
но AB . Ако T  е пресечната точка на ъглополовящата на ъгъл MCN  с MN , 
да се намери траекторията, която ще опише точката T  при движението 
на C  по AB .
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 Решението на тази задача е част от парабола. Някои от измененията в ус-
ловието на формулираната от проф. М. Шабанова задача се състоят в това 
точката T  да се замени със средата на MN , петата на височината през върха 
C  на MNC∆ , медицентъра, ортоцентъра и центъра на описаната окръжност 
на MNC∆ .

В настоящата разработка си поставяме за цел да изследваме геометрични-
те места, които описват споменатите точки, свързани с MNC∆ , но в случая, 
когато точките A, B, и C лежат на една окръжност.

2. Формулиране на основните резултати. След извършване на изследва-
ния с помощта на програмата Geometer’s Sketchpad стигаме до формулиране-
то на следващите твърдения.

Твърдение 1. Точките A , B  и C  лежат на окръжност Γ , а точките 
M  и N  са такива, че AMC  и BNC  са различно ориентирани равностран-
ни триъгълници. Ако точката C  се движи по окръжността Γ , средата на 
отсечката MN  описва окръжност.
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Твърдение 2. Точките A , B  и C  лежат на окръжност Γ , а точките 
M  и N  са такива, че AMC  и BNC  са различно ориентирани равностран-
ни триъгълници. Ако точката C  се движи по окръжността Γ , петата на 
перпендикуляра, спуснат от C  към правата MN , описва крива от четвър-
та степен, минаваща през точките A  и B .

 

Твърдение 3. Точките A , B  и C  лежат на окръжност Γ , а точките 
M  и N  са такива, че AMC  и BNC  са различно ориентирани равностран-
ни триъгълници. Ако точката C  се движи по окръжността Γ , медицен-
търът на ABC∆  описва окръжност.
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Твърдение 4. Точките A , B  и C  лежат на окръжност Γ , а точките 
M  и N  са такива, че AMC  и BNC  са различно ориентирани равностран-
ни триъгълници. Ако точката C  се движи по окръжността Γ , ортоцен-
търът на ABC∆  описва окръжност.

 
Твърдение 5. Точките A , B  и C  лежат на окръжност Γ , а точките 

M  и N  са такива, че AMC и BNC са различно ориентирани равностран-
ни триъгълници. Ако точката C  се движи по окръжността Γ , центърът 
на описаната около ABC∆  окръжност описва окръжност, минаваща през 
точките A  и B .
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Твърдение 6. Точките A , B  и C  лежат на окръжност Γ , а точките 
M  и N  са такива, че AMC  и BNC  са еднакво ориентирани равностранни 
триъгълници. Ако точката C  се движи по окръжността Γ , средата на 
отсечката MN  описва окръжност.

 

Твърдение 7. Точките A , B  и C  лежат на окръжност Γ , а точките 
M  и N  са такива, че AMC  и BNC  са еднакво ориентирани равностранни 
триъгълници. Ако точката C  се движи по окръжността Γ , петата на 
перпендикуляра, спуснат от C  към правата MN , описва елипса, минаваща 
през точките A  и B .

 



185

Геометрични места, породени...

Твърдение 8. Точките A , B  и C  лежат на окръжност Γ , а точките 
M  и N  са такива, че AMC  и BNC  са еднакво ориентирани равностранни 
триъгълници. Ако точката C  се движи по окръжността Γ , медицентъ-
рът на ABC∆  описва окръжност.

 
Твърдение 9. Точките A , B  и C  лежат на окръжност Γ , а точките 

M  и N  са такива, че триъгълниците AMC  и BNC  са еднакво ориентира-
ни равностранни триъгълници. Ако точката C  се движи по окръжността 
Γ , ортоцентърът на ABC∆  описва окръжност.
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Твърдение 10. Точките A , B  и C  лежат на окръжност Γ , а точките 
M  и N  са такива, че триъгълниците AMC  и BNC  са еднакво ориентирани 
равностранни триъгълници. Ако точката C  се движи по окръжността Γ , 
центърът на описаната около ABC∆  окръжност описва окръжността Γ .

 

3. Доказателства на формулираните твърдения. Формулираните твър-
дения ще докажем, като разгледаме геометричните фигури в комплексната 
равнина. Афиксите на точките ще означаваме със съответните им малки бук-
ви. Избираме Гаусова координатна система, спрямо която Γ  е единичната 
окръжност. Следователно 1aa bb cc= = = .

Ако триъгълниците AMC и BNC са противоположно ориентирани, то са 
изпълнени равенствата:

( )1  	 m a cω ω= + , n b cω ω= + , 
a cm

ac
ω ω+

= , 
b cn

bc
ω ω+

= ,

където 
1 3cos sin

3 3 2 2
i iπ πω = + = + .

За комплексното число ω  са изпълнени равенствата 1ωω = , 3 3 1     , 
2ω ω= − , 2ω ω= − , 1ω ω+ = .
Доказателство на твърдение 1. Ако Z  е средата на MN , то са изпълнени 

равенствата 
2 2

m n a b cz ω ω+ + +
= =  и 

2
ac bc abz

abc
ω ω+ +

= . Първото от тези 
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равенства води до 2c z a bω ω= − − . След заместване на тази стойност на c  
във второто равенство получаваме, че точката Z  удовлетворява уравнението

( ) ( ) ( )( )4 2 2 0abzz a b z ab a b z a b a bω ω ω ω ω ω− + − + − − − = .
Последното уравнение показва, че търсеното геометрично място е окръж-

ност. С това твърдение 1 е доказано.
Доказателство на твърдение 2. От условието за перпендикулярност след-

ва, че височината на MNC∆  през върха C  има следното уравнение

( )2 	 ( )( ) ( )( ) 0z c m n z c m n− − + − − = .

От друга страна, уравнението на правата MN  е следното

( )3 	 ( ) ( ) ( ) 0m n z m n z mn mn− − − − − = .

От ( )2  и ( )1  получаваме равенството

( )4 	 ( ) ( )( ) ( )2 0a b ab z c b a z abz c ab z b aω ω ω ω ω ω ω ω ω ω   − − − + − − + − + − =    .

От ( )3  и ( )1  следва

( )5 	 ( ) ( ) ( ) ( )( )
( ) ( )

2

0.

a b ab z c b a z ab a b z a b a b c

ab z ab a b

ω ω ω ω ω ω ω ω

ω ω

   − + − − + + − − − + +   
+ − − − =

Умножаваме ( )4  и ( )5  съответно с ( )a b ab zω ω− + −  и 

( )a b ab zω ω ω ω − − − −  , след което събираме съответните резултати. 

Така получаваме, че

( ) ( ) ( ) ( )( )( )

( ) ( )( )( ) ( )( )

( )( )( )( )

2 3 3 3 3 3 3 3 /

/ 12 3 3 6

3 3 .

c ab ab i zz a b z ab a b z i a b a b

ab a b zz i a b a b z ab a b a b z

i a b a b a b

ω ω ω

ω ω ω ω ω ω ω

ω ω

 = − − + − + + + − + 
 + − − − + − − + −

− + − − + 

След заместване на c  от последното равенство в ( )4  получаваме уравне-
нието

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

3 2 3 3 2 2 3

2 2 2 2 2

12 3 3 6 5 4 3 2

3 2 3 2 3 6 5 4 3 2

3 12 5 7 3 2 5 17

3 3 2 3 2 4 5

3 2 3 3

3

i a b z z ab a b i a b z z

a ab b i b a b z a b a b i a b zz

ab a ab b i a ab b zz

a a b b i a a b ab b z

a b a ab b i b a b z

ab

 − − + − + + 
   + + + + − − + − + +   
 + + + − + + − 

 − + + + + − − + 
 + + + − + − 

− ( ) ( )( )
( ) ( )

3 2 3 3 2 2 3

3 3 4 3 3 4

3 2 3 2 4 5

3 3 2 0.

a a b b i a a b ab b z

a a b i a a b ab b

+ + + + − − +

+ − + + − − =
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( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

3 2 3 3 2 2 3

2 2 2 2 2

12 3 3 6 5 4 3 2

3 2 3 2 3 6 5 4 3 2

3 12 5 7 3 2 5 17

3 3 2 3 2 4 5

3 2 3 3

3

i a b z z ab a b i a b z z

a ab b i b a b z a b a b i a b zz

ab a ab b i a ab b zz

a a b b i a a b ab b z

a b a ab b i b a b z

ab

 − − + − + + 
   + + + + − − + − + +   
 + + + − + + − 

 − + + + + − − + 
 + + + − + − 

− ( ) ( )( )
( ) ( )

3 2 3 3 2 2 3

3 3 4 3 3 4

3 2 3 2 4 5

3 3 2 0.

a a b b i a a b ab b z

a a b i a a b ab b

+ + + + − − +

+ − + + − − =Полученото уравнение показва, че търсеното геометрично място е крива от 
четвърта степен. Освен това лесно се проверява, че уравнението се удовлетво-
рява при z a=  и z b= . Това означава, че точките A  и B  принадлежат на 
намерената крива. С това твърдение 2 е доказано.

Доказателство на твърдение 3. За медицентъра Z  на MNC∆  са изпъл-

нени равенствата 
2

3 3
m n c a b cz ω ω+ + + +

= =  и 
2

3
ac bc abz

abc
ω ω+ +

= . От 

първото равенство следва 
3

2
z a bc ω ω− −

= . След заместване на c  във вто-

рото равенство получаваме

( ) ( ) ( )29 3 3 0abzz a b z ab a b z a bω ω ω ω ω ω− + − + − + = .
Последното уравнение показва, че търсеното геометрично място е окръж-

ност. С това твърдение 3 е доказано.
Доказателство на твърдение 4. От условието за перпендикулярност за 

уравненията на височините през върховете M и N на MNC∆  имаме съответно
( )( ) ( )( ) 0z m n c z m n c− − + − − =  и ( )( ) ( )( ) 0z n m c z n m c− − + − − = .

От тези равенства и ( )1  получаваме

( )( )2a b a b c
z

a b
ω ω ω ω

ω
+ − −

=
+

, 
( )( )

( )
2a b bc ac ab

z
abc a b

ω ω ω ω
ω

+ − −
=

+
.

От първото равенство следва 
( ) ( )( )

( ) 22
a b z a b a b

c
a b

ω ω ω ω
ω ω

− + + + −
=

+
. След 

заместване на тази стойност на c  в другото равенство получаваме
( ) ( ) ( ) ( )( )22 2 2 22 3 3 0ab b a zz a b i ab z ab a b i ab z a b a bω ω ω ω ω− + − + + − + − − + = .

Последното уравнение показва, че търсеното геометрично място е окръж-
ност. С това твърдение 4 е доказано.

Доказателство на твърдение 5. От условието за перпендикулярност за 
уравненията на симетралите на отсечките CM  и CN  имаме съответно
( )( ) ( )( ) 0z a m c z a m c− − + − − =  и ( )( ) ( )( ) 0z b n c z b n c− − + − − = .
От тези равенства и ( )1  получаваме
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От тези равенства и ( )1  получаваме

( ) ( )
( )

3 3 3 3

6

i ab i c a b
z

a bω

 − + − =
−

, 
( )
( )

3a b i c
z

c a b

ω

ω

− −
=

−
.

От първото равенство намираме 
( )
( )

3 2 3

2

a i a b z i ab
c

a b

 − + + =
−

. След 

заместване във второто имаме

( )( ) ( )( )3 3 6 6 3 3 0i a b zz z abz i a bω ω+ − − − + − + = .
Последното уравнение показва, че търсеното геометрично място е окръж-

ност. Освен това лесно се проверява, че уравнението се удовлетворява при 
z a=  и z b= . Това означава, че точките A  и B  принадлежат на намерената 
окръжност. С това твърдение 5 е доказано.

Ако триъгълниците AMC  и BNC  са еднакво ориентирани, то са в сила 
равенствата:

( )6 	 m a cω ω= + , n b cω ω= + , 
a cm

ac
ω ω+

= , 
b cn

bc
ω ω+

= .

Доказателство на твърдение 6. За средата на MN  са изпълнени равен-

ствата 
2

2
a b cz ω ω ω+ +

=  и 
2

ac bc abz
abc

ω ω ω+ +
= . Първото от тези равен-

ства води до 
( )2
2

p a b
c

ω
ω

− +
= . След заместване на тази стойност на c  във 

второто равенство получаваме уравнението
( ) ( ) ( )24 2 2 0abzz a b z ab a b z a bω ω− + − + + − = .

Последното уравнение показва, че търсеното геометрично място е окръж-
ност. С това твърдение 6 е доказано.

Доказателство на твърдение 7. Както при доказателството на твърдение 2 
получаваме равенствата

( )2 0c z ab z c abω ω ω ω− − − = , ( )2 0c z ab z a b c abω ω ω ω+ + − − + = .
Умножаваме първото равенство ω , второто с ω−  и събираме получените 

резултати. Така намираме 
( )1

abc
z ab z a b

ω
ω

=
+ + − −

. След заместване на c  

с получения израз в едно от горните равенства получаваме уравнението
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( ) ( )
( )( ) ( )( ) ( )( )

2 2 2 21 1 4

2 2 0.

z a b z abzz

a b z ab a b z a b a b

ω ω

ω ω ω ω ω ω

+ + + + −

− + + − + + + − − =

Полученото уравнение показва, че намереното геометрично място е крива 
от втора степен. Освен това лесно се проверява, че уравнението се удовлетво-
рява при z a=  и z b= . Това означава, че точките A  и B  принадлежат на 
намерената крива. За по-подробно изследване на тази крива полагаме 1a = , 

cos sinb iα α= + , z x iy= + . След заместване в последното уравнение по-
лучаваме

( ) ( ) ( )
( ) ( )

2 23 sin 3cos 4 2 3 cos 3sin 3 sin 3cos 4

3 sin 5cos 5 3 cos 5sin 3 1 2cos 0.

x xy y

x y

α α α α α α

α α α α α

+ + − − − + − −

− + + + − + + + =

Известно е, че видът на крива от втора степен с уравнение 
2 2

11 12 22 13 23 332 2 2 0a x a xy a y a x a y a+ + + + + =  зависи от инвариантите:

1 11 22I a a= + , 11 12
2

12 22

a a
I

a a
= , 

11 12 13

3 12 22 23

13 23 33

a a a
I a a a

a a a
= .

За конкретната крива намираме I1 = 8,  I2 = 4 и I3 =  –4. Тъй като 2 0I > , 

1 3 32 0I I = − < , от теорията на инвариантите следва, че получената крива е 
елипса. С това е доказано твърдение 7.

Доказателство на твърдение 8. За медицентъра на MNC∆  са изпълне-

ни равенствата 
( ) ( )2 1

3
a b c

z
ω ω+ + +

=  и 
( ) ( )2 1

3
c a b ab

z
abc

ω ω+ + +
= . От 

първото равенство следва 
3

2
z a bc ω ω− −

= . След заместване на c  във вто-

рото равенство получаваме
( ) ( ) 2 29 3 3 5 0abzz a b z ab a b z a b abω ω− + − + + + − = .

Последното уравнение показва, че търсеното геометрично място е окръж-
ност. С това твърдение 8 е доказано.

Доказателство на твърдение 9. Както в доказателството на твърдение 4 

получаваме равенствата 
a b cz ω

ω
+ +

=  и 
( )a b c ab

z
abc

ω
ω

+ +
= . От първото 
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равенство следва 
z a bc ω

ω
− −

= . След заместване на тази стойност на c  в 

другото равенство получаваме
( ) ( ) ( )( ) 0ab zz a b z ab a b z a b a bω ω ω ω ω+ + − + + + − = .

Последното уравнение показва, че търсеното геометрично място е окръж-
ност. С това твърдение 9 е доказано.

Доказателство на твърдение 10. Както в доказателството на твърдение 5 

получаваме равенствата 
cz ω

ω
−

=  и z
c
ω
ω
−

= . Оттук непосредствено се виж-

да, че 1zz =  , което е уравнението на окръжността Γ . С това твърдение 10 
е доказано.

4. Заключение. Анализът на получените резултати води до следните из-
води.

1) Ако движещата се по правата MN  точка е среда на отсечката MN , 
медицентър, ортоцентър или център на описаната за MNC∆  окръжност, 
описваното геометрично място е окръжност независимо от взаимната 
ориентация на равностранните триъгълници.

2) Ако движещата се по правата MN  точка е петата на перпендику-
ляра, спуснат от точката C  към MN  и равностранните триъгълници са 
еднакво ориентирани, описваното геометрично място е крива от четвърта 
степен, минаваща през точките A  и B .

3) Ако движещата се по правата MN  точка е петата на перпендику-
ляра, спуснат от точката C  към MN , и равностранните триъгълници са 
еднакво ориентирани, описваното геометрично място е елипса, минаваща 
през точките A  и B .

4) Ако движещата се по правата MN  точка е петата на перпендикуляра, 
спуснат от точката C  към MN , описваното геометрично място не може 
да е окръжност независимо от взаимната ориентация на равностранните 
триъгълници.
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LOCI, GENERATED BY EQUILATERAL TRIANGLES WITH 
VERTICES LYING ON A CIRCLE

Abstract. The article is a scientific work of student under the supervision of 
Associate Professor Dr. Veselin Nenkov. The new results in it were awarded first 
prize at the International Competition “Methodology and Information Technology 
in Education” in 2019. The article refers to loci determined by notable points in a 
triangle, generated by equilateral triangles with vertices on a constant circle. The 
construction of the triangle is similar to the initial one from the First International 
“Network research project” with the participation of Bulgaria, Kazakhstan, and 
Russia. The main difference between those two constructions consists in the location 
of two pairs of vertices of the two equilateral triangles – in the initial problem they 
are on a constant line, but in the present one – on a circle. The loci are circles, 
ellipses, and curves of fourth order.
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