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ERDOS’ DISTINCT DISTANCES PROBLEM

Houssam Zenati
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Abstract. In discrete geometry, the Erdos’ distinct distances problem states that
between n distinct points in a plane there are at least ,1-o(1) distinct distances.
The problem was posed by Paul Erdds in 1946. In 2010, Larry Guth and Net Hawk
Katz claimed to have a solution. The solution was published in 2015 in the Annals
of Mathematics. This article aims at popularizing this problem to young students in
mathematics, therefore no big background in mathematics is needed to understand
it. It is open to every reader and shall be improved with any remarks or questions.
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L. Introduction
Let’s consider 3 points. We will consider the problem in a plane.

Figure 1. 3 points in a plane

Those 3 points constitute a triangle, and we can wonder how many distinct dis-
tances we can make with those 3 points. If the triangle has nothing special and is
random, we can find 3 distinct distances.

Figure 2. 3 distinct distances — random (arbitrary) triangle
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However, if we consider an isosceles triangle, it has only 2 distinct distances.

Figure 3. 2 distinct distances — isosceles triangle

Besides, if we consider another special type of triangle, we can manage to have
only one single distance for each point. This case corresponds to equilateral triangle.

Figure 4. One single distance between all points — equilateral triangle

In that configuration all distances have same value. The minimum number of
distinct distances is 1.

Summary:

Given 3 points, the minimum number of distinct distances is 1.

II. Problem formulation and Overview

With this little overview of the problem considering 3 points, we can formulate
the following general problem:

Given number n, what is the minimum number of distinct distances between n
points in a plane?

Definition. d(n) is the minimum number of distinct distances between n points.

We will consider the problem by dealing with the following points:

— Short biography

— Great dependency on initial points

— Combinatorial geometry

— Asymptotic approximations

The problem is about estimating the minimum number of distinct distances be-
tween 7 points, where 7 is a given number. With the example in (ii), we will see that
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given a number 7, we can have different positioning that give different number of
distinct distances.
i — Short Biography"

Figure 5. Paul Erdos

Paul Erdos (26 March 1913 /20 September 1996) was a Hungarian mathemati-
cian. He was one of the most prolific mathematicians of the 20th century. He was
known both for his social practice of mathematics (he engaged more than 500 col-
laborators) and for his eccentric lifestyle.

Erdos published around 1,500 mathematical papers during his lifetime, a figure
that remains unsurpassed. He firmly believed mathematics to be a social activity,
living an itinerant life style with the sole purpose of writing mathematical papers
with other mathematicians. Erdos’ prolific output with co-authors prompted the
creation of the Erdds number, the shortest path between a mathematician and Erdos
in terms of co-authorships. Erdos pursued and proposed problems in discrete math-
ematics, graph theory, number theory, mathematical analysis, approximation theo-
ry, set theory, and probability theory.

Ii — Initial Points Dependency
Considering 17t points with coordinates (k,0) for kin {1,...,n}:
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Figure 6. Regular spacing between n points

The number of distinct distances is 7 — 1.. However, if we consider n points with
coordinates (2%,0) for k in{1,...,n}
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Figure 7. Regular spacing between n points

The number of distinct distances is @ Indeed, we can prove that each dis-

tance is different from another. One can observe that these two examples show the
dependency on initial points when considering the number of distinct distances.
The problem will consist in determining the minimum number of distinct distances,
therefore, we may consider changing positions for # given points.

lii — Combinatorial Geometry

Combinatorial geometry is a blending of principles from the areas of combi-
natorics and geometry. It deals with combinations and arrangements of geometric
objects and discrete properties of these objects. It is concerned with such topics
as packing, covering, coloring, folding, symmetry, tiling, partitioning, decompo-
sition, and illumination problems. Although combinatorial geometry was studied
by classical mathematicians such as Euler and Kepler, many advances have been
made since the middle of the 20th century. This topic was one which drew the
interest of the late prolific mathematician Paul Erdos'.

Iv — Asymptotic approximations

For small values of 7, it will be easy to determine the minimum number of
different distances. But for larger values, we will need to use estimates of the
value we are looking for. Therefore, we will define rapidly useful notations when
doing asymptotic approximations. Those notations are popularized for a large
public.

Let g and f'be functions of N (i.e. g(N) and f(N) are two numbers which both
depend on N).

e g(N) = O(f(N)) if and only if [g(N)/ f (N)|is bounded from above (i.e we can find M so

that |[g(N)/ f (N)|<M) when N becomes "large enough". (We say that N — 4c0)
e g(N) ~f (N)ifand onlyif |g(N)/ f (N)| is as close as we want to 1, when N becomes "large
enough". (We say that N - +o0)

Those notations will be used after we have seen first examples with small values
of n, where 7 is the number of given points.

1. Examples for small values of n
Before trying to determine values for small values of nin, we can make the fol-
lowing observations:
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® 11 is a positive integer

e For n points in a plane, we can find 21

possible distances. Indeed, it is

easy to understand that for each point among n possible ones, it can be linked to
another among n — 1 possible ones. But counting this way implies to count each
distance twice. Therefore, the result has to be divided by 2. With reference to the
problem with d(n), where d(n) is the minimum number of distinct distances, we can
observe that:

(1 d(n) <22

e We can also easily state that the minimum number of distances is at least 1,
knowing that we will consider at least two points n > 2, thus d(n) > 1

e Last but not least, if we add one point to a disposition of » points, the mini-
mum number of different distances is easily larger than the minimum number of
different distances with n points:

@) dn) < d(n + 1)

For n = 2, there are only two points, therefore d(2) = 1.

-

Figure 8. 2 points
For n = 3n, as we have seen, d(3) =1,

Figure 9. 3 points

For n = 4, we know that d(4) > 1. But is it possible to have d(4) =1 ?

Proof Reduction Ad Absurdum. Let’s suppose that d(4) = 1. Therefore, only
one distance is available to set points. Let’s sketch the figure. If we set two points,
it will determine the only distance we can use when placing the other points.
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It is only possible to place the third point in one of those two intersections (i.e C or
D), otherwise one distance between two points among three of those will be different.

Without lost of generality, let’s place it in D, we then obtain the following figure
(to obtain the other one, just reverse the figure).

\_
Therefore, we have built the 3 first points, and still have to place the 4th one, i.e
the last one. Since only one possible distance is to be used, the 4th point has to be

at same distance to A and B, therefore has to be C. But if it is C, then the distance
with D will be different (see the next figure).

Thus, this disposition is impossible, and C is not the 4-th point. We can use same
reasoning for E and F, and therefore conclude that we cannot have only one possi-

ble distance to set 4 points at same distance to each other. We conclude that d(4) =1
is absurd, and therefore d(4) > 2.
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We can now find a positioning where we only use two different distances. This
positioning is the one using a square, with one distance being the side of the square,
and the other one being the diagonal of the square.

o

H

Figure 10. 4 points, using two different distances

Since we have d(4) > 2 with the previous proof and considering this position-
ing, we can therefore conclude that for n = 4, d(4) = 2.

For n =5, we know that d(5) > d(4) by using equation (2). Can we find a solu-
tion with 5 points using only 2 different distances?

AN

Figure 11. 5 points, using two different distances

It is indeed possible with a regular pentagon. One distance is the side, the other
one is the diagonal.

For n = 6,7 it is left as an exercise to the reader.

Hint: Prove that it is impossible to have d(6) = 2 and then find figures where
d(6)=3,d(7)=3.

IV. Erdos Conjecture

The popularized principle of Erdds conjecture would be that the number d(n) is
“nearly close” to n when n grows.

We will try to popularize the mathematical formulation, though:

Conjecture. For any a < 1 we can find C > 0 for which d(n) > C.n* for n “big
enough”.(n — +). Let’s first explain what n“ means, where « is a real number.
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i — Real number exponents

Let’s first make a reminder.
Definition. Let n be a positive integer.
a"=a*a..*a

n times

a "= a—n

Then, we introduce the following definition.

Definition. Let p and ¢ be positive integers.
P
a4 is the number b for which we have:

a? = b?

It is therefore now comprehensible to 2,'*” write as 1,67 = % and therefore we

167
can write it 2100. We can also explain that rational numbers (i.e. those which can

be written in the form % where p is an integer and ¢ is a strictly positive integer)

are dense among real numbers, and we can “approximate” any real number by a
rational one. We now understand the notation #* in Erdds conjecture.

Ii — Proof for a = %

Proof that d(n) > C vn. Let’s consider %7t points
A,, A,,... A and we will focus on 4, and 4,.

Figure 12. n points with A and A,
Let’s consider circles with centers 4, or 4, passing through 4, ..., 4 . Let C,

denote the number of circles thus obtained centered at 4, (i.e. redones) and C, the
number of those centered at 4, (i.e. black ones)
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Figure 13. A and A, with circles

We assume, without loss of generality (even if we change the names of the
two points), that C, > C,. Since two circles with different centers have at most two
points of intersection, there are at most 2¢,c, points of intersection in thefigure(c,
choice for the first circle, ¢, choice for the second and at most 2 choices for theinter-
section). Now, by construction, each of the remaining n — 2points of our starting set
belong both to a circle centered at 4, and to a circle centered at 4,, so each of them
is a point of the intersection between the two circles. We thus have n — 2 < 2c¢ c,

from which we deduce n —2 < 2012. Therefore,

and we also know that d(n) = c,. Thus,

d(n) = TLT

Using asymptotic approximations from ILiv, we can show easily thatn — 2 ~ n,
and therefore, when 7 is big enough, we eventually have:

d(n) > C+n
Where ¢ = 1/\/5_

lii — Proof for a. = 2/3
Proof that d(n) > C.n*”. Let’s consider n points 4 ,4,, ..., A_such that the mini-
mum distance is reached between 4, and 4,. The line (4,,4,) separates this cloud

of points into two parts. One contains at least "2;2 points, using the pigeon hole
principle. From now on, it is limited to those points.
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Figure 14. n points separated by (4,,4,)

We now sketch successive half-crowns centered on the midpoint of [4,4,] of
width 4, 4, until we cover all the remaining points.
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Figure 15. n points separated by half-crowns

Let us divide these half-crowns modulo 3 into three sets.

A A

Figure 16. Half-crowns modulo 3

. -2 . . . ..
At least one of these sets contains n—pomts, by using pigeonhole principle

again. It is now limited to these points.
Note that points belonging to distinct half-crowns (among remaining ones) can-
not be at the same distance of 4, (respectively 4,).
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Figure 17. Half-crowns modulo 3, containing n—2 points

By using same reasoning than the first proof (a = 1/2) we obtain that the n, points
of the half-crown idefine at least 4/ M distances to A, or A,. Thus, the number of

distinct distances d(n) for this configuration is greater or equal to (the sum relates
to the half-crowns chosen) 3,  /n; Therefore,

n—2
6 SZ""<

< ) z ;< Jmaxiin)d(n)

Now we consider the half-crown containing max(n )points, then half of the
. o . . 1
crown containing the majority of the points that is to say at least - max(n;). Let P

2
be a minimal ordinate point in this zone. A rapid calculation shows that if Q and R
are equidistant from P in this half-crown, then < 24 4..

Figure 18. Quarter-crown containing % max (n,) points, with O and P

There are thus at most two points of the zone at the same distance from P, which

gives us at least %G max(n;) — 1) distinct distances. Hence, max(n;) <4d(n) + 2.

By deferring to previous inequality:
n—

2 —
e < 4/ max(n;)d(n)
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we now obtain:

L = 2 < dm) [ad(n) + 2

We now use asymptotic approximations knowing that d(n) — +o, when n be-
comes big enough, the left term of the inequality is equivalent to »n and the right
term is equivalent to 2d(n)3/2, therefore, we have:

Cn?? < d(n)
and eventually with general configuration:
d(n) = C.n%/3,

2
where C = 1/33

V. Latest results

We will now give an overview of the latest results, with firstly a popularization
of logarithm:

1 — Logarithm

Logarithm is a function which takes only strictly positive real numbers as argu-
ments.

— We remember that 2.2.2 =8 , therefore 2° = 8. The number 3 is actually called
common logarithm of 8 in base 2.

— Likewise, 10.10.10.10 = 10000

10*=10 000

The number 4 is called common logarithm of 10000 in base 10.

— e is a special number, e =2, 718...

— Definition. In(n) is number x for which ¢* = n.

—x = [n(n)may not be an integer, and can be negative

ii — Latest results

Notation. We write f (n) = £Xg(n)) when we can find C > 0 for which f (n) >Cg(n)
forn

“big enough”.
1

Paul Erds’ 1946 lower bound of d() = 2 (nz) was successively improved to:
e din)= 1 (ni) (Leo Moser, 1952)

5
e dn)= 10 (n7) (Chung 1984)

4
e dn)= 10 ( ns ln(n)) (Chung, Szemerédi and Trotter 1992)
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- ,
dn) = 0 (nE) (Székely 1993)

6
din) = 0 (n7) (Solymosi and Téth 2001)

din)= 0 (mr(ln)) (Guth and Katz 2015)

Note that the latest result is interesting because it is commonly known that for any
a > (0 we have:
In(n)

nﬂ:

—=0

In(n) is “weaker” than any n“ and we thus obtain the sharp exponent in the prob-
lem of Erdos.

NOTES
1. Paul Erdos Biography, Wikipedia.

2. Combinatorial Geometry, accessible at: http://mathworld.wolfram.com/
Combinatorial Geometry.html
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IMPOBJEMBT HA EPJABOII
3A PABJIMYHUTE PASCTOAHUA

Pe3rome. B nuckpernara reomerpus mnpoOmembT Ha Epmeom 3a
Pa3IMYHUTE PA3CTOSIHUASA TBBPIAN, Y€ MEXKIY 7 PAa3IMYHH TOYKH B PaBHUHATA
uma none 0D pasnuuHM pascrostHus. [IpobiaembT e nmocrtaseH ot Ilom Ep-
neom mipe3 1946 . Ipes 2010 . Jlapu Tyt n Her Xoykx Kam ob6sBuxa, e ca ro
paspennin. Pemennero Oerre myonukysano npes 2015 1. B Annals of Mathematics.
LlenTa Ha Ta3u cTaTHs € A MOIMYJISIpU3Upa podiemMa cpej MIIaInTe YUeHHUIH U CTy-
JICHTH 110 MaTeMaTrKa, Mopajd KOeTo He ca HEOOXOIUMH JBJIOOKH MaTeMaTHYEeCKH
MI03HAHMS 32 pa3dupanero My. CTaTusTa € OTBOPEHA 32 YUTATEIINTE M MOXKE J1a ObJie
mofo0psiBaHa upe3 3a0eNeKKH U BBIIPOCH.
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