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ЕЛИПТИЧЕН АРБЕЛОС

Пролет Лазарова

Резюме. В статията се разглежда фигурата елиптичен арбелос – елипса и две 
допиращи я окръжности с центрове във фокусите й. Разгледани са три типа елип-
тичен арбелос – тангенциален, пресекателен и непресекателен. Доказани са някои 
основни резултати, дадени са примери за конфигурации тип Сангаку. Изследвана 
е конструкция от допирателни и перпендикуляри към тях и връзката с типовете 
елиптичен арбелос. Въведено е понятието Архимедови окръжности в елиптичния 
арбелос и е описан алгоритъм за построяването им със система за динамична гео-
метрия. Формулирани са отворени въпроси. 

Keywords: elliptic arbelos, Sangaku, Archimedes’ circles

Увод
Традиционната японска математика Васан впечатлява с изящество и оригинал-

ност, което е провокирало трайния интерес към нея по света и в частност у нас. 
На страниците на списание Математика и информатика години наред проф. 
Йордан Табов предлага на вниманието на читателите автентични задачи сангаку 
в рубриката Задача на броя. В рамките на една по-обща програма, а именно изгот-
вяне на динамични конструкции на конфигурации сангаку, решихме да разгледаме 
конфигурацията от фигура 1.

Фиг. 1 Задача на 
броя (МИ, 2005).
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Предизвикателството се състоеше в съставянето на задача по дадения чертеж. 
При това не са посочени връзки между отделните елементи на конструкцията. 
Макар чертежът да дава представа за повечето такива връзки, за най-съществена-
та – между елипсата и двете външно допиращи се  окръжности – не е казано нищо. 
Ясно е само, че тези окръжности допират елипсата вътрешно във върховете й. 

Фигурата, съставена от елипса и две вътрешно допиращи я окръжности, които 
взаимно се допират външно, наподобява геометричен арбелос (Архимед, III в. 
пр. н. е.).  Елипсата в конструкцията сангаку  поема ролята на външната дъга на 
геометричния арбелос. Нещо повече, както се вижда на фигура 2 (снимката е от 
http://www.math.tamu.edu/~harold.boas/ preprints/arbelos.pdf, активна ноември, 2011), 
физическият арбелос има външна дъга, която е по-скоро дъга от елипса, отколкото 
от окръжност. Проучването в достъпните ни източници установи, че подобна фи-
гура не е изучавана самостоятелно. Това ни даде основание да въведем понятието 
елиптичен арбелос, за който ще стане дума в настоящата статия.

   
Фиг. 2 Геометричният арбелос и инструментът арбелос   

1. Определение и основни параметри на елиптичен арбелос
Нека са дадени две окръжности k1,2 (А1,2;R). Означаваме c = A1A2/2. Окръжно-

стите еднозначно определят елипса e с фокуси A1A2  и голяма полуос a = c + R. 

Фиг. 3 Тангенциален, пресекателен и непресекателен елиптичен арбелос
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Фигурата, състояща се от k1, k2 и e, ще наричаме елиптичен арбелос. По аналогия 
с (Гроздев & Ватанабе, 2011) елиптичния арбелос ще определяме като: 

– тангенциален при R = cR = c; 
– пресекателен при R > cR > c; 
– непресекателен при R < cR < c (фиг. 3).
Окръжностите k1 и k2 ще наричаме пораждащи окръжности на елиптичния 

арбелос.

Теорема 1.  Елипсата e  в елиптичния арбелос има малка полуос 
. (за тангенциален елиптичен арбелос ).

Доказателство. Във формулата    заместваме     и изразяваме 

Теорема 2. Окръжността i, която се допира външно до k1 и k2, както и вътрешно 

до e (фигура 4),  има радиус  . (за тангенциален елиптичен 

арбелос .

Фиг. 4 Вписана окръжност в елиптичен арбелос

Доказателство. При означенията на фигура 4 имаме , . 
От Питагорова теорема за , отчитайки теорема 1, последователно получаваме

Решаваме горното уравнение относно r и получаваме: 
.
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Окръжността i от теорема 2 ще наричаме вписана окръжност в елиптичния арбе-
лос. Следват три примера, описващи конкретни конфигурации в духа на Сангаку.

Пример 1. Ще намерим R за елиптичен арбелос, на който c = 1, и вписаните 
окръжности взаимно се допират (фиг. 5). 

Фиг. 5 Елиптичен арбелос с взаимно допиращи се вписани окръжности

Решение: Поради симетрията относно A1A2 двете вписани окръжности се 
допират помежду си точно когато се допират до правата A1A2.

Конфигурацията се реализира точно когато диаметърът на вписаната окръжност 
i е равен на малката полуос на елипсата e. Съгласно теореми 1 и 2 при c = 1 за R 
получаваме уравнението

След съкращаване на 2 отляво решаваме горното уравнение с пакета 
MATHEMATICA (за изчертаването приемаме приближението ).

Пример 2. Ще намерим R на елиптичен арбелос с c = 1, за който вписаните и 
пораждащите окръжности са еднакви (фиг. 6).

Фиг. 6 Елиптичен арбелос с еднакви пораждащи и вписани окръжности
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Решение: Позовавайки се на теорема 2, решаваме уравнението r (R) = R при 
c = 1 с пакета MATHEMATICA: 

Тази конфигурация се реализира в непресекателен елиптичен арбелос. 
Пример 3. Ще намерим R на елиптичен арбелос с c = 1, вписаната окръжност 

на който има център върху A1A2 (фиг. 7).

Фиг. 7 Елиптичен арбелос, чиято вписана окръжност има център върху A1A2  

Решение: Конфигурацията се реализира точно когато радиусът на вписаната 
окръжност i е равен на малката полуос на елипсата e. Съгласно теореми 1 и 2 при  
c = 1, за R получаваме уравнението 

Решаваме горното уравнение с пакета MATHEMATICA и получаваме R = 1/4.
Трябва да отбележим, че коректното прилагане на теорема 2 в този случай изис-

ква внимание, тъй като ∆A1OI от доказателството на теорема 2 се изражда в отсечка.

2. Помощна конструкция
Конфигурацията на фигура 1 ни насочи към разглеждането на следната помощна 

конструкция.

Дадени са две точки A1,2  и отсечка R. Нека  . Построяват се окръжностите 
k1 (A1; R) и k2 (A2; R). Нека V1,2 са онези пресечни точки на правата A1A2 съответно с  
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k1,2, за които A1 и A2 са от отсечката V1 V2. Нека t1,2 са допирателните през V1,2 към 
k2,1,  които се допират до съответните окръжности в една полуравнина относно 
A1A2. Нека p2 е перпендикулярът през A2 към t2 и s2 е перпендикулярът през A2 към 
t1. Нека накрая  (фиг. 8). 

Ще се ограничим със случая E2 да е в полуравнината с контур A1A2, в която са 
допирните точки на t1,2 съответно с k2,1.

 

Фиг. 8 Помощна конструкция

По-нататък ще работим в Декартова координатна система, за която  , като приемем c = 1, което описва общия случай с точност до подобие. Навсякъде 
ще следваме означенията, въведени в конструкцията.

Лема 1. Уравненията на t1,2 са 

Доказателство. Ъгловия коефициент на t1 намираме от правоъгълния триъгъл-
ник с хипотенуза V1A2  = 2 + R  и катет R.

Лема 2. Уравненията на p2 и s2 са 
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Доказателство. От p2  ^ t2 следва, че ъгловият коефициент на p2  е

Сега от условието A2 (1;0) Î p2 получаваме

От s2  ^ t1  следва, че ъгловият коефициент на s2  е

Сега от условието A2 (1;0) Î s2 получаваме 

Лема 3.  Координатите на E2 са

Доказателство. Решаваме системата 

и получаваме 

От изразите за координатите на E2 става ясно, че E2 е в разглежданата полу-
равнина за . При  правите t1 и p2 са успоредни, а за  

 те се пресичат в противоположната на разглежданата полуравнина 
спрямо A1A2. 

Лема 4. Фокалните радиуси на E2 са



Пролет Лазарова

166

Доказателство. От лема 3 за E2 A1
2 извеждаме 

За E2 A2
2 имаме

3. Връзка на конструкцията с елиптичния арбелос

Теорема 3. За тангенциален елиптичен арбелос точката E2 лежи на e (фиг. 9).
Доказателство. За тангенциален елиптичен арбелос  От лема 4 получа-

ваме ,  и , следователно E2 лежи на e.

Фиг. 9 Конфигурацията от теорема 3

Теорема 4.  За непресекателен елиптичен арбелос E2 лежи извън e; за пресека-
телен елиптичен арбелос E2 е извън e (фиг. 10).

Доказателство. Сравняваме сумата от фокалните радиуси E2A1+E2A2 с голямата 
ос 2a = 2(1+R). Изследваме неравенството E2A1+E2A2 < 2(1+R) графично, постро-
явайки с пакета MATHEMATICA двете графики: 

1) на E2A1+E2A2 като функция на R съгласно Лема 4
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2) на 2 (1+R) (фиг. 11).

Фиг. 11 Графиките на E2 A1 + E2 A2  и 2 (1 + R) 

В интервала  графиките се пресичат при R = 1. Дясната фигура по-
казва взаимното положение на графиките в интервала (0;1,2).

• За непресекателен елиптичен арбелос R Î (0;1). В този случай графиката на 
E2A1 + E2A2 е под тази на голямата ос, т.е. E2A1 + E2A2 < 2(1 + R) и E2 е вътрешна 
точка за e. 

• За пресекателен елиптичен арбелос  В този случай графиката 
на E2A1 + E2A2 е над тази на 2(1 + R), т.е. E2A1 + E2A2 > 2(1 + R) и E2 е външна точка 
за елипсата.

Аналитично решение на неравенството ни беше предоставено от проф. Николай 
Николов. Той преобразува неравенството E2A1 + E2A2 < 2(1 + R) в еквивалентното му 

Фиг. 10 Конфигурацията от теорема 4
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След разлагане на полинома от лявата страна на неравенството той получава

Прилагайки метода на интервалите, Николай Николов стига до извода, че реше-
нията на неравенството в интервала  съответстват на нашето графично 
решение.

4. Връзка на конструкцията с вписаната окръжност
Наблюденията, направени на основата на динамични GeoGebra конструкции 

върху взаимното положение на s2 и вписаната окръжност, ни подсказват следната  
Хипотеза. За тангенциален елиптичен арбелос s2 допира i ; за пресекателен 

елиптичен арбелос s2 пресича i; за непресекателен елиптичен арбелос s2 и i нямат 
общи точки (фиг. 12).

Фиг. 12 Конфигурациите, породили хипотезата

За да потвърдим или отхвърлим хипотезата, първо ще установим следната 
Лема 5. Уравнението на i е 

x2 + (y - b + r)2 = r2

Доказателство. Центърът на i е точката с координати I (0; b - r).
Проверка на хипотезата:  Тангенциален елиптичен арбелос се получава при 

R = 1, а тогава според теореми 1 и 2 имаме  и  Съгласно леми 2 
и 5 трябва да установим, че системата
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има единствено решение. Решавайки системата с пакета MATHEMATICA, се оказва, 
че тя има две реални решения: 

По този начин хипотезата е отхвърлена в случая тангенциален елиптичен ар-
белос. От съображения за непрекъснатост може да се заключи, че тя не е в сила и 
за непресекателен елиптичен арбелос. 

5. Обобщен елиптичен арбелос
Определението на елиптичен арбелос визира конфигурация от еднакви окръж-

ности и еднозначно определена елипса с фокуси в центровете им. Това е в духа 
на обикновения арбелос, където външната дъга е еднозначно определена от двете 
по-малки дъги. Естествен е въпросът за обобщаване на това определение. За тази 
цел обаче подходът трябва да се смени.

Нека e е елипса с фокуси F1,2 и върхове V1,2, F1 се намира между V1 и F2 (V1V2 е 
голямата ос на e ). Нека точките O1,2 са от отсечката V1V2; разглеждаме окръжно-
стите  С O означаваме средата на F1F2. Нека   Когато 

 имаме обобщен елиптичен арбелос. Типовете тангенциален, пресе-
кателен и непресекателен се запазват (фиг. 13). 

има единствено решение. Решавайки системата с пакета MATHEMATICA, се оказва, че тя 
има две реални решения:  

𝑥𝑥1,2 =
1

18
�16 − 3√2 − √6 ± �2�23 + 6√2 − 21√3 + 2√6��,  

𝑦𝑦1,2 =
2
9
�3 + √2 + √3 ∓�23 + 6√2 − 21√3 + 2√6� . 

По този начин хипотезата е отхвърлена в случая тангенциален елиптичен арбелос. От 
съображения за непрекъснатост може да се заключи, че тя не е в сила и за непресекателен 
елиптичен арбелос. ∎ 

 

5. Обобщен елиптичен арбелос 

Определението на елиптичен арбелос визира конфигурация от еднакви окръжности 
и еднозначно определена елипса с фокуси в центровете им. Това е в духа на обикновения 
арбелос, където външната дъга е еднозначно определена от двете по-малки дъги. Естествен 
е въпросът за обобщаване на това определение. За тази цел обаче подходът трябва да се 
смени. 

Нека 𝜀𝜀 е елипса с фокуси 𝐹𝐹1,2 и върхове 𝑉𝑉1,2, 𝐹𝐹1 се намира между 𝑉𝑉1 и 𝐹𝐹2 (𝑉𝑉1𝑉𝑉2 е 
голямата ос на ε). Нека точките 𝑂𝑂1,2 са от отсечката 𝑉𝑉1𝑉𝑉2; разглеждаме окръжностите 

𝑘𝑘1,2(𝑂𝑂1,2;𝑅𝑅1,2). С 𝑂𝑂 означаваме средата на 𝐹𝐹1𝐹𝐹2. Нека 𝜌𝜌 = 𝑂𝑂𝑉𝑉12−𝑂𝑂𝐹𝐹12

𝑂𝑂𝑉𝑉1
. Когато 𝑅𝑅1,2 ∈ (�0;𝜌𝜌] 

имаме обобщен елиптичен арбелос. Типовете тангенциален, пресекателен и 
непресекателен се запазват (фиг. 13).  

 

Фиг. 13. Типовете обобщен елиптичен арбелос 

 

Аналогичен е случаят, когато  𝑉𝑉1𝑉𝑉2 е малката ос на 𝜀𝜀. 

Елиптичен арбелос имаме при 𝑅𝑅1 = 𝑅𝑅2 и 𝑂𝑂1,2 ≡ 𝐹𝐹1,2. Случаите, в които някоя от 
окръжностите е окръжност на кривина за елипсата във върховете 𝑉𝑉1,2, се явяват гранични 
( 𝑅𝑅1 = 𝜌𝜌 или  𝑅𝑅2 = 𝜌𝜌).  Ако  𝑅𝑅1 > 𝜌𝜌 или 𝑅𝑅2 > 𝜌𝜌, съответната окръжност пресича елипсата и 
аналогията с арбелоса се прекъсва, както е показано на фиг. 14.  

 

Фиг. 14. Пораждащата окръжност излиза извън елипсата 

Фиг. 13 Типовете обобщен елиптичен арбелос

Аналогичен е случаят, когато V1V2 е малката ос на e.
Елиптичен арбелос имаме при R1 = R2 и O1,2 º F1,2. Случаите, в които някоя от 

окръжностите е окръжност на кривина за елипсата във върховете V1V2, се явяват 
гранични (R1 = ρ или R2 = ρ). Ако R1 > ρ или R2 > ρ, съответната окръжност пресича 
елипсата и аналогията с арбелоса се прекъсва, както е показано на фиг. 14. 
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Фиг. 14 Пораждащата окръжност излиза извън елипсата

6. Допълнение
Обичайният подход при изследване на (кръгов) арбелос е с инверсия относно 

окръжност с център допирната точка на вътрешните окръжности. В резултат на 
това се получават удобни за изследване конфигурации от успоредни прави и ок-
ръжности (Прасолов, 1986). 

При елиптичния арбелос обаче образът на елипсата при инверсия в общия слу-
чай е линия от четвърта степен (Rangel-Mondragon, 2012).  Например образът на 
елипсата на тангенциален елиптичен арбелос при инверсия относно единичната 
окръжност е кривата с уравнение

На фигура 15 са показани образите на две семейства елипси при инверсия 
относно окръжност с център върху голямата ос на елипсата (отляво) и център, 
съвпадащ с центъра на елипсата (отдясно).  

Фиг. 15 Образи на елипси при инверсия (Rangel-Mondragon, 2012)



171

Елиптичен арбелос

7. Архимедови окръжности в обобщен елиптичен арбелос
Въпросът за Архимедовите окръжности-близнаци ни беше поставен от проф. 

Сава Гроздев на Националния кръг на конкурса „Математика и проектиране“ през 
2012 г. Следват няколко резултата в тази насока. 

По аналогия с (Гроздев&Ватанабе, 2011) построяваме радикалната ос a на по-
раждащите окръжности в обобщен елиптичен арбелос. Окръжностите, допиращи 
се до a, e, k1 и a, e, k2, наричаме Архимедови. Приближени пресмятания показват, 
че за разлика от окръжностите-близнаци в обобщения арбелос Архимедовите 
окръжности в обобщения елиптичен арбелос не са еднакви (фиг. 16). 

   

Фиг. 16 Архимедови окръжности в трите типа обобщен елиптичен арбелос.

За построяването им са ни необходими геометричното място на точки, равно 
отдалечени от пораждащите окръжности и радикалната ос, както и геометричното 
място на точките, равно отдалечени от радикалната ос и елипсата. Центърът на 
Архимедова окръжност е  измежду общите точки на двете ГМТ, а радиусът може 
да се определи като разстоянието от центъра до a.

Лема 6. Геометричното място на точки, равно отдалечени от права и окръжност, 
е парабола.

Доказателство. Нека са дадени 
правата a и окръжността k (O;R). 
Разглеждаме правата d, която е ус-
поредна на a и е на разстояние R от 
нея, както е показано на фигура 17. 
Означаваме с П параболата с фокус 
O и директриса d.  

По-нататък със Zz ще означаваме 
разстоянието от точка Z до фигура z. 
Xk = XO - R, Xa = Xd - R. Тогава 
X Î Π Û XO=Xd Û Xk=Xa.

Фиг. 17 
ГМТ, 
равно от-
далечени 
от права 
и окръж-
ност
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Конструкция на точка, равно отдалечена от а и e.
1. Построяваме допирателна t към елипсата през точка P Î e. 
2. Построяваме ъглополовяща l на ъгъла между t и a.
3. Построяваме нормалата n към e  през P и пресечната точка A на n и a.
4. Построяваме окръжност a с център A и радиус AP.  

Лема 7. При горните означения, ако единствената обща точка на a и e е P, то 
тя е равно отдалечена от a и e.

Доказателство. A Î l Þ Aa = At, A Î n Þ At=AP. Щом P е единствената обща 
точка на a и e, то Ae = AP и Aa = Ae.

Извод. В условията на лема 7, когато точката P описва дъга от елипсата, точката 
A описва съответна дъга от L – ГМТ,  равно отдалечени от елипсата e и правата a 
(фиг. 18). 

За построяването на Архимедовите окръжности трябва да се построи окръжност 
с радиус AP и център пресечната точка на L и П.   

Фиг. 18 ГМТ, равно отдалечени от права и елипса

8. Отворени въпроси
1) Въпросът за допирането на s2 и i е отворен и се свежда до изследване на 

знака на дискриминантата

	
Възможен подход е приложеният в доказателството на теорема 4.
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2) Видът на ГМТ L не ни е известен. Следва скицирана идея, която води до 
параметрично представяне на L. Взимаме произволна точка P Î e, зададена пара-
метрично от j: P (xp; yp), където xp = a cos jxp, xp = b sin jyp. Допирателната през 
P към e е с уравнение

което записваме във вида

Уравнението на нормалата n през P е

За да получим уравнението на ъглополовящата l, ни е необходимо нормалното 
уравнение на t:

1) Въпросът за допирането на 𝑠𝑠2 и 𝑖𝑖 е отворен и се свежда до изследване на знака на 
дискриминантата 

−24𝑅𝑅3 − 20𝑅𝑅4 + 52𝑅𝑅5 + 64𝑅𝑅6 + 16𝑅𝑅7 + 16𝑅𝑅4√1 + 𝑅𝑅 + 40𝑅𝑅5√1 + 𝑅𝑅 + 16𝑅𝑅6√1 + 𝑅𝑅 −
32𝑅𝑅3√2𝑅𝑅 + 𝑅𝑅2 − 32𝑅𝑅4√2𝑅𝑅 + 𝑅𝑅2 + 8𝑅𝑅4�(1 + 𝑅𝑅)(2𝑅𝑅 + 𝑅𝑅2) + 16𝑅𝑅5�(1 + 𝑅𝑅)(2𝑅𝑅 + 𝑅𝑅2)  

Възможен подход е приложеният в доказателството на теорема 4. 

2) Видът на ГМТ L не ни е известен. Следва скицирана идея, която води до 
параметрично представяне на 𝐿𝐿. Взимаме произволна точка 𝑃𝑃 ∈ ε, зададена параметрично 
от φ: 𝑃𝑃(𝑥𝑥𝑃𝑃;𝑦𝑦𝑃𝑃), където 𝑥𝑥𝑃𝑃 = 𝑎𝑎 cos𝜑𝜑, 𝑦𝑦𝑃𝑃 = 𝑏𝑏 sin𝜑𝜑. Допирателната през 𝑃𝑃 към 𝜀𝜀 е с 
уравнение 

𝑡𝑡:    
𝑥𝑥𝑃𝑃
𝑎𝑎2
𝑥𝑥 +

𝑦𝑦𝑃𝑃
𝑏𝑏2
𝑦𝑦 = 1, 

което записваме във вида 

𝑡𝑡:     𝑦𝑦 =
𝑏𝑏2

𝑦𝑦𝑃𝑃
�1 −

𝑥𝑥𝑃𝑃
𝑎𝑎2
𝑥𝑥� =

𝑏𝑏2

𝑦𝑦𝑃𝑃
−
𝑥𝑥𝑃𝑃𝑏𝑏2

𝑦𝑦𝑃𝑃𝑎𝑎2
𝑥𝑥. 

Уравнението на нормалата 𝑛𝑛 през 𝑃𝑃 е 

𝑛𝑛:    
𝑦𝑦𝑃𝑃𝑎𝑎2

𝑥𝑥𝑃𝑃𝑏𝑏2
(𝑥𝑥 − 𝑥𝑥𝑃𝑃) + 𝑦𝑦𝑃𝑃. 

За да получим уравнението на ъглополовящата 𝑙𝑙, ни е необходимо нормалното уравнение 
на 𝑡𝑡: 

𝑡𝑡:   
𝑥𝑥𝑃𝑃
𝑎𝑎2 𝑥𝑥 + 𝑦𝑦𝑃𝑃

𝑏𝑏2 𝑦𝑦 − 1

�𝑥𝑥𝑃𝑃
2

𝑎𝑎4 + 𝑦𝑦𝑃𝑃2
𝑏𝑏4

= 0. 

Нека радикалната ос на пораждащите окръжности е 𝑎𝑎: 𝑥𝑥 = 𝑞𝑞. Тогава уравнението на 𝑙𝑙 е 

𝑙𝑙:   

⎝

⎛
𝑥𝑥𝑃𝑃
𝑎𝑎2

�𝑥𝑥𝑃𝑃
2

𝑎𝑎4 + 𝑦𝑦𝑃𝑃2
𝑏𝑏4

± 1

⎠

⎞𝑥𝑥 +
𝑦𝑦𝑃𝑃
𝑏𝑏2

�𝑥𝑥𝑃𝑃
2

𝑎𝑎4 + 𝑦𝑦𝑃𝑃2
𝑏𝑏4

𝑦𝑦 −
1

�𝑥𝑥𝑃𝑃
2

𝑎𝑎4 + 𝑦𝑦𝑃𝑃2
𝑏𝑏4

∓ 𝑞𝑞 = 0. 

Координатите на центъра 𝐴𝐴2(𝑥𝑥𝑃𝑃; 𝑦𝑦𝑃𝑃) на Архимедовата окръжност α2 са решенията на 
система от уравненията на 𝑙𝑙 и 𝑛𝑛 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥 =  

(𝑎𝑎2 − 𝑏𝑏2)𝑥𝑥𝑃𝑃
𝑎𝑎2

,

𝑦𝑦 =  

𝑏𝑏2(𝑎𝑎2 − 𝑏𝑏2)𝑥𝑥𝑃𝑃�
𝑥𝑥𝑃𝑃2
𝑎𝑎4 + 𝑦𝑦𝑃𝑃2

𝑏𝑏4

⎝
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𝑎𝑎2�𝑥𝑥𝑃𝑃
2

𝑎𝑎4 + 𝑦𝑦𝑃𝑃2
𝑏𝑏4 ⎠

⎞

𝑎𝑎2𝑦𝑦𝑃𝑃
 +

𝑏𝑏2 �−1 + 𝑞𝑞�𝑥𝑥𝑃𝑃
2

𝑎𝑎4 + 𝑦𝑦𝑃𝑃2
𝑏𝑏4 �

𝑦𝑦𝑃𝑃 ⎭
⎪⎪
⎬

⎪⎪
⎫

 

След като заместим 𝑥𝑥𝑃𝑃 и 𝑦𝑦𝑃𝑃 с параметричната им форма, получаваме изразите 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥 =  

(𝑎𝑎2 − 𝑏𝑏2) cos𝜑𝜑
𝑎𝑎

,
  

𝑦𝑦 =
𝑏𝑏
𝑎𝑎

(𝑎𝑎2 − 𝑏𝑏2)cotg𝜑𝜑�
cos2𝜑𝜑
𝑎𝑎2

+
sin2𝜑𝜑
𝑏𝑏2

⎝

⎛1 −
cos𝜑𝜑

𝑎𝑎�cos2𝜑𝜑
𝑎𝑎2 + sin2𝜑𝜑

𝑏𝑏2 ⎠

⎞  +
𝑏𝑏 �−1 + 𝑞𝑞�cos2𝜑𝜑

𝑎𝑎2 + sin2𝜑𝜑
𝑏𝑏2 �
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⎪⎪
⎬
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Нека радикалната ос на пораждащите окръжности е a:x = q. Тогава уравнението 
на l е

1) Въпросът за допирането на 𝑠𝑠2 и 𝑖𝑖 е отворен и се свежда до изследване на знака на 
дискриминантата 

−24𝑅𝑅3 − 20𝑅𝑅4 + 52𝑅𝑅5 + 64𝑅𝑅6 + 16𝑅𝑅7 + 16𝑅𝑅4√1 + 𝑅𝑅 + 40𝑅𝑅5√1 + 𝑅𝑅 + 16𝑅𝑅6√1 + 𝑅𝑅 −
32𝑅𝑅3√2𝑅𝑅 + 𝑅𝑅2 − 32𝑅𝑅4√2𝑅𝑅 + 𝑅𝑅2 + 8𝑅𝑅4�(1 + 𝑅𝑅)(2𝑅𝑅 + 𝑅𝑅2) + 16𝑅𝑅5�(1 + 𝑅𝑅)(2𝑅𝑅 + 𝑅𝑅2)  

Възможен подход е приложеният в доказателството на теорема 4. 

2) Видът на ГМТ L не ни е известен. Следва скицирана идея, която води до 
параметрично представяне на 𝐿𝐿. Взимаме произволна точка 𝑃𝑃 ∈ ε, зададена параметрично 
от φ: 𝑃𝑃(𝑥𝑥𝑃𝑃;𝑦𝑦𝑃𝑃), където 𝑥𝑥𝑃𝑃 = 𝑎𝑎 cos𝜑𝜑, 𝑦𝑦𝑃𝑃 = 𝑏𝑏 sin𝜑𝜑. Допирателната през 𝑃𝑃 към 𝜀𝜀 е с 
уравнение 

𝑡𝑡:    
𝑥𝑥𝑃𝑃
𝑎𝑎2
𝑥𝑥 +

𝑦𝑦𝑃𝑃
𝑏𝑏2
𝑦𝑦 = 1, 

което записваме във вида 

𝑡𝑡:     𝑦𝑦 =
𝑏𝑏2

𝑦𝑦𝑃𝑃
�1 −

𝑥𝑥𝑃𝑃
𝑎𝑎2
𝑥𝑥� =

𝑏𝑏2

𝑦𝑦𝑃𝑃
−
𝑥𝑥𝑃𝑃𝑏𝑏2

𝑦𝑦𝑃𝑃𝑎𝑎2
𝑥𝑥. 

Уравнението на нормалата 𝑛𝑛 през 𝑃𝑃 е 

𝑛𝑛:    
𝑦𝑦𝑃𝑃𝑎𝑎2

𝑥𝑥𝑃𝑃𝑏𝑏2
(𝑥𝑥 − 𝑥𝑥𝑃𝑃) + 𝑦𝑦𝑃𝑃. 

За да получим уравнението на ъглополовящата 𝑙𝑙, ни е необходимо нормалното уравнение 
на 𝑡𝑡: 

𝑡𝑡:   
𝑥𝑥𝑃𝑃
𝑎𝑎2 𝑥𝑥 + 𝑦𝑦𝑃𝑃
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2

𝑎𝑎4 + 𝑦𝑦𝑃𝑃2
𝑏𝑏4

= 0. 

Нека радикалната ос на пораждащите окръжности е 𝑎𝑎: 𝑥𝑥 = 𝑞𝑞. Тогава уравнението на 𝑙𝑙 е 

𝑙𝑙:   
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⎛
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𝑎𝑎4 + 𝑦𝑦𝑃𝑃2
𝑏𝑏4

∓ 𝑞𝑞 = 0. 

Координатите на центъра 𝐴𝐴2(𝑥𝑥𝑃𝑃; 𝑦𝑦𝑃𝑃) на Архимедовата окръжност α2 са решенията на 
система от уравненията на 𝑙𝑙 и 𝑛𝑛 

⎩
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След като заместим 𝑥𝑥𝑃𝑃 и 𝑦𝑦𝑃𝑃 с параметричната им форма, получаваме изразите 

⎩
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⎧ 𝑥𝑥 =  

(𝑎𝑎2 − 𝑏𝑏2) cos𝜑𝜑
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,
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Координатите на центъра A2(xP; yP) на Архимедовата окръжност a2 са решенията 
на система от уравненията на l и n

1) Въпросът за допирането на 𝑠𝑠2 и 𝑖𝑖 е отворен и се свежда до изследване на знака на 
дискриминантата 

−24𝑅𝑅3 − 20𝑅𝑅4 + 52𝑅𝑅5 + 64𝑅𝑅6 + 16𝑅𝑅7 + 16𝑅𝑅4√1 + 𝑅𝑅 + 40𝑅𝑅5√1 + 𝑅𝑅 + 16𝑅𝑅6√1 + 𝑅𝑅 −
32𝑅𝑅3√2𝑅𝑅 + 𝑅𝑅2 − 32𝑅𝑅4√2𝑅𝑅 + 𝑅𝑅2 + 8𝑅𝑅4�(1 + 𝑅𝑅)(2𝑅𝑅 + 𝑅𝑅2) + 16𝑅𝑅5�(1 + 𝑅𝑅)(2𝑅𝑅 + 𝑅𝑅2)  

Възможен подход е приложеният в доказателството на теорема 4. 

2) Видът на ГМТ L не ни е известен. Следва скицирана идея, която води до 
параметрично представяне на 𝐿𝐿. Взимаме произволна точка 𝑃𝑃 ∈ ε, зададена параметрично 
от φ: 𝑃𝑃(𝑥𝑥𝑃𝑃;𝑦𝑦𝑃𝑃), където 𝑥𝑥𝑃𝑃 = 𝑎𝑎 cos𝜑𝜑, 𝑦𝑦𝑃𝑃 = 𝑏𝑏 sin𝜑𝜑. Допирателната през 𝑃𝑃 към 𝜀𝜀 е с 
уравнение 

𝑡𝑡:    
𝑥𝑥𝑃𝑃
𝑎𝑎2
𝑥𝑥 +

𝑦𝑦𝑃𝑃
𝑏𝑏2
𝑦𝑦 = 1, 

което записваме във вида 

𝑡𝑡:     𝑦𝑦 =
𝑏𝑏2

𝑦𝑦𝑃𝑃
�1 −

𝑥𝑥𝑃𝑃
𝑎𝑎2
𝑥𝑥� =

𝑏𝑏2

𝑦𝑦𝑃𝑃
−
𝑥𝑥𝑃𝑃𝑏𝑏2

𝑦𝑦𝑃𝑃𝑎𝑎2
𝑥𝑥. 

Уравнението на нормалата 𝑛𝑛 през 𝑃𝑃 е 

𝑛𝑛:    
𝑦𝑦𝑃𝑃𝑎𝑎2

𝑥𝑥𝑃𝑃𝑏𝑏2
(𝑥𝑥 − 𝑥𝑥𝑃𝑃) + 𝑦𝑦𝑃𝑃. 

За да получим уравнението на ъглополовящата 𝑙𝑙, ни е необходимо нормалното уравнение 
на 𝑡𝑡: 

𝑡𝑡:   
𝑥𝑥𝑃𝑃
𝑎𝑎2 𝑥𝑥 + 𝑦𝑦𝑃𝑃

𝑏𝑏2 𝑦𝑦 − 1

�𝑥𝑥𝑃𝑃
2

𝑎𝑎4 + 𝑦𝑦𝑃𝑃2
𝑏𝑏4

= 0. 

Нека радикалната ос на пораждащите окръжности е 𝑎𝑎: 𝑥𝑥 = 𝑞𝑞. Тогава уравнението на 𝑙𝑙 е 

𝑙𝑙:   

⎝

⎛
𝑥𝑥𝑃𝑃
𝑎𝑎2

�𝑥𝑥𝑃𝑃
2

𝑎𝑎4 + 𝑦𝑦𝑃𝑃2
𝑏𝑏4

± 1

⎠

⎞𝑥𝑥 +
𝑦𝑦𝑃𝑃
𝑏𝑏2

�𝑥𝑥𝑃𝑃
2
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𝑏𝑏4

𝑦𝑦 −
1

�𝑥𝑥𝑃𝑃
2

𝑎𝑎4 + 𝑦𝑦𝑃𝑃2
𝑏𝑏4

∓ 𝑞𝑞 = 0. 

Координатите на центъра 𝐴𝐴2(𝑥𝑥𝑃𝑃; 𝑦𝑦𝑃𝑃) на Архимедовата окръжност α2 са решенията на 
система от уравненията на 𝑙𝑙 и 𝑛𝑛 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥 =  

(𝑎𝑎2 − 𝑏𝑏2)𝑥𝑥𝑃𝑃
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,
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2
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𝑏𝑏4 �
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⎪⎪
⎬

⎪⎪
⎫

 

След като заместим 𝑥𝑥𝑃𝑃 и 𝑦𝑦𝑃𝑃 с параметричната им форма, получаваме изразите 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥 =  

(𝑎𝑎2 − 𝑏𝑏2) cos𝜑𝜑
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⎝
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𝑎𝑎2 + sin2𝜑𝜑
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sin𝜑𝜑
⎭
⎪⎪
⎬

⎪⎪
⎫

 

След като заместим xp и yp с параметричната им форма, получаваме изразите
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от φ: 𝑃𝑃(𝑥𝑥𝑃𝑃;𝑦𝑦𝑃𝑃), където 𝑥𝑥𝑃𝑃 = 𝑎𝑎 cos𝜑𝜑, 𝑦𝑦𝑃𝑃 = 𝑏𝑏 sin𝜑𝜑. Допирателната през 𝑃𝑃 към 𝜀𝜀 е с 
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Нека радикалната ос на пораждащите окръжности е 𝑎𝑎: 𝑥𝑥 = 𝑞𝑞. Тогава уравнението на 𝑙𝑙 е 
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Координатите на центъра 𝐴𝐴2(𝑥𝑥𝑃𝑃; 𝑦𝑦𝑃𝑃) на Архимедовата окръжност α2 са решенията на 
система от уравненията на 𝑙𝑙 и 𝑛𝑛 
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След като заместим 𝑥𝑥𝑃𝑃 и 𝑦𝑦𝑃𝑃 с параметричната им форма, получаваме изразите 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥𝑥 =  
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𝑎𝑎

,
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⎬

⎪⎪
⎫

 

Това би трябвало да са параметричните уравнения на търсеното ГМТ L.
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Елиптичен арбелос

ELLIPTIC ARBELOS

Abstract. The article considers an extension of the concept of the Archimedes 
arbelos.  The elliptic arbelos consists of two circles (generating circles) which define 
an ellipse with foci in their centers. Three types of elliptic arbeloses are considered: 
tangential, intersecting and non-intersecting. Basic properties of the figure are established 
and formed as theorems. A Sangaku-type problem in a Bulgarian mathematical journal 
inspired the author to examine a specific configuration of tangents and perpendicular lines 
and their relation to the elliptic arbelos. The concept of generalized elliptic arbelos and 
Archimedes’ circles in the generalized elliptic arbelos are introduced and an algorithm 
for their construction is designed. Some open questions are stated.
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