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I - Introduction 
 
Let’s consider 3 points. We will consider the problem in a plane. 
 

 
Figure 1 : 3 points in a plane 

 
Those 3 points constitute a triangle, and we can wonder how many distinct distances we can make 

with those 3 points. If the triangle has nothing special and is random, we can find 3 distinct distances. 
 

 
Figure 2: 3 distinct distances - random (arbitrary) triangle 

However, if we consider an isosceles triangle, it has only 2 distinct distances.  
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However, if we consider an isosceles triangle, it has only 2 distinct distances.

Figure 3. 2 distinct distances – isosceles triangle

Besides, if we consider another special type of triangle, we can manage to have 
only one single distance for each point. This case corresponds to equilateral triangle.

 
Figure 4. One single distance between all points – equilateral triangle

In that configuration all distances have same value. The minimum number of 
distinct distances is 1.

Summary:
Given 3 points, the minimum number of distinct distances is 1.

II. Problem formulation and Overview
With this little overview of the problem considering 3 points, we can formulate 

the following general problem:
Given number n, what is the minimum number of distinct distances between n 

points in a plane?
Definition. d(n) is the minimum number of distinct distances between n points.
We will consider the problem by dealing with the following points:
– Short biography
– Great dependency on initial points
– Combinatorial geometry
– Asymptotic approximations
The problem is about estimating the minimum number of distinct distances be-

tween n points, where n is a given number. With the example in (ii), we will see that 
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given a number  n , we can have different positioning that give different number of 
distinct distances.

i – Short Biography1)

Figure 5. Paul Erdös

Paul Erdös (26 March 1913 / 20 September 1996) was a Hungarian mathemati-
cian. He was one of the most prolific mathematicians of the 20th century. He was 
known both for his social practice of mathematics (he engaged more than 500 col-
laborators) and for his eccentric lifestyle.

Erdös published around 1,500 mathematical papers during his lifetime, a figure 
that remains unsurpassed. He firmly believed mathematics to be a social activity, 
living an itinerant life style with the sole purpose of writing mathematical papers 
with other mathematicians. Erdös’ prolific output with co-authors prompted the 
creation of the Erdös number, the shortest path between a mathematician and Erdös 
in terms of co-authorships. Erdös pursued and proposed problems in discrete math-
ematics, graph theory, number theory, mathematical analysis, approximation theo-
ry, set theory, and probability theory.

Ii – Initial Points Dependency
Considering  points with coordinates 
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Figure 6 : Regular spacing between n points 

The number of distinct distances is 𝑛𝑛 − . However, if we consider n points with coordinates 
 𝑘𝑘  𝑓𝑓𝑜𝑜𝑟𝑟 𝑘𝑘 𝑖𝑖𝑛𝑛 𝑛𝑛  

 Figure 6. Regular spacing between n points

The number of distinct distances is n – 1.. However, if we consider n points with 
coordinates 
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Figure 7: Regular spacing between n points 

The number of distinct distances is 𝑛𝑛 𝑛𝑛−  . Indeed, we can prove that each distance is different from 
another. One can observe that these two examples show the dependency on initial points when consider-
ing the number of distinct distances. The problem will consist in determining the minimum number of 
distinct distances, therefore, we may consider changing positions for 𝑛𝑛 given points. 
 

iii–Combinatorial Geometry 
 

Combinatorial geometry is a blending of principles from the areas of combinatorics and geometry. It 
deals with combinations and arrangements of geometric objects and discrete properties of these objects. 
It is concerned with such topics as packing, covering, coloring, folding, symmetry, tiling, partitioning, 
decomposition, and illumination problems. Although combinatorial geometry was studied by classical 
mathematicians such as Euler and Kepler,  many advances have been made since the middle of the 20th 
century. This topic was one which drew the interest of the late prolific mathematician Paul Erdös1. 

iv– Asymptotic approximations 
 

For small values of 𝑛𝑛, it will be easy to determine the minimum number of different distances. But for 
larger values, we will need to use estimates of the value we are looking for. Therefore, we will define 
rapidly useful notations when doing asymptotic approximations. Those notations are popularized for a 
large public. 

Let 𝑔𝑔 and 𝑓𝑓 be functions of 𝑁𝑁 (i.e. 𝑔𝑔 𝑁𝑁  and 𝑓𝑓 𝑁𝑁  are two numbers which both depend on  𝑁𝑁). 

 𝑔𝑔 𝑁𝑁 𝑂𝑂 𝑓𝑓 𝑁𝑁  if and only if  𝑔𝑔 𝑁𝑁 𝑓𝑓 𝑁𝑁  is bounded from above (i.e we can find 𝑀𝑀 so 
that  𝑔𝑔 𝑁𝑁 𝑓𝑓 𝑁𝑁  <𝑀𝑀) when 𝑁𝑁 becomes "large enough". (We say that 𝑁𝑁 → ∞ ) 

 𝑔𝑔 𝑁𝑁 𝑓𝑓 𝑁𝑁  if and only if  𝑔𝑔 𝑁𝑁 𝑓𝑓 𝑁𝑁   is as close as we want to 1, when 𝑁𝑁 becomes "large 
enough". (We say that 𝑁𝑁 → ∞) 

Those notations will be used after we have seen first examples with small values of n, where  n is the 
number of given points. 
 

III - Examples for small values of n 
 

Before trying to determine values for small values of 𝑛𝑛, we can make the following observations: 

 𝑛𝑛 is a positive integer 
 For 𝑛𝑛 points in a plane, we can find 𝑛𝑛 𝑛𝑛− possible distances. Indeed, it is easy to understand 

that for each point among n possible ones, it can be linked to another among 𝑛𝑛 − possible 
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. Indeed, we can prove that each dis-
tance is different from another. One can observe that these two examples show the 
dependency on initial points when considering the number of distinct distances. 
The problem will consist in determining the minimum number of distinct distances, 
therefore, we may consider changing positions for n given points.

Iii – Combinatorial Geometry
Combinatorial geometry is a blending of principles from the areas of combi-

natorics and geometry. It deals with combinations and arrangements of geometric 
objects and discrete properties of these objects. It is concerned with such topics 
as packing, covering, coloring, folding, symmetry, tiling, partitioning, decompo-
sition, and illumination problems. Although combinatorial geometry was studied 
by classical mathematicians such as Euler and Kepler, many advances have been 
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Iv – Asymptotic approximations
For small values of , it will be easy to determine the minimum number of 

different distances. But for larger values, we will need to use estimates of the 
value we are looking for. Therefore, we will define rapidly useful notations when 
doing asymptotic approximations. Those notations are popularized for a large 
public.

Let g and f be functions of N (i.e. g (N) and f (N) are two numbers which both 
depend on N).
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● n is a positive integer
● For n points in a plane, we can find 
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easy to understand that for each point among n possible ones, it can be linked to 
another among n – 1 possible ones. But counting this way implies to count each 
distance twice. Therefore, the result has to be divided by 2. With reference to the 
problem with d(n), where d(n) is the minimum number of distinct distances, we can 
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ones. But counting this way implies to count each distance twice. Therefore, the result has to be 
divided by 2. With reference to the problem with 𝑑𝑑 𝑛𝑛 , where 𝑑𝑑 𝑛𝑛 is the minimum number of 
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 We can also easily state that the minimum number of distances is at least 1, knowing that we 
will consider at least two points 𝑛𝑛 ≥ , thus 𝑑𝑑 𝑛𝑛 ≥  

 Last but not least, if we add one point to a disposition of  n points, the minimum number of dif-
ferent distances is easily larger than the minimum number of different distances with n points:  
 
(2)                                                     𝑑𝑑 𝑛𝑛 ≤ 𝑑𝑑 𝑛𝑛  
 

For 𝑛𝑛 , there are only two points, therefore 𝑑𝑑 . 

 
Figure 8: 2 points 

 

For 𝑛𝑛 , as we have seen, 𝑑𝑑 , 
 

 

Figure 9: 3 points 

For  𝑛𝑛 , we know that 𝑑𝑑 ≥ . But is it  possible to have 𝑑𝑑  ? 
 
Proof Reduction Ad Absurdum. Let’s suppose that 𝑑𝑑 . Therefore, only one distance is availa-
ble to set points. Let’s sketch the figure. If we set two points, it will determine the only distance we can 
use when placing the other points. 

 

It is only possible to place the third point in one of those two intersections (i.e C or D), otherwise one 
distance between two points among three of those will be different. 
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ones. But counting this way implies to count each distance twice. Therefore, the result has to be 
divided by 2. With reference to the problem with 𝑑𝑑 𝑛𝑛 , where 𝑑𝑑 𝑛𝑛 is the minimum number of 
distinct distances, we can observe that:  
 
(1)                                                       𝑑𝑑 𝑛𝑛 ≤ 𝑛𝑛 𝑛𝑛−  
 

 We can also easily state that the minimum number of distances is at least 1, knowing that we 
will consider at least two points 𝑛𝑛 ≥ , thus 𝑑𝑑 𝑛𝑛 ≥  

 Last but not least, if we add one point to a disposition of  n points, the minimum number of dif-
ferent distances is easily larger than the minimum number of different distances with n points:  
 
(2)                                                     𝑑𝑑 𝑛𝑛 ≤ 𝑑𝑑 𝑛𝑛  
 

For 𝑛𝑛 , there are only two points, therefore 𝑑𝑑 . 

 
Figure 8: 2 points 

 

For 𝑛𝑛 , as we have seen, 𝑑𝑑 , 
 

 

Figure 9: 3 points 

For  𝑛𝑛 , we know that 𝑑𝑑 ≥ . But is it  possible to have 𝑑𝑑  ? 
 
Proof Reduction Ad Absurdum. Let’s suppose that 𝑑𝑑 . Therefore, only one distance is availa-
ble to set points. Let’s sketch the figure. If we set two points, it will determine the only distance we can 
use when placing the other points. 

 

It is only possible to place the third point in one of those two intersections (i.e C or D), otherwise one 
distance between two points among three of those will be different. 

Figure 8. 2 points
For n = 3n, as we have seen, d(3) = 1,
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It is only possible to place the third point in one of those two intersections (i.e C or 
D), otherwise one distance between two points among three of those will be different.

 

Without lost of generality, let’s place it in D, we then obtain the following figure 
(to obtain the other one, just reverse the figure).

 
Therefore, we have built the 3 first points, and still have to place the 4th one, i.e 

the last one. Since only one possible distance is to be used, the 4th point has to be 
at same distance to A and B, therefore has to be C. But if it is C, then the distance 
with D will be different (see the next figure).

 
Thus, this disposition is impossible, and C is not the 4-th point. We can use same 

reasoning for E and F, and therefore conclude that we cannot have only one possi-
ble distance to set 4 points at same distance to each other. We conclude that d(4) = 1 
is absurd, and therefore d(4) ≥ 2.
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We can now find a positioning where we only use two different distances. This 
positioning is the one using a square, with one distance being the side of the square, 
and the other one being the diagonal of the square.

 
Figure 10. 4 points, using two different distances

Since we have d(4) ≥ 2  with the previous proof and considering this position-
ing, we can therefore conclude that for n = 4, d(4) = 2.

For n = 5, we know that d(5) ≥ d(4) by using equation (2). Can we find a solu-
tion with 5 points using only 2 different distances?

Figure 11. 5 points, using two different distances

It is indeed possible with a regular pentagon. One distance is the side, the other 
one is the diagonal.

For  n = 6,7 it is left as an exercise to the reader.

Hint: Prove that it is impossible to have d(6) = 2 and then find figures where 
d(6) = 3, d(7) = 3.

IV. Erdös Conjecture
The popularized principle of Erdös conjecture would be that the number d(n)  is 

“nearly close” to n when n grows.
We will try to popularize the mathematical formulation, though:

Conjecture. For any a < 1 we can find C > 0 for which d(n) > C.na  for n “big 
enough”.(n → +∞).  Let’s first explain what na means, where a is a real number.
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i – Real number exponents
Let’s first make a reminder.
Definition. Let n be a positive integer.
an = a * a...*a
 n times

 

 

Figure 10: 4 points, using two different distances 
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𝑎𝑎
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It is therefore now comprehensible to write  as and therefore we can write  it  . 
We can also explain that rational numbers (i.e. those which can be written in the form  𝑝𝑝𝑞𝑞 where 𝑝𝑝 is an 
integer and 𝑞𝑞 is a strictly positive integer) are dense among real numbers, and we can "approximate" any 
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ii– Proof for α = ½ 

Proof that 𝑑𝑑 𝑛𝑛 ≥ 𝐶𝐶  𝑛𝑛. Let’s consider 𝑛𝑛 points 
𝐴𝐴 ,𝐴𝐴 ,…𝐴𝐴𝑛𝑛   and we will focus on 𝐴𝐴 and 𝐴𝐴 . 

 

Figure 12: n points with A1 and A2 

Let’s consider circles with centers 𝐴𝐴  or 𝐴𝐴  passing  through 𝐴𝐴 , ..., 𝐴𝐴𝑛𝑛 . Let 𝑐𝑐  denote the number of  
circles thus obtained centered at 𝐴𝐴  (i.e. redones) and 𝑐𝑐  the number of those centered at 𝐴𝐴  (i.e. black 
ones) 
 

 

Figure 13: A1 and A2 with circles 
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points of intersection in thefigure (𝑐𝑐  choice for the first circle, 𝑐𝑐  choice for the second and at most 2 
choices for theintersection). Now, by construction, each of the remaining 𝑛𝑛 − points of our starting 
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Figure 12. n points with A1 and A2

Let’s consider circles with centers A1 or A2  passing through A3, ..., An. Let C1  
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number of those centered at A2  (i.e. black ones)
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Figure 13. A1 and A2 with circles

We assume, without loss of generality (even if we change the names of the 
two points), that C1 ≥ C2.  Since two circles with different centers have at most two 
points of intersection, there are at most 2c1c2  points of intersection in thefigure(c1 
choice for the first circle, c2 choice for the second and at most 2 choices for theinter-
section). Now, by construction, each of the remaining n – 2points of our starting set 
belong both to a circle centered at A1  and to a circle centered at A2, so each of them 
is a point of the  intersection between the two circles. We thus have n – 2 ≤ 2c1c2 
from which we deduce n – 2 ≤ 2c1

2. Therefore, 

 

set belong both to a circle centered at 𝐴𝐴   and to a circle centered at 𝐴𝐴 , so each of them is a point of the  
intersection between the two circles. We thus have 𝑛𝑛 − ≤ 𝑐𝑐 𝑐𝑐 from which we deduce 𝑛𝑛 − ≤
𝑐𝑐 . Therefore,  

 

𝑐𝑐 ≥  𝑛𝑛 −  

 
and we also know that 𝑑𝑑 𝑛𝑛 ≥ 𝑐𝑐 . Thus, 
 

𝑑𝑑 𝑛𝑛 ≥  𝑛𝑛 −  

 
Using asymptotic approximations from II.iv, we can show easily that 𝑛𝑛 − 𝑛𝑛, and therefore, when n 
is big enough, we eventually have: 

𝑑𝑑 𝑛𝑛 ≥ 𝐶𝐶  𝑛𝑛 
 
Where  𝐶𝐶   

 

iii– Proof for α = 2/3 

Proof that 𝑑𝑑 𝑛𝑛 ≥ 𝐶𝐶 𝑛𝑛 . Let’s consider 𝑛𝑛 points 𝐴𝐴 𝐴𝐴 , ..., 𝐴𝐴𝑛𝑛 such that the minimum  distance is 
reached between  𝐴𝐴  and 𝐴𝐴 . The  line (𝐴𝐴 𝐴𝐴 ) separates this cloud of points into  two parts. One con-
tains at least 𝑛𝑛− points, using the pigeon hole principle. From now on, it is limited to those points. 

 

Figure 14: n points separated by (𝐴𝐴 𝐴𝐴 ) 

We now sketch successive half-crowns centered on the midpoint of [𝐴𝐴 𝐴𝐴 ] of width 𝐴𝐴 𝐴𝐴 until we cov-
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Figure 14. n points separated by (A1,A2)

We now sketch successive half-crowns centered on the midpoint of [A1A2] of 
width A1 A2  until we cover all the remaining points.

Figure 15. n points separated by half-crowns
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points, by using pigeonhole principle 
again. It is now limited to these points. 

Note that points belonging to distinct half-crowns (among remaining ones) can-
not  be at the same distance of A1 (respectively A2).
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– Likewise, 10.10.10.10 = 10000
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– Definition. ln(n) is number x for which ex = n.
– x = ln(n)may not be an integer, and can be negative
ii – Latest results
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ПРОБЛЕМЪТ НА ЕРДЬОШ  
ЗА РАЗЛИЧНИТЕ РАЗСТОЯНИЯ

Резюме. В дискретната геометрия проблемът на Ердьош за 
различните разстояния твърди, че между n различни точки в равнината 
има поне 

 

ERDÖS’ DISTINCT DISTANCES PROBLEM 
 

Houssam Zenati 
Centrale Supelec (Ecole Centrale) - France 

 

Abstract. In discrete geometry, the Erdös’ distinct distances problem states that between n distinct 
points in a plane there are at least 𝑛𝑛 −𝑜𝑜  distinct distances. The problem was posed by Paul Erdös in 
1946. In 2010, Larry Guth and  Net Hawk Katz claimed to have a solution. The solution was published 
in 2015 in the Annals of  Mathematics. This article aims at popularizing this problem to young students 
in mathematics, therefore no big background in mathematics is needed to understand it. It is open to 
every reader and shall be improved with any remarks or questions. 

I - Introduction 
 
Let’s consider 3 points. We will consider the problem in a plane. 
 

 
Figure 1 : 3 points in a plane 

 
Those 3 points constitute a triangle, and we can wonder how many distinct distances we can make 

with those 3 points. If the triangle has nothing special and is random, we can find 3 distinct distances. 
 

 
Figure 2: 3 distinct distances - random (arbitrary) triangle 

However, if we consider an isosceles triangle, it has only 2 distinct distances.  

 различни разстояния. Проблемът е поставен от Пол Ер-
дьош през 1946 г. През 2010 г. Лари Тут и Нет Хоук Кац обявиха, че са го 
разрешили. Решението беше публикувано през 2015 г. в Annals of Mathematics. 
Целта на тази статия е да популяризира проблема сред младите ученици и сту-
денти по математика, поради което не са необходими дълбоки математически 
познания за разбирането му. Статията е отворена за читателите и може да бъде 
подобрявана чрез забележки и въпроси.

 Mr. Houssam Zenati
Centrale Supelec (Ecole Centrale)

France
E-mail: houssam.zenati@centraliens.net


