Mamemamuxa Volume 65, Mathematics
U uHGopmamuxa Number 5, 2022 and Informatics

Educational Technologies

https://doi.org/10.53656/math2022-5-1-err 05pa306ameﬂHu mexHonoCUL

ERROR MANAGEMENT TRAINING IN COMPUTER
PROGRAMMING COURSES THROUGH A SYSTEM
OF TASKS

Dr. Lasko M. Laskov, Assoc. Prof.
New Bulgarian University (Bulgaria)

Abstract. Errors are an indivisible part of computer programming, and as
such their incorporation as a tool in teaching is a natural approach to stimulate
learners to be an active side in the educational process. The application of errors
as an instrument for illustration of knowledge, and the encouragement of students
to learn from them, is the main approach of Error Management Training (EMT).
EMT has been shown in number of psychological studies (Frese 1995; Keith &
Frese 2008; Dyre et al. 2017) as an efficient teaching technique, even compared to
the traditional error-avoidance methods. In this paper we present an application of
EMT in computer programming courses, based on different approaches for error
handling, which must be an important part of the curriculum.

Keywords: computer programming; informatics education; programming errors;
error management training; teaching through tasks

1. Introduction

In the introduction of the chapter Errors of his book (Stroustrup 2014), Bjarne
Stroustrup emphasizes: What we are trying to do is to show what “thinking like a
programmer” is about. Indeed, errors are such an indivisible part of the process
of computer programming that the attitude to them and the techniques for error
handling largely determine the cognitive process involved in software creation.
Even a novice programmer inescapably understands that it is nearly impossible to
implement yet a simple program without any errors. In the case of real-life complex
applications this rule is even carried to extreme, and different approaches to error
handling must be combined together to ensure that the final version of the source
code will be relatively safe and suits the tasks which it is intended for.

During the implementation and testing of a computer program errors cannot be
avoided. Instead, during the different stages of the process, they have to be discov-
ered, solved, and even predicted — and still a well written program code will pos-
sess a high level of confidence for robustness, but never full faultless. Exceptional
situations and their handling are turned into a tool for verification of software cor-
rectness, and as such the correct approach to them helps the creation of the source

450

Error Management Training in Computer...

code. Thus, it is also natural to incorporate errors as an important teaching tool in
computer programming courses.

Of course, error handling mechanisms are a classical part of the curriculum of
computer programming courses (Stroustrup 2014; Horstmann & Budd 2008; Horst-
mann 2019; Laskov 2016) and are usually taught using the traditional error-avoid-
ance methods. In other words, exceptional situations are explained mainly from
the precondition goal to escape from them, which is a natural and straightforward
approach. However, an innovative teaching paradigm suggests to bring the errors
to the foreground of the learning process, and to encourage learners to experiment
with them, and learn from them: the Error Management Training (EMT).

EMT has been compared to the traditional error-avoidant methods and it has
been shown as a superior teaching technique in number of psychological studies
(Frese 1995; Keith & Frese 2008; Dyre et al. 2017). It has been shown that EMT
aims to overcome the emotional negatives of making mistakes (Heimbeck et al.
2003), which is a common obstacle for the students in a beginner’s course of com-
puter programming.

In our practice we adopt the approach of teaching computer programming by for-
mation of notions through a system of tasks (Asenova &Marinov 2018, 2019; Laskov
2021). In this context, the transfer of knowledge may be improved by encouraging
learners to make errors intentionally (Dyre et al. 2017) — a technique that is natural in
the case of computer programming training, since exceptional situations themselves
can be used to depict clearly different practical aspects in the tasks.

In this paper we put errors and error handling mechanisms in the center of crea-
tion of a system of tasks for computer programming courses in three different lev-
els of complexity: basic, advanced and intermediate. These levels are determined
by observing the relative effort of the learners to develop the notions needed to
describe the causes of the errors. These levels of complexity are used to describe
system of tasks used in the following computer programming courses:

1. Introduction to computer programming.

2. Object-oriented programming.

3. Data structures.

We provide a short discussion of different types of errors in computer program-
ming. The classification scheme of programming errors is applied in the EMT ap-
proach to the system of tasks that form the three levels of courses complexity.

We will discuss the alternative methods for error handling and we show how we
build a system of tasks that use errors as the main teaching instrument.

2. Error classification

2.1. Evolution of classification systems

Software bug is one of the most common slang words indicating error in a com-
puter program that was used so extensively that it even became an official term.

451

Lasko M. Laskov

The most popular version about the first usage of the word “bug” in the context of
computing was told by Grace Hopper and it was that a moth was found in one of the
relays of the Harvard Mark II computer in 1945 — see pp.205 — 206 of (Horstmann
and Budd 2008). However this term was used before that and the first documented
occurrence of “bug” in relation to computing was in a Bob Campbell’s entry in the
logbook of ASCII/Mark I computer in April 1944 (Cohen 1994). Despite its popu-
larity, there is no widely established error classification scheme applicable both in
software development and education in computer programming. There are many
extensive research works on software reliability analysis, historically starting from
the late the seventies of the last century.

An early research in the technical report (Motley & Brooks 1977) suggests lin-
ear regression analysis application to predict statistically programming errors. The
subjects of analysis are linear combinations of program characteristics (used to
measure the complexity of the program) and programme variables. Program excep-
tional situations are defined as errors that are found during the formal testing, can
be attributed to the programmer, and require changes in the source code of the pro-
gram. The errors are classified in eight categories: logic, data handling, interface,
data input/output, computational, other, data bases, data definition. Some errors are
not classified as programming errors, but still they are result of the development
process: requirements specification, design, coding, maintenance (correction of er-
rors).

Another early work (Bowen 1980) compares the state of the art for that time
error classification schemes and proposes error categories and subcategories. The
classification scheme is based on comparison of the application to multiple projects
and attempts to avoid excess granularity. Three categories to provide feedback are
defined: source (the phase where error occurs), cause (casual description), and se-
verity (effect of the error). Seven major categories are proposed to support software
reliability analysis: design, interface, data definition, logic, data handling, compu-
tational, and other.

A notable work is proposed by Donald Knuth (Knuth 1989) in which he pro-
vides an extensive analysis of the errors during the evolution of his famous TEX
project during a period of ten years. He presents error classification into fifteen
categories: A (algorithm), B (blunder), C (cleanup), D(data), E (efficiency), F (for-
gotten), G (generalization), I (interaction), L (language), M (mismatch), P(portabil-
ity), Q (quality), R (robustness), S (surprise), T (typo). Further, Knuth classifies the
categories in two classes:

* “bugs” — programming errors that obligatory have to be corrected (A, B, D,
F,L,M,R, S, T);

* enhancements — situations that can be considered as conditions for
enhancement, rather than errors.

Also, the categories are classified with respect to their difficulty:

452

Error Management Training in Computer...

* simple (T, B, F, L, M);

» technically more complex (A, D);

* special situations from which the program must recover even in wrong input
(R);

* complex interactions between different parts of the program (S);

* various types of enhancements during the development of the system (C, E,
G, P Q).

Knuth points out that the presented classification scheme is ad hoc, and it relies
on the functionality of the program, rather than attempting to classify the particular
programming errors, like for example misuse of a given operator from the program-
ming language. Thus, this classification scheme is not focused on teaching comput-
er programming; however it clearly shows a scheme for analysis of evolution of a
complex project by tracking down the categories of errors. Also, the errors that are
cause of wrong initial ideas in the algorithm are clearly separated in the category
A. Besides the above fundamental works, a contemporary approach to software
errors classification scheme is based on software engineering approach. In the (Ko
& Myers 2003) and (Ko & Myers 2005) the authors propose a model of program-
ming errors that is based on an extensive survey of the existing error classification
schemes and error causes analysis. Most of the errors are reported to be a result of
problems in implementing algorithms, language constructs and uses of libraries.

2.2. Application in education

The above error classification schemes are either result of analysis of complex
software projects, or are directly designed to serve the software development pro-
cess. Even though they are closely related, these classification schemes are not cre-
ated to aid the educational process. Something more, often when teaching computer
programming, the error classification systems are simplified.

Often the focus is on logic (semantic) errors, which is a natural approach be-
cause for novice programmers these types of errors are most difficult to resolve.
For example, in (Ettles et al. 2018) logic errors are classified in three categories:
algorithmic errors, misinterpretation of the task, fundamental misconception. The
misconception is concluded as the most frequent and difficult for students.

It is a common approach in the educational literature to list the general catego-
ries of errors that are used in the consecutive examples. For example, in (Horst-
mann and Budd 2008), p.666 the author lists the following types of errors that are
used to illustrate the usage of the mechanism of exceptions: user input errors, de-
vice errors, physical limitations, component failures. On the other hand, Stroustrup
uses the following classification in (Stroustrup 2014): compile time errors (syntax
errors, type errors), link-time errors, run-time errors, errors detected by the com-
puter (hardware and OS), errors detected by a library, errors detected by user code,
and logic errors. The latter approach is close to the real-life analysis of complex

453

Lasko M. Laskov

projects, but still is well-suited for the educational purposes, because it is not too
granulated (as it was mentioned in (Bowen 1980)).

We must also point out that the error classification schemes may vary depend-
ing on the programming language being used. For example, if we consider the
classification scheme in (Stroustrup 2014), the errors in the linking step cannot
be directly applied in the case of Java programming language (Horstmann 2019;
Eckel 2011). And vice versa, some mechanisms in Java (like checked and un-
checked exceptions) are not directly applicable in C++ programming language,
and for that reason the errors that are classified to be handled by these mechanisms
cannot be directly transferred.

2.3. Proposed classification scheme

The complex and too detailed error classification schemes like those in (Bowen
1980; Knuth 1989; Ko & Myers 2003, 2005) are not suitable for our purposes in the
courses in computer programming that are designed for absolute beginners. On the
other hand, since the examples used in our curriculum use errors as an instrument
for knowledge formation, we cannot adopt the approach towards errors which oth-
erwise is successful in the standard error-avoidance educational methods. See for
example (Horstmann & Budd 2008) and (Laskov 2016).

The above motivates us to propose our error classification scheme (Fig. 1) that
is applicable in the case of EMT in computer programming. Our programming
courses are designed using the C++ programming language, and for that reason nat-
urally the technical aspects of our scheme are highly influenced by those proposed
in (Stroustrup, 2014). We will point out that the selection of the programming lan-
guage will not limit the described approach. For example, with few technical mod-
ifications, it is absolutely applicable in courses built based on Java programming
language (Horstmann 2019; Eckel 2011).

The error classification scheme (Fig. 1) is hierarchically organized and has a tree
structure. The root of the tree is the general category error. The error category is
divided in two separate classes:

1. Internal: represents all errors that are direct result of constructions that com-
prise the computer program.

2. External: represents all errors that result from circumstances that are not part
of the program itself.

454

Error Management Training in Computer...

N System

~hardware

Language

algorithm / -0S
Rules IS‘.T‘ - ;
tnput | | Resource |
data structure
reprocessor issi
prep general . . user -missing file
function mis-
compiler course spe- use
cific program wpetwork
linker
=data base

Figure 1. The tree structure of the proposed error classification scheme.

The internal category consists of:

* Language: these are all errors that violate the formal rules of the programming
language and the accepted style. They can be one of the following two sub-
categories.

— Rules: the errors that violate the rules of the language. In the case of C++ an
error can be caused in the preprocessing, in the compilation or during the
linking step. In our courses we pay an extra attention to compiler warnings
as well.

— Style: many programming environments and languages have their widely
accepted style rules which are not part of the programming language itself.
They include code formatting, program elements naming, code organization
in source code files. We distinguish between widely accepted style rules, and
some rules that are imposed specifically for the purposes of our courses. For
example, in our courses we pay special attention to sourcecode formatting,
and program elements naming rules. Also, we insist that the main () function
of a C++ program always ends with return 0; statement, even generally it
could be omitted (Stroustrup 2014).

* Semantic: these are logical errors, and are the category of errors that are hardest
to find and correct. Logical errors can be in the very idea of the program or the
algorithm itself. They can be caused by the selection of wrong data structures, or in
data structures implementation itself. Also, we will consider a semantic error, when
a function or routine of the program is not used correctly (for example calling the
sgrt () function with a negative argument).

455

Lasko M. Laskov

The external category consists of:

* Input: these are all types of errors that result from wrong input to the program
from both user and other programs. These types of errors are not the same as the
wrong function input that are classified in the semantic category of internal errors,
mostly because the input to the program is often not controlled by the programmer.
However, a programmer may try to predict the wrong program input, and make the
program code robust against these types of external circumstances.

* Resource: these are errors that arise because of a missing resource, such as
missing file, failed network connection, or failed database connection. Different
frameworks have tendency to handle differently these types of errors, for example
in Java the mechanism of checked exception deals with missing resources.

* System: the programmer has to consider that the system itself, on which the
software is running, may possibly fail. For example, a hardware device may go out
of order, or the OS may malfunction.

Besides the above described error categories in the hierarchical structure, we
will distinguish two categories that are most often emphasized during program-
ming courses:

1. Compile-time errors: these are errors and warnings that are generated by the
compiler during the compilation process of the program. Apparently, the errors
from the rules category fall inside this category. Note that in particular cases, errors
from other categories, may also lead to compile-time errors.

2. Run-time errors: these are errors that are encountered during the execution
of the program. They do not violate the rules of the programming language and
are not caught by the compiler. For example, the errors from the input category are
run-time errors.

These two error categories are described outside the hierarchy structure on Fig.
1 because they introduce another classification scheme with the respect of the com-
pilation process and execution of the program. Also, a category may be classified as
a compile-time error or a run-time error depending on the programming language
being used. For example, a missing file may cause a run-time error in a C++ pro-
gram, but it will result in a compile-time error in Java.

Something more, many programming languages have mechanisms that attempt
to reduce the runtime errors to compile-time errors. Such mechanisms are for ex-
ample the checked exceptions in Java (Horstmann 2019; Eckel 2011), or constant
function parameters and constant member functions in C++ (Stroustrup 2014;
Horstmann & Budd 2008; Laskov 2016). In the design of the system of task in our
courses, we pay extra attention to these language constructions.

3. Error handling mechanisms
Error handling mechanisms have been evolving together with the program-
ming paradigms and programming languages, and as a result different alterna-

456

Error Management Training in Computer...

tive approaches exist (Koenig & Stroustrup1990; Horstmann &Budd 2008).
For the needs of a computer programming course, we must consider the pro-
gramming paradigm and language, but also the appropriate complexity of the
selected approach.

The methods that are used in our programming courses are mainly influ-
enced from the selection of the C++ programming language, but also consider
the legacy of the C programming language. For that reason we combine fea-
tures presented in (Stroustrup 2014; Koenig & Stroustrup 1990; Horstmann&
Budd 2008) to achieve the following system of alternative error handling mech-
anisms.

3.1. Assume that no error will occur

Definitely the easiest approach, and of course the less applicable in the devel-
opment of real-life applications, is to assume that no error will occur at all, and not
to try to handle any exceptional situations. On the other hand, this attitude towards
errors is practical in the case of the basic level of complexity of examples. From the
point of view of EMT this approach is actually appropriate, because the errors that
we would like to emphasize can stand out.

Task 1. 4 function circleRad()takes as a parameter the area A of a circle and

4
calculates its radius r. Recall that r = w||; where p= 3.141592654 must
be a global constant. Trigger the function with a negative argument.

double circleRad (double area)

{ return sqgrt(area / PI);}

Listing 1. Calculate circle radius, given its area. Function assumes no error will
occur.

The implementation of the function that is given in Listing 1 assumes
that no error will occur, and if the argument is a negative number, the
sqgrt () function will return -nan. Note that the minus sign in front of the
not-a-number constant is a result of its intrinsic representation: all the bits
of the exponent of the floating-point number are set to 1, while the man-
tissa remains as it is, so is the bit that represents the sign of the number.
In the proposed classification of errors, this is an error of type semantic/
function misuse.

3.2. Output error message

Another basic technique to treat error situations is simply to output an error
message either to the standard output, or to a log file for more complex examples.
This approach is also not very practical, however in basic examples it gives a good
representation where and why an error can happen.

457

Lasko M. Laskov

double circleRad (double area)

{ double result = 0.0;
if (area < 0)
{cerr << “Negative area.” << endl;}
else{ result = sgrt(area / PI);}
return result;

}
Listing 2. The circle radius task solved with error message in case of negative

input.

Note that using the solution in Listing 2 the error is detected and it is displayed
in the standard error output stream, however the program flow is not interrupted,
and the function will even return a value in case of exceptional situation. This
approach is also suitable in the cases students have to implement fast solution of
a given task, for example during an exam, and they need a simple mechanism to
reduce the amount of errors in their code.

3.3.Terminate program with an error message

In this error handling technique, once an error is detected, a message is dis-
played, and the program is terminated. On the first glance this might appear quite
ruff approach, and definitely is not the best way to deal with exceptional situations
in real-life applications. However, this technique is extremely suitable for proto-
typing, and it may help programmer to reduce the mistakes in the initial version of
the code. In C and C++ it is easy to implement it using the assert () macro (see
Listing 3 below).

double circleRad (double area)

{ assert (area >= 0);

return sqgrt(area / PI);

}
Listing 3. The circle radius task solved with assertion to terminate

the program with error message.

In this case we proceed from the assumption that detected errors must be elim-
inated from the final version of the source code. For that reason this technique is
used in the tasks of intermediate complexity, for example in the initial implementa-
tion of some data structures such as linked lists, stacks and queues.

3.4. Return flag or external flag

In all previous error handling techniques, the error is detected inside the func-
tion, and it is processed again inside the function. In many situations in the prac-
tice, the error can be detected in the function, but it has to be processed in another
program scope, very often where the caller of the function is. One of the standard
techniques to achieve this effect is to signal to the functional caller the error using
the return value of the function (Listing 4).

458

Error Management Training in Computer...

double circRad (double area)

{ double result = -1;
if (area >= 0)
{ result = sqgrt(area / PI);}

return result;
}
Listing 4. The circle radius task solved with return value denoting the error
state.

Another approach is to set the value of a global flag. In C++ many mathemat-
ical routines use this way for error signalling. In Listing 5 we trigger the function
circRad () (its initial version in Listingl) causing function misuse error. The
sgrt () function will set the global flag errno to the state EDOM value that indi-
cates a domain error.

errno = 0; // reset the error flag
circRad(-1);
if (errno == EDOM) // domain error

{cerr << “circRad() caused a domain error.” << endl;

}

Listing 5. The function misuse error indicated using the global flag errno
set by sqrt () function.

Since error handling using return values and flags is typical for procedural pro-
gramming languages, it is widely used in standard library functions inherited from
the C programming language, and students must be familiar with it.

3.5. Error handler functions

Another approach that is also used in some standard libraries in C++ includes
the error handler functions. The library provides a function that is triggered when
exceptional situation is detected. For example consider the following function:

void error () { action();}

The function action() 1is declared as a pointer to a function void

(*action) () ; .Theuserimplements a function that defines the action that must
be taken, when the error occurs, so it can be set using the following installation
function:

void setErrorAction (void (*userAction) ())

{ action = userAction;}

Now the user can implement the function that determines how exactly the error
will be handled

void argError ()

{ cerr << “Wrong argument.” << endl;}

and then installs it using the call setErrorAction (argError) ;. Then our
circle radius example will be as given in Listing 6.

459

Lasko M. Laskov

double circleRad (double area)
{ double result = 0.0;
if (area < 0){ error () ;}
else{ result = sqgrt(area / PI);}
return result;
}
Listing 6. The function misuse error processed using error handler function.

Even though this approach can look limited from a given point of view (Horst-
mann & Budd2008), it is actually quite powerful (Koenig and Stroustrup 1990),
especially when using the principles of functional programming that are also avail-
able in C++ programming language. Also, note that errorhandler functions are used
by low-level memory management system of C++, and hence a student at the ad-
vanced level must be familiar with them.

3.6. Exceptions

Exceptions exist in C++ since C++98 standard, and they have the tendency to
replace the older mechanisms for error handling in many systems. In (Koenig &
Stroustrup 1990) Stroustrup and Koening give the following motivation for ex-
ception handling mechanism: A library routine can detect an error, but it cannot
process it. A routine that is a user of the library knows how to process an error but
it cannot detect it.

In many cases we can consider that mechanism of exceptions, as Stroustrup and
Koening point out, is more readable, more regular in style and more integrable with
other parts of the program, compared to the alternative mechanisms to handle errors
within a library. See also (Stroustrup 2019).

In some programming languages exceptions are even an indivisible part of the
language. Java is an outstanding example (Horstmann 2019; Eckel 2011) with its
mechanism of checked exceptions that will not allow the program to compile in
the case they are not handled. However, we must also consider that exceptions are
criticised (Sutter 2019), and even there are frameworks based on C++that do not
allow exceptions — for example Qt (Eng 2019).

double circleRad(double area)

{ if (area < 0)

{ throw logic error(“Illegal parameter value.”);}
return sqgrt(area / PI);

}

Listing 7: The function misuse error resulting in throwing an exception.

The circle radius example from above, implemented using exception throwing
in Listing 7, shows the compactness and clearness of the error handling code using
this mechanism. The fact that exceptions can be caught exactly in the scope of
the program in which the code can recover successfully from the error shows its

460

Error Management Training in Computer...

flexibility. In our courses on both intermediate level and advanced level exceptions
are widely used, especially in advanced implementations of data structures such as
trees, priority queues, heaps, maps and hash tables.

4. EMT based system of tasks

In contrast to the standard error-avoidance educational methods, EMT uses er-
rors as an instrument to illustrate knowledge and develop skills. Students are not
taught directly how to avoid errors, but actually are encouraged to provoke them,
to analyze what causes them, techniques to handle, and correct them. Using a sys-
tem of tasks that are formulated based on this principle, we show how complex
notions can be formed and practical skills are developed. In this section we present
few example tasks taken from our system of tasks that form the curriculum of our
computer programming courses. Each task is classified with respect to the follow-
ing features: complexity, course, error, and handling mechanism. The classification
that we provide (given as a table in front of each task) is based on the proposed
error classification scheme and error handling mechanisms.

complexity basic

course Introduction to computer programming
error preprocessor, compiler, course specific
handling mechanism assume no error will occur

Task 2. Try to compile the “Hello, World!” program by consecutively omitting
the following

lines:

* #include <iostream>

* using namespace std;

e return 0.

When the student tries to compile the program with the omitted include
preprocessor directive, the compiler responds with error message ‘cout’ was not
declared in this scope, and also suggests that std: :cout is defined in
header <iostream> did you forget to #include <iostream>?. Even
though the error is generated by the compiler, we can classify it as a preprocessor
error, because the problem is a missing preprocessor directive. This error clearly
shows that the basic I/O system of C++ is not part of the core of the language; rather
it is defined in a standard library.

Omitting using namespace std; introduces the notion namespace.
Also this compile-time mistake is very common for novice programmers.
Besides that, this error opens the discussion whether it is a good style to use
the using namespace construction, or it is better to use the namespace with
scope resolution operator.

461

Lasko M. Laskov

The last error from Task 2 is an example of style/course specific category. In
many literature sources omitting the return statement at the end of the main ()
function is not considered an error, however in our courses we have decided to
label it as a bad style, because of the formal rule that a function must return data
compatible with its return type.

complexity basic

course Introduction to computer programming
error semantic/algorithm

handling mechanism return flag

Task 3. The sphere volume is given by the following expression:V = gﬂ?‘ﬂ,

where r is the radius of the sphere. Write a program that reads the radius r of a
sphere from the standard input and calculates its volume using the expression: dou-
ble volume = 4/3*PI*r*r*r;. If the calculated volume is not a valid value, return
flag -1. Why the answer produced by the above code is not correct?

The error demonstrated in Task 3 shows the difference between integer division
and floating point division. The usage of wrong operation, even though the cause of
this error can be misunderstanding of the language rules, is a semantic error in the
logic of the algorithm that is very common and hard to find by beginners.

complexity intermediate

course Introduction to computer programming
error semantic/ function misuse

handling mechanism terminate program with an error message

Task 4. Implement a program that generates a string of small Latin letters with
random length and random content. Consider the function randString () given
below.

string randString(int max size)

{ assert (max _size >= 0) ; // assert function input

int size = 1 + rand() % max size;
string result;int 1 = 0;

while (i < size)
{ result.push back (randSmallLatin()) ;i++;}
return result;
}
How the program will behave in negative inputs? What is the result, if there is
no call to the srand () function?
The example in Task 4 shows how the input of a function can be verified using
assertions —a technique that is widely used in our courses on intermediate level.

462

Error Management Training in Computer...

Also it helps demonstrating the random seed purpose, which is a key notion for
explanation of the pseudo-random numbers generators.

complexity advanced

course Object-oriented programming
error compiler/warning

handling mechanism assume no error will occur

Task 5 Implement a function that returns the address of a local variable. In the
main () function print both the address and variable stored at that address.

int* getAddress ()

{ int local = 42;return &local;}

Even though the example in Task 5 may look simple on the first glance, it actually
introduces important notions, such as the call stack of functions. The example code will
result in warning that it attempts to return the address of a local variable, and to under-
stand why this is a serious error, the learner has to develop also knowledge about different
memory sections of a program, static variables and dynamic variables. The mechanism
of pointers is always a source of confusion for students even at more advanced level, and
errors similar to the demonstrated above help the development of these complex notions.

complexity Advanced

course Data structures

error compiler/error

handling mechanism assume no error will occur

Task 6. Add a member function that returns the position of the parent node in
a rooted tree. The function constructs Position objects from the parent pointer

ptr node->ptr prnt
and returns it as a result. Add a member function that returns a reference to the list
of children nodes pointers. Omit the keyword t ypename in the implementation of
the two functions:

template <typename TKey>

typename GTree<TKey>::Position

GTree<TKey>::Position::parent () const {. . .}

template <typename TKey>

list<typename GTree<TKey>::Node* >

&§GTree<TKey>::Position::chldList () const {. . .}

Task 6 is a part of sequence of tasks that leads the learner towards the implemen-
tation of the general tree data structure that represents a rooted tree. The omitting
of the keyword typename in the implementation of the two functions will produce
a compile-time error whose understanding requires deeper knowledge of generic
programming in C++.

463

Lasko M. Laskov

complexity advanced

course Data structures

error semantic/data structure
handling mechanism exceptions

Task 7. For our implementation of a priority queue, we will need a user-defined
exception class that is derived from the standard runtime error. Consider the im-
plementation below:

class PQueuekxcept : public runtime error

{ public:

PQueueExcept (const string &msg) ;

b7

// parameter constructor

PQueueExcept: : PQueueExcept (const string &msg)

: runtime error (msg){}

What will happen if you access the minimum element of the priority queue, or
you try to remove it from the data structure in the case when the container is empty?

// access the min element

template <typename TEIm, typename TCmp>

const TEIm &PQueue<TEIm, TCmp>::min() const

{ return I1list.front();}

// remove minimum element

template <typename TEIm, typename TCmp>

void PQueue<TEIm, TCmp>::removeMin ()

{ llist.pop front();}

The solution of Task7 is to throw exception of the user-defined type within the
member functions of the class PQueue. The students are encouraged to provoke the
errors that are common for the given data structure, and to protect their code from
them using the mechanism of exceptions. The understanding of these types of er-
rors also aids the development of the notion of the particular data structure and the
method that is used to implement it.

5. Conclusions

EMT is a natural approach of teaching in computer programming courses. This
is because of the significance and specific nature of computer programming errors
which we can observe from the variety of error classification schemes and different
methods to handle errors. On the other hand, the process of provoking errors during
the educational process highly diminishes the negative emotional influence on the
learners (Heimbeck et al. 2003), which enhances both the theoretical notion devel-
opment and the practical skills.

As future work we plan to adopt the EMT using the techniques of testing and
debugging aiming to enhance the development of notions needed in teaching al-

464

Error Management Training in Computer...

gorithms on beginner and advanced levels. We also plan to develop a system of
tasks that uses errors as an instrument for illustration of knowledge in our course
in parallel computing, following the specific nature of errors in the implementation
of parallel algorithms.

REFERENCES

ASENOVA, P.&MARINOV, M.,2018. Teaching mathematics with
computer systems. Mathematics and Education in Mathematics.
Proceedings of the Forty-seventh Spring Conference of the Union of
Bulgarian Mathematicians, Borovets, April 2 — 6, 2018, 213 —221.

ASENOVA, P.&MARINOV, M., 2019. System of tasks in mathematics
education.Mathematics and Informatics,62(1), 52 — 70.

BOWEN, J. B., 1980.Standard error classification to support software
reliability assessment. Proceedings of the National Computer Conference
AFIPS’80, 697 — 705.

doi:10.1145/1500518.1500638

COHEN, B., 1994. The use of “bug” in computing. /[EEE Annals of the
History of Computing,16(2), 54 — 55.

DYRE, L., TABOR, A., RINGSTED, C.& TOLSGAARD, M. G., 2017.
Imperfect practice makes perfect:error management training improves
transfer of learning. Medical Education, 51(2), 196 — 206.

ECKEL, B, 2011.0n Java 8, Version 2, Lean Publishing. http://leanpub.
com/onjavag.

ENG, L.Z.,2019.0t5 C++ GUI Programming Cookbook, 2nd edn, PACKT
Publishing.

ETTLES, A., LUXTON-REILLY, A.& DENNY, P., 2018.Common
logic errors made by novice programmers. Proceedings of the 20th
Australasian Computing Education Conference ACE’18, 83 — 8§9.

FRESE, M., 1995. Error management in training: conceptual and empirical
results.Organizational Learning and Technological Change,16(2),
112 - 124.

HEIMBECK, D., FRESE, M., SONNENTAG, S.&KEITH, N,
2003, Integrating errors into the trainingprocess: the function of
error management instructions and the role of goal orientation.
PersonnelPsychology,56(2), 333 —361.

HORSTMANN, C., 2019.Big Java: early objects, 7th edn. Wiley.

HORSTMANN, C.& BUDD, T., 2008.Big C++, 2nd edn. Wiley.

KEITH, N.&FRESE, M.,2005. Self-regulation in error management
training: emotion control and metacognition as mediators of performance
effects.The journal of applied psychology, 90, 677 — 691.

465

Lasko M. Laskov

KEITH, N. & FRESE, M.,2008. Effectiveness of error management training:
a meta-analysis.The journal of applied psychology,93(1), 59 — 69.

KNUTH, D. E.,1989, The errors of tex.Software: practice and
experience,19(7), 607 — 685.

KO, A.J. & MYERS, B. A., 2003.Development and evaluation of a model
of programming errors.Proceedings of IEEE Symposium on Human
Centric Computing Languages and Environments, 7 — 14.

KO, A. J. & MYERS, B. A.,2005. A framework and methodology for
studying the causes of softwareerrors in programming systems. Journal
of Visual Languages & Computing, 16 (1 —2), 41 — 84.

KOENIG, A. AND STROUSTRUP, B., 1990. Exception handling for C++’,
Jornal of Object-Oriented Programming, 3(2), 16 —33.

LASKOV, L. M., 2016.Programming in C++, examples and solutions, part
one: From procedural towards object-oriented paradigm, 1st edn. New
Bulgarian University.

LASKOV, L. M., 2021.Introduction to computer programming through a
system of tasks.Mathematicsand Informatics, 64 (6), 634 — 649.

MOTLEY, R. AND BROOKS, W. D., 1977.Statistical prediction of
programming errors. ADA041106, Technical report, IBM Corporation.

https://apps.dtic.mil/sti/pdfs/ADA041106.pdf

STROUSTRUP, B., 2014. Programming: principles and practice using
C++, 2nd edn, Addison-Wesley Professional.

STROUSTRUP, B., 2019.C++ exceptions and alternatives.P1947
Technical report, C++ Standards Committee Papers [online].

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1947r0.pdf.

SUTTER, H., 2019. Zero-overhead deterministic exceptions: throwing
values.PO709 Technical report, C++ Standards Committee Papers
[online].

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0709r4.pdf.

D4 Dr. Lasko M. Laskov, Assoc. Prof.
ORCID iD: 0000-0003-1833-8184

Web of Science ResearcherID: K-7516-2012
New Bulgarian University

Department of Informatics

21, Montevideo Blvd.

1618 Sofia, Bulgaria

E-mail: llaskov@nbu.bg

466

