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FIVE  NEW PROOFS 
OF ONE TRIGONOMETRIC INEQUALITY 

IN THE TRIANGLE

Šefket Arslanagić, Alija Muminagić

Abstract. The paper considers fi ve proofs of the ineqaulity 3cos cos cos
2

α β ɣ+ + ≤
 
.
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Consider the following inequality:

 3cos cos cos
2

α β ɣ+ + ≤ , (1)

where ,  and  are the interior angles of the triangle ABC.  
Twelve different proofs of this inequality are given in Arslanagić from 2008. We 

propose fi ve new.
Proof 1. It follows by the cosine theorem, that:

 
2 2 2 2 2 2 2 2 2b c a c a b a b c 3

2bc 2ac 2ab 2
+ − + − + −+ + ≤

     ( ) ( ) ( )2 2 2 2 2 2 2 2 2a b c a b c a b c a b c 3abc⇔ + − + + − + + − ≤

 2 2 2 2 2 2 3 3 3a b ab b c bc a c ac a b c 3abc⇔ + + + + + ≤ + + + ,

Thus, we come to the Schur’s inequality (for 1λ = ). The equality holds in (1) iff 

a b c= =  and 1cos cos cos
2

α β ɣ= = = , respectively, i.e.  (equilateral tri-
angle).

Proof 2. It is shown in Proof 1, that 

3cos cos cos
2

α β ɣ+ + ≤ 2 2 2 2 2 2 3 3 3a b ab b c bc a c ac a b c 3abc⇔ + + + + + ≤ + + + .

On the other hand ( )2 2 2 2 2 2 2 2a b ab b c bc a c ac 2s s r 2Rr+ + + + + = + − , 

( )3 3 3 2 2a b c 2s s 3r 6Rr+ + = − −  and abc 4Rrs= , where R  and r  are the circum radius 
and the in-radius of ABC∆ , respectively, while s  is the semi-perimeter. We have:
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3cos cos cos
2

α β ɣ+ + ≤
  ( ) ( )2 2 2 22s s r 2Rr 2s s 3r 6Rr 12Rrs / : 2s⇔ + − ≤ − − +

2 2 2 2s r 2Rr s 3r 6Rr 6Rr⇔ + − ≤ − − +  
22Rr 4r⇔ ≥ R 2r⇔ ≥ .

The last is the well-known Euler’s inequality and this ends the proof. 

Proof  3. We have: 
2 2 2 2 2 2 2 2 2b c a c a b a b ccos cos cos

2bc 2ac 2ab
α β ɣ + − + − + −+ + = + + =

( ) ( ) ( )

( )( ) ( )

2 2 3 2 2 3 2 2 3

2 2 2 3 3 3

a b c a b c a b c a b c

2abc

a b c a b c 2 a b c

2abc

+ − + + − + + −
=

+ + + + − + +
= ⋅

On the other hand:  

( ) ( )2 2 2 2 2 3 3 3 2 2a b c 2s, abc 4Rrs; a b c 2 s r 4Rr ; a b c 2s s 3r 6Rr .+ + = = + + = − − + + = − −

Thus, ( ) ( )2 2 2 22s 2 s r 4Rr 2 2s s 3r 6Rr
cos cos cos

2 4Rrs
α β ɣ

⋅ − − − ⋅ − −
+ + =

⋅

2 2 2 2s r 4Rr s 3r 6Rr r1
2Rr R

− − − + += = + ⋅

It follows from the Euler’s inequality R 2r≥ , that r 1
R 2

≤ , hence 3cos cos cos
2

α β ɣ+ + ≤
 
.

Proof 4. For arbitrary real numbers ( ), 0,α β π∈  we have:

( ) ( )2 2cos cos 1 sin sin 0α β α β+ − + − ≥
2 2 2 2cos cos 1 2cos cos 2cos 2cos sin 2 sin sin sin 0α β α β α β α α β β⇔ + + + − − + − + ≥

( ) ( ) ( )2 2 2 2sin cos sin cos 1 2 cos cos sin sin cos cos 0α α β β α β α β α β⇔ + + + + + − − − ≥

( )1 1 1 2cos 2cos 2cos 0α β α β⇔ + + + + − − ≥

( ) 3cos cos cos
2

α β α β⇔ + − + ≤ ,

But , i.e. , cos()=cos()=cos, hence 3cos cos cos
2

α β ɣ+ + ≤ .
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Proof 5. We use the following well-known expressions:
2

2
1 tg xcos 2x
1 tg x

−=
+

   and   
2

2

x1 tg
2cos x
x1 tg
2

−
=

+
.

It follows that: 3cos cos cos
2

α β ɣ+ + ≤
2 2 2

2 2 2

1 tg 1 tg 1 tg 32 2 2
21 tg 1 tg 1 tg

2 2 2

α β ɣ

α β ɣ

− − −
⇔ + + ≤

+ + +
 

. 

Use the substitutions: ( )u tg , v tg , w tg ; u,v,w 0
2 2 2
α β ɣ= = = >  and the equality  

tg tg tg tg tg tg 1
2 2 2 2 2 2
α β β ɣ ɣ α+ + =

We obtain uv vw uw 1+ + =  and the inequality (1) is transformed to:

 
2 2 2

2 2 2
1 u 1 v 1 w 3

21 u 1 v 1 w
− − −+ + ≤
+ + +

, (2)

because ( )( )2 21 u uv vw uw u u v u w+ = + + + = + +  , ( )( )21 v v w v u+ = + +  and ( )( )21 w w u w v+ = + + . 
Thus 

( )( ) ( )( ) ( )( )
2 2 21 u 1 v 1 w 3

u v u w v w v u w u w v 2
− − −+ + ≤

+ + + + + +

( )( ) ( )( ) ( )( )
( )( )( )

2 2 21 u v w 1 v u w 1 w u v 3
u v v w u w 2

− + + − + + − +
⇔ ≤

+ + +

( )( )( )
2 2 2 2 2 2v w u v u w u w uv v w u v uw vw 3

u v v w u w 2
+ − − + + − − + + − − ≤

+ + +

 
( ) ( ) ( ) ( )

( )( )( )

2 2 22 u v w u v w v u w w u v 3
u v v w u w 2

⎡ ⎤+ + − + + + + +⎣ ⎦⇔ ≤
+ + +

. (3)

Using the arithmetic-geometric mean inequality, we have:

 3 2 2 21 uv vw uw 3 u v w 3 9uvw= + + ≥ ⇔ ≥ . (4)
From the inequality 

( ) ( ) ( ) ( ) ( )2 2 2 21x y z 3 xy yz zx x y y z z x 0
2

⎛ ⎞⎡ ⎤+ + ≥ + + ⇔ − + − + − ≥⎜ ⎟⎣ ⎦⎝ ⎠
we get
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 ( )u v w 3 uv vw uw 3 1 3+ + ≥ + + = ⋅ = . (5)

Further, ( )( )( ) ( )( )0 u v v w u w u v w uv vw uw uvw u v w uvw< + + + = + + + + − = + + −

and ( ) ( ) ( ) ( )( )2 2 20 u v w v u w w u v u v w uv vw uw 3uvw u v w 3uvw< + + + + + = + + + + − = + + −  , hence:

( ) ( )2 u v w u v w 3uvw 3
u v w uvw 2

+ + − + + −
≤

+ + −  
u v w 3uvw 3
u v w uvw 2
+ + +⇔ ≤
+ + −

u v w 9uvw⇔ + + ≥ , which 

ends the proof.
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ПЕТ НОВИ ДОКАЗАТЕЛСТВА НА ЕДНО ТРИГОНОМЕТРИЧНО 
НЕРАВЕНСТВО В ТРИЪГЪЛНИКА

Резюме. В статията се разглеждат пет доказателства на неравенството 
3cos cos cos
2

α β ɣ+ + ≤ .
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