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две двойки точки, породени  
от асоциирани спрямо триъгълник  

централни конични сечения

Сава Гроздев, Веселин Ненков

Резюме. В статията е използвана софтуерната програма “The Geometer’s 
Sketchpad” (GSP) за откриване на различни интересни свойства на конични сече-
ния, асоцирани с даден dABC. Предложени са и строги доказателства на откритите 
свойства. Например, да разгледаме точка I в равнината на dABC и  спрегнатия й 
dIAIBIC относно dABC. Точките I, IA, IB и IC са центровете на вписани в dABC конични 
сечения, съответно k(I), k(IA), k(IB) и k(IC), като средите на отсечките  IA, IB, IC, IB IC, 
IC IA, и IA IB, лежат на описано около dABC конично сечение k

_
(O). Нека правата I, 

която е успоредна на IAIB, пресича CA и CB съответно в точките Ca и Cb, а правата IC, 
която е успоредна на IAIB, пресича CA и CB съответно в точките Ca¢ и Cb¢. Определяме 
точките Lc(I) = ACa Ç BCb и Lc¢(IC) = ACa¢ Ç BCb¢. Аналогично се дефинират точките 
La (I), Lb (I), La¢ (IA) и Lb¢ (IB). Тогава, правите ALa(I), BLb(I) и CLc(I) се пресичат в 
точка T(I). В статията се разглеждат и други интересни конфигурации и свойства. 

Keywords: The Geometer’s Sketchpad (GSP), conjugate triangle, conic, 
inscribed conic, circumscribed conic, tangent point

Въведение. Една интересна задача, която се поставя в равнината на даден  
dABC, е свързана с построяването на окръжност k, допираща се до две от правите 
BC, CA, AB и до описаната за dABC окръжност. В (Ненков, 1991) е изяснено, че 
радиусът на k зависи от радиуса на някоя от вписаните за dABC окръжности, а в 
(Grozdev & Nenkov, 2010) е показано как могат да се определят допирните точки 
на окръжностите k със съответните двойки от правите BC, CA и AB. Оттук лесно 
се открива начин за построяване на центъра на k. В (Grozdev & Nenkov, 2010) са 
определени и две специални за dABC точки T и T¢, които се получават от двой-
ките допирни точки на окръжностите k със съответните двойки прави. По този 



61

две двойки точки, породени...

начин описаната и вписаните за dABC окръжности пораждат две забележителни 
за dABC точки.

Любопитно е да се открият и двойки точки, които се пораждат от други кон-
фигурации от описано и вписани за dABC централни конични сечения. Може да се 
очаква, че определените в (Ненков, 2010) Фойербахови конфигураци са подходящи 
за получаване на такива двойки точки. Необходимите изследвания при търсене и 
откриване на тези двойки точки се извършват с помощта на “The Geometer’s 
Sketchpad” (GSP). Във връзка с доказателствата на получените твърдения ще 
използваме барицентрични координати спрямо координатен dABC, като A(1,0,0), 
B(0,1,0) и С(0,0,1) ((Гушев & Гушев, 2011) и (Паскалев & Чобанов, 1985)). Освен 

това с означаваме средите съответно на 

страните BC, CA и AB.

Фигура 1

Двойки забележителни точки, породени от асоциирани криви и някои 
техни свойства. Произволна точка I (xI, yI, zI) (xI + yI + zI = 1), която не лежи върху 
никоя от правите BC, CA, AB, B0C0, C0A0 и A0B0, е център на вписано за dABC ко-



Сава Гроздев, Веселин Ненков

62

нично сечение k (I)  (Фиг. 1) (Ненков, 2008). Точките 

  определят DIAIBIC, който 

се нарича спрегнат на I спрямо DABC (Паскалев & Чобанов, 1985) (с. 67). Точките IA, 

IB и IC са центрове на криви k(IA), k(IB) и k(IC), вписани в DABC (Фиг. 1) [4]. Средите 
на отсечките на IA, IB, IC, IBIC, ICIA и IAIB , както е показано в (Ненков, 2008), лежат 
на конично сечение k

_
(O) с център точка O (Фиг. 1). Всяка от точките I, IA, IB, IC и 

O определя еднозначно останалите (Ненков, 2010), затова двойките криви k
_
(O) и 

k(I), k
_
(O) и k(IA), k

_
(O) и k(IB), k

_
(O) и k(IC) ще наричаме асоциирани спрямо DABC. В 

(Ненков, 2008) и (Ненков, 2010) е показано, че така построените криви притежават 
свойства, които са подобни на съответните свойства на вписаните и описаната 
окръжности за DABC. Затова можем да очакваме, че кривите k

_
(O), k(I), k(IA),k(IB), 

k(IC) пораждат двойки точки, подобни на получените в (Grozdev & Nenkov, 2010).

Фигура 3

Следвайки аналогията с описания в (Grozdev & Nenkov, 2010) случай, тър-
сенето на желаните точки трябва да започне с намирането на крива kc(I(C)), която 
се допира до правите BC и CA съответно в точки Cb и Ca, а също така се допира 
до k

_
(O) (Фиг. 2). В случай на окръжност (Grozdev & Nenkov, 2010) точките Cb и Ca 

лежат на права през I, перпендикулярна на CI, което означава, че правата CaCb е 
успоредна на другата ъглополовяща IAIB, минаваща през върха C. В общия случай 

Фиг. 2
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трябва да очакваме, че правата CaCb е успоредна на правата IAIB, която е хармонич-
но спрегната на CI спрямо BC и CA. Затова нека с помощта на GSP да построим 
пресечните точки Cb и Ca на правата през I, успоредна на IAIB, съответно с BC и CA 
(Фиг. 1). След това да построим прави през Cb и Ca, успоредни на правите, минаващи 
през I и допирните точки на k(I), съответно с BC и CA. Забелязваме, че тези прави 
се пресичат в точка I(C) върху CI. Затова може да се очаква, че кривата kc(I(C)) с 
център I(C) и допираща се до CA и CB съответно в точките Ca и Cb ще се допира до 
k
_
(O). Експериментите с GSP потвърждават очакванията и затова kc(I(C)) е търсената 

крива, а точките Ca и Cb са необходимите елементи за откриване на точки, които 
са обобщения на забележителните точки, разгледани в (Grozdev & Nenkov, 2010) .

По аналогичен начин определяме и кривата kc¢(I¢(C)) с център I¢(C) по допир-
ните й точки Ca¢ и Cb¢ и съответно с CA и CB, които се получават от пресичането с 
CA и CB на правата през Ic , успоредна на IaIb (Фиг. 1, 2). По-нататък определяме 
точките Lc(I) = ACa Ç BCb и Lc¢(Ic) = ACa¢ Ç BCb¢ (Фиг. 1, 2). Аналогично определяме точ-
ките La (I), Lb (I), La¢ (IA) и Lb¢ (IB). Наблюденията с GSP върху връзките на тези точки 
с върховете на DABC ни дават основание да формулираме следните две свойства:

Свойство 1. Правите ALa (I), BLb (I), и CLc (I), минават през една точка 
T(I) (Фиг. 4).

Свойство 2. Правите ALa¢ (I), BLb¢ (I), и CLc¢ (I), минават през една точка 
T¢(I) (Фиг. 5).

Фигура 5

Фиг. 4
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По отношение на разположението на точките T(I) и T¢(I) в равнината на DABC 
забелязваме, че са изпълнени:

Свойство 3. Ако k
_
(O) е елипса, точките T(I) и T¢(I) са вътрешни за DABC 

(Фиг. 6).
Свойство 4. Ако k

_
(O) е хипербола, точките T(I) и T¢(I) са едновременно 

външни или едновременно вътрешни за DABC (Фиг. 7).

Фигура 6

Фигура 7
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При търсене на връзка между точките T(I) и T¢(I) и други точки от равнината 
на DABC забелязваме следното:

Свойство 5. Медицентърът G на DABC лежи на правата T(I) T¢(I) (Фиг. 6, 7).
Правите, минаващи през върховете на DABC и допирните точки на k(I) със 

срещуположните им страни, се пресичат в една точка, която наричаме точка на 
Жергон за DABC спрямо k(I) (Фиг. 8) (Ненков, 2010). За тази точка е изпълнено:

Свойство 6. Точката на Жергон за DABC спрямо k(I) лежи на правата T(I) 
T¢(I) (Фиг. 6, 7).

Фигура 9

Доказателство на свойства 1 и 2. Нека lc е правата през I, успоредна на IAIB. 
От координатите на точките I, IA и IB получаваме, че lc се описва с параметричните 
уравнения:

(1)	 lc : x = xI + xIt, y = yI – yIt, z = zI + (yI – xI)t.
Като комбинираме (1) с всяко от уравненията BC : x = 0 и CA : y = 0, полу-

чаваме координатите съответно на Cb и Ca във вида
(2)	 Cb (0,2yI,1 – 2yI), Ca (2xI,0,1 – 2xI).
От (2) за правите ACb и BCa намираме съответно уравненията
(3)	 ACb : x = 1 – t1, y = 2yIt1, z = zI + (1 – 2yI)t1,
(4)	 BCa : x = 2xIt2, y = 1 – t2, z = (1 – 2xI)t2.
От (3) и (4) намираме координатите на Lc(I) = ACa Ç BCb във вида

Фигура 8
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(5)	

Аналогично намираме, че координатите на точките La (I) и Lb (I) са:

(6)		

От координатите (5) и  (6) намираме уравненията на правите ALa (I), BLb (I)  
и CLc (I) във вида

(7)	
(8)	
(9)	
От (7) и (8) получаваме координатите на точката T(I) = ALa (I) Ç BLb (I):

(10)	 	

където  
От симетричния вид на координатите на точката T(I) е ясно, че тя лежи и 

върху правата CLc(I). Всъщност това лесно се проверява със заместване на (10) в  
(9). С това свойство 1 е доказано.

Фиг. 10
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Необходими са някои уточнения в свойство 1, породени от резултатите, воде-
щи до неговото доказателство. Първо, точката Lc(I) съществува във вида, определен 
с (5) само когато точката I не лежи върху хиперболата cc : 1 – 4xy = 0 (Фиг. 9) (тя се 
допира до AB в точката C0 и има за асимптоти правите CA и CB). Ако в числителите 
на (5) използваме равенството 1 – 4xIyI = 0, получаваме безкрайната точка (2xI  – 
1,2yI – 1,2zI). Векторът (–1,2yI – 2yI) (който според (3) е колинеарен с правата ACb) е 
колинеарен с вектора (2xI  – 1,2yI – 1,2zI) (определящ разглежданата безкрайна точка) 

тогава и само тогава, когато са изпълнени равенствата  . 

Лесно се вижда, че те са изпълнени точно когато 1 – 4xIyI = 0. Следователно правата 
ACb е колинеарна с вектора (2xI  – 1,2yI – 1,2zI) точно когато I Î cc. По аналогичен 
начин от (4) следва, че BCa е колинеарна със същия вектор точно когато I Î cc. Така, 
когато I Î cc, можем да определим безкрайната точка Lc (I) (2xI  – 1,2yI – 1,2zI)  като 
обща точка на успоредните прави ACb и BCa.

По същия начин определяме безкрайните точки La(I) (2xI,2yI – 1,2zI – 1) 
и Lb(I) (2xI, – 1,2yI,2zI – 1), когато точката I лежи съответно върху хиперболите 
ca : 1 – 4yz = 0 и cb : 1 – 4zx = 0. Тъй като трите хиперболи нямат общи точки, то 
точките  La(I), Lb(I) и Lc(I) не могат да са едновременно безкрайни.

Ако Lc(I) е безкрайна, то CLc(I) отново се представя с (9), затова и в този 
случай T(I) Î CLc(I).

Втората особеност в доказателството на свойство 1 е свързана с факта, че T(I) 
съществува във вида, определен с (10) само когато I не лежи върху кривата от трета 
степен K3 с уравнение K3 : 1 – 4xy – 4yz – 4zx + 12xyz = 0 (Фиг. 10). Аналогично на 
рагледания случай с Lc (I) забелязваме, че точката T(I), определена с (10), когато 
I Î K3, може да се представи във вида

(10¢)	
В този случай от (7), (8) и (9) се вижда, че правите ALa(I), BLb(I) и CLc(I) са 

колинеарни с вектора (xI(1 – 2yI) (1 – 2zI), yI(1 – 2zI) (1 – 2xI), zI(1 – 2xI) (1 – 2yI)), 
определящ безкрайната точка T(I). По друг начин казано, тези прави са успоредни, 
когато I Î K3. Освен това, общите точки на cc и K3 са C0 и безкрайните точки на CA 
и CB. Следователно точките T(I) и Lc(I) не могат едновременно да бъдат безкрайни.

Доказателството на свойство 2 се провежда по аналогичен начин. В същата 
последователност се получават съответните резултати, необходими за определяне 
на точката T¢(I). В началото намираме, че правата lc¢ през Ic, успоредна на IAIB, се 
описва с параметричните уравнения:

(1¢)	
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От (1¢) намираме Cb¢ и Ca¢ във вида:

(2¢)	

От (2¢) за правите ACb¢ и BCa¢ намираме съответно уравненията

(3¢)	

(4¢)	

От (3¢) и (4¢) определяме координатите на Lc¢(I) = ACa¢ Ç BCb¢ във вида

(5¢)	

където  
Аналогично намираме координатите на точките La¢(I) и Lb¢(I) във вида:

(6¢)	

където 
От координатите (5¢) и (6¢) намираме уравненията на правите ALa¢(I), BLb¢ (I)  

и CLc¢ (I): 

(7¢) 

(8¢) 

(9¢) 

От (7¢) и (8¢) получаваме координатите на точката 

(1)	

където 
От симетричния вид на координатите на точката T¢(I) е ясно, че тя лежи и 

върху правата CL¢(I). Всъщност това лесно се проверява със заместване на (1) в 
(9¢). С това свойство 2 е доказано.

Свойство 2 също се нуждае от някои уточнения, породени от резултатите, до-
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вели до неговата доказателство. Точката Lc¢(I) съществува във вида, определен с (5¢) 
само когато точката I не лежи върху елипсата k(G) : 1 – 4xy – 4yz – 4zx = 0, която се 
допира до BC, CA и AB съответно в точките A0, B0 и C0 (тя има за център медицентъра 
G на DABC) (Фиг. 10). Ако в числителите на (5¢) и (6¢) се използва t¢ = 0, се вижда, 
че и в трите случая се получава безкрайната точка (xI(2xI – 1), yI(2yI – 1), zI(2zI – 1)). 
Същият резултат се получава от числителите на T¢(I) в (1). Както при свойство 1, 
от (3¢), (4¢), (7¢), (8¢) и (9¢) се получава, че векторът, определящ тази точка, е коли-
неарен с всяка от правите ACb¢, BCa¢, ALa¢(I), BLb¢(I) и CLc¢(I). Следователно, когато 
I Î k(G), правите ALa¢(I), BLb¢(I) и CLc¢(I) определят безкрайната точка T ¢(I) във вида:

(11¢)	
Като се използва равенството t¢ = 0, координатното представяне (11¢) може 

да се запише и във вида

(11¢¢)	

Накрая трябва да отбележим, че тъй като общите точки на кривите K3 и 
k(G) са само A0, B0 и C0 (Фиг. 10), то T(I) и T ¢(I) не могат да бъдат едновременно 
безкрайни точки.

Доказателство на свойства 3 и 4. Асоциираните криви k
_
(O) и k(I) са от 

един и същи вид [4] и [5]. Видът на k
_
(O) и k(I) , както е показано в (Ненков, 2008), 

зависи от броя на решенията на уравнението  
Дискриминантата на квадратичната форма, участваща в това уравнение, е 
D = – (1 – 2xI) (1 – 2yI)(1 – 2zI). Затова k

_
(O) е елипса точно когато D < 0 и хипер-

бола – при D > 0.
1) Нека k

_
(O) е елипса. Тогава неравенството D < 0 има решения в следните 

случаи: 
1.1) 

В случай 1.1), тъй като xI < 0, то t < 0 и t¢ = (1 - 2yI)
2  - 4zIxI > 0. От (0) и (1) 

се вижда, че координатите на T (I) и T ¢(I) са положителни числа. Следователно 
T (I) и T ¢(I) са вътрешни за DABC. В случаите 1.2) и 1.3) аналогично се получава, 
че T(I) и T ¢(I) са вътрешни за DABC. В случай 1.4) се получават неравенствата 
t = xI (1 - 2yI)(1 - 2zI) + yI(1 - 2zI)(1 - 2xI) + zI(1 - 2xI)(1 - 2yI) > 0,
t¢ = -(1 - 2xI)(1 - 2yI)(1 - 2zI) - 8xIyIzI < 0, от които лесно следва, че коорди-
натите в (10) и (11) са положителни числа. Следователно T(I) и T ¢(I) са вътрешни 
за DABC. С това свойство 3 е доказано.
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2) Нека  k
_
(O)  е хипербола. Тогава неравенството D > 0 има решения в след-

ните случаи: 
2.1) 

 е невъзможен, тъй като противоречи на 

равенството xI + yI + zI = 1).
В случай 2.1) има няколколко възможности. 
А) Ако yI > 0 и zI < 0, то числителят на втората координата в (10) е отрица-

телен, а другите два числителя са положителни. Затова, независимо от знака на t, 
поне една от координатите в (10) е отрицателна. Следователно T (I) е външна за 
DABC. Освен това, t¢ = (1 - 2yI)

2 - 4zIxI > 0, което означава, че втората координата 
в (11) е отрицателна. Следователно и T ¢(I) е външна за DABC. 

Б) Ако yI < 0 и zI > 0, аналогично на предишния случай се вижда, че T(I) и 
T ¢(I) са външни за DABC. 

В) Ако yI > 0 и zI > 0, то t > 0, което показва, че втората и третата координати 
в (10) са отрицателни. Следователно T(I) е външна за DABC. От друга страна чис-
лителят на първата координата в (11) е положителен, а другите два числителя са 
отрицателни. Затова, независимо от знака на t¢, поне една от координатите в (11) 
е отрицателна. Следователно и T¢(I) е външна за DABC. Г) Ако yI < 0 и zI < 0, то 
t > 0, което показва, че и трите координати в (10) са положителни. Следователно 
T (I) е вътрешна за DABC. Освен това t¢ = xI(2xI - 1) + yI(2yI - 1) + zI(2zI - 1) > 0, 
което показва, че и трите координати в (11) са положителни. Следователно и T ¢(I) 
е вътрешна за DABC.

По аналогичен начин се разглеждат случаите 2.2) и 2.3).
Доказателство на свойство 5. Първо ще разгледаме случая, когато T(I) и 

T¢(I) са крайни точки. За целта използваме, че точките M1(x1, y1, z1), M2(x2, y2, z2) и 
M3(x3, y3, z3) лежат на една права точно когато е изпълнено равенството:

(12)	

Като се вземе предвид, че , с непосредствено заместване в (12) 

на координатите от (10) и (11) се установява, че точките T(I), T ¢(I) и G лежат на 
една права.

Ако T(I) е безкрайна, от равенството t = 0 следва, че
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което според (10¢) означава, че  е колинеарен с вектора, определящ T (I).
Ако T¢(I) е безкрайна, от равенството t¢ = 0 следва, че 

 
което според (11¢) означава, че  е колинеарен с вектора, определящ T ¢(I).

Доказателство на свойство 6. В (Ненков, 2010) е показано, че точката на 
Жергон има следното координатно представяне:

(13)	

Когато J е крайна, свойство 6 се получава, като се провери равенството (12) 
чрез заместване на (10), (11) и (13).

Ако t¢ = 0, точките J и T¢(I) са едновременно безкрайни. Нещо повече, от 
(13) и (11¢) се вижда, че те съвпадат. Следователно, когато J е безкрайна, свойство 
6 е изпълнено.

Ако T(I) е безкрайна, от равенството t¢ = 0 следва, че 

което според (10¢) означава, че  е колинеарен с вектора, определящ T(I).
Точките T и T¢, определени в (Grozdev & Nenkov, 2010), са изогонално 

спрегнати спрямо DABC. Интересно е по-общо дали определените точки T(I) и 
T¢(I) притежават подобно свойство. За да намерим такова свойство, ще въведем 
понятието спрегнастост спрямо описана за DABC крива.

Изображение спрямо описана крива. Първо, ще припомним две добре 
познати изображения в равнината на DABC. Изогоналното изображение съпос-
тавя на крайна точка P(xp, yp, zp), нележаща върху описаната за DABC окръжност 
Г, пресечната точка Q(xQ, yQ, zQ) на правите AQ, BQ и CQ, които са симетрични 
съответно на AP, BP и CP спрямо съответните ъглополовящи при върховете A, B 
и C на DABC. Координатите на Q се изразяват с формулите

(14)	

където |BC| = a, |AC| = b, |AB| = c и  (Паскалев & Чо-
банов, 1985) (с. 64–67).
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Ако P Î Г : a2yz + b2zx + c2xy = 0, тогава като образ на P разглеждаме без-
крайната точка Q, определена от направлението на успоредните прави, които са 
симетрични съответно на AP, BP и CP спрямо съответните ъглополовящи при вър-
ховете A, B и C на DABC (Хитов, 1990) (с. 237–238, зад. 1061). Ако P е безкрайна, 
чрез конструкция обратна на последната, като образ на P получаваме точка Q от 
Г. Във всички възможни случаи точката образ Q се получава след прилагане на 
осеви симетрии спрямо ъглополовящите при върховете на DABC. Двойките съот-
ветни прави AP, AQ; BP, BQ и CP, CQ при тези симетрии могат да се разглеждат 
като хармонично спрегнати спрямо двойките ъглополовящи на DABC съответно 
при върховете A, B и C. Самите двойки ъглополовящи са хармонично спрегнати 
спрямо двойките страни на DABC през съответните върхове A, B и C.

Фигура 11

Фигура 12

T(I) Î CLc(I).
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Изотомичното изображение съпоставя на крайна точка P(xP, yP, zP), нележаща 
върху описаната за DABC, елипса k

_
(G) с център медицентъра G на DABC, пресе-

чната точка Q(xQ, yQ, zQ) на правите AQ, BQ и CQ, минаващи през точките, които 
са симетрични съответно на пресечните точки на AP, BP и CP с правите BC, CA и 
AB спрямо съответните среди A0, B0 и C0 на страните на DABC. Координатите на 
Q се изразяват с формулите

(15)	
където  ((Гушев & Гушев, 2011), (Паскалев & Чобанов, 
1985) (с. 69–71)).

Ако , тогава като образ на P разглеждаме безкрайната 
точка Q, определена от направлението на успоредните прави, минаващи през точки-
те, които са симетрични съответно на пресечните точки на AP, BP и CP с правите 
BC, CA и AB спрямо съответните среди A0, B0 и C0 на страните на DABC (Гушев & 
Гушев, 2011). Ако P е безкрайна, чрез конструкция обратна на последната, като 
образ на P получаваме точка Q от k

_
(G).

Нека ga, gb и gc са правите, минаващи съответно през A, B и C, успоредно на 
срещуположните им BC, CA и AB. Означаваме GA = gb Ç gc, GB = gc Ç ga и GC = ga Ç gb. 
Двойките съответни прави AP, AQ; BP, BQ и CP, CQ при изотомичното изображе-
ние могат да се разглеждат като хармонично спрегнати спрямо двойките прави AG, 
ga; BG, gb и CG, gc съответно във върховете A, B и C. Самите двойки прави AG, ga; 
BG, gb и CG, gc са хармонично спрегнати спрямо двойките страни на DABC през 
съответните върхове A, B и C.

Изводите, които направихме за тези изображения, показват, че може да 
се търси тяхно обобщение по следния начин: Нека I(xI,yI,zI)  е произволна точка 
(xI+yI+zI = 1 или xI+yI+zI = 0), която не лежи върху никоя от правите BC, CA, AB, 
B0C0, C0A0 и A0B0, а точките

 
определят DIAIBIC, който е спрегнат на I спрямо DABC (Паскалев & Чобанов, 1985) 
(с. 67). Сега, ако P(xp, yp, zp) е произволна точка, нележаща върху никоя от правите 
BC, CA и AB, въвеждаме означенията A1 = AP Ç BC, B1 = BP Ç CA и C1 = AC Ç AB. 
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Нека AA2 (A2 Î BC) е хармонично спрегната на AA1 спрямо AI и IBIC, BB2 (B2 Î CA) 
е хармонично спрегната на BB1 спрямо BI и ICIA, а CC2 (C2 Î AB) е хармонично 
спрегната на CC1 спрямо CI и IAIB. По аналогия със споменатите частни случаи може 
да се предположи, че правите AA2, BB2 и CC2 минават през една точка Q(xQ, yQ, zQ) 
(Фиг. 11). Експериментите с GSP потвърждават това предположение.

От друга страна, изогоналното и изотомичното изображения имат по една 
особена крива от втора степен (окръжност и елипса), която се изобразява в без-
крайната права. Освен това, както се вижда от (14) и (15), полиномът на тази крива 
участва в координатното представяне на точката образ. Затова, тъй като описаната 
за DABC крива k

_
(O), асоциирана с k

 
(I), притежава уравнение

(16)	
може да се предполага, че образът Q на точка P Ï k

_
(O) има координати, които се 

изразяват със следните равенства:

(17)	

където 
Наблюденията с GSP показват, че точката Q, построена по координатите (17), 

съвпада с точката Q, получена при предишната конструкция (Фиг. 11). Нещо повече, 
когато P Ï k

_
(O), правите AA2, BB2 и CC2 са успоредни, т.е. точката Q е безкрайна. 

Обратно, когато AA1, BB1 и CC1 са успоредни (точката P е безкрайна), правите AA2, 
BB2 и CC2 се пресичат в точка Q от  k

_
(O) (Фиг. 12). Всички тези наблюдения ни 

дават основание да разглеждаме изображение в равнината на DABC спрямо опи-
саната му крива k

_
(O), при което точките P и Q наричаме спрегнати спрямо k

_
(O).

Преминаваме към доказателство на направените заключения. Нека 

Ако A1 не е безкрайната точка на BC, то  От хар-

моничността следва, че са изпълнени равенствата . Затова 

  и  . Първото от тези равенства заедно с 

координатите на A1 води до , от което заедно с второто 
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определяме координатите на A2 във вида . Анало-

гично от   и   се намират точките B2 

и C2 във вида  и  

Сега, ако P Ï k
_
(O), установяваме, че координатите A, A2 и точката Q, определена 

с (17),  удовлетворявят равенството (12), което означава, че тези точки лежат на 
една права, т.е. AA2 минава през Q. Аналогично се установява, че правите BB2 и 
CC2 минават през точката Q, определена с (17). Ако P Î k

_
(O), изпълне но е ра-

венството  Следователно съществува безкрайна точка Q, определена от 
направлението на вектора

(17¢)	
С помощта на равенството  лесно се проверява, че векторите  , 

 и  са колинеарни с вектора , определен с (17¢). Обратно, ако P е безкрайна 
точка, можем да я разглеждаме като обща точка на успоредните прави AA2, BB2 и 
CC2, а съответната й Q е пресечната точка на правите AA1, BB1 и CC1 върху k

_
(O) и 

има координати, представящи се с (17) (в този случай трябва да се има предвид, 
че е изпълнено равенството xp + yp + zp = 0).

Ако A1(0,-1,1) е безкрайната точка на правата BC, т.е. P Î ga, то коорди-
натното представяне на P е P(1,-p,p), където p е реално число. В този случай 

 е средата на отсечката L1L2. Координатите на A2 могат да 

се получат от предишния случай при yp = - p и zp = p. Затова всички получени 
резултати са приложими и в този случай. 

Ако  точките  

и  симетрични на A1, B1 и C1 съответно спрямо A0, B0 

и C0, се получават от съответните точки, получени при I ¹ G, като се замести 

 Следователно всички резултати, получени при I ¹ G, са прило-

жими и при I º G, т.е. при изотомичното изображение.
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Във всички случаи, ако P е точка върху някоя от правите AI, BI, CI, IBIC, ICIA  
и IAIB, нейният образ Q лежи върху същата права. Затова трябва да се очаква, че 
точките I, IA, IB и IC са единствените двойни елементи на изображението спрямо 
k
_
(O). Аналитично това може да се установи така: ако P е двоен елемент на раз-

глежданото изображение, от (17) следва, че са изпълнени равенствата

Оттук следва, че xP = e1LIxI, yP = e2LIyI и zP = e3LIzI, където e1 ± 1, e2 ± 1и e3 ± 1. Ако 
P е крайна точка, от равенството xP + yP + zP = 1 следва, че  

 и  Тези равенства показват, че един-

ствените двойни точки са I, IA, IB и IC. Ако P е безкрайна точка, от равенството 
xP + yP + zP = 0 следва, че e1xI + e2yI + e3zI = 0. Последното равенство означава, че 
някоя от точките I, IA, IB и IC е безкрайна и P съвпада с тази точка. Следователно 
изображението спрямо k

_
(O) има безкрайна двойна точка точно когато k

_
(O) е па-

рабола и безкрайната точка на параболата е точно тази двойна точка.
Спрегнатост на точките T(I) и T ¢(I) спрямо  k

_
(O). След като вече е опре-

делено понятието изображение спрямо кривата k
_
(O), с GSP можем да определим 

образите на точките T(I) и T ¢(I) спрямо k
_
(O). Наблюдаваният резултат може да се 

формулира по следния начин:
Свойство 7. Точките T(I) и T ¢(I) са спрегнати спрямо k

_
(O).

Доказателството на това свойство се получава, като чрез (10) и (11) се про-
вери, че са изпълнени равенствата (17).

Трябва да се отбележи, че ако някоя от точките T(I) и T ¢(I) е безкрайна, дру-
гата лежи върху k

_
(O). Това обяснява, установения по-рано факт, че точките T(I) и 

T ¢(I) не могат да са едновременно безкрайни.
Определянето на точките T(I) и T ¢(I), както и техните свойства, по никакъв 

начин не зависи от допирните точки на кривите, допиращи се до k
_
(O). Интересно 

е да се намерят тези допирни точки и да се открият някои техни свойства.
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Фигура 13

Допирни точки на кривите ka(I(A)), kb(I(B)), kc(I(C)), ka¢(I¢(A)), kb¢(I¢(B)), 
kc¢(I¢(C)) с  k

_
(O) (Фиг 13, 14). За да намерим допирните точки, определяме уравне-

нията на кривите. При определяне на уравнението на kc(I(C)) първо намираме коор-
динатите на центъра I(C). За целта намираме уравнението на правата ca, минаваща 

през точката Ca и колинеарна с вектора  е допирната точка 

на k(I) с CA (Ненков, 2010) и уравнението на правата cb, минаваща през точката Cb 

и колинеарна с вектора  е допирната точка на k(I) с BC 

(Ненков, 2010). След решаване на системата от получените уравнения намираме

Сега уравнението на kc(I(C)) намираме по условията, че тази крива минава 
през Ca и Cb, допира се до CA и CB съответно в тези точки и минава през точката, 
симетрична на Ca (или Cb) спрямо I(C). Резултатът, който получаваме, е следният:

Като се заместят равенствата x2 = x - xy - zx, y2 = y - yz - zx и z2 = z - yz - zx,  
последното уравнение приема следния по-удобен вид:
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(18)	
От (16) и (18) получаваме координатите на допирната точка Uc на kc(I(C)) 

с k
_
(O) във вида

(19)	

където uc(I) = (1 - 3xI) (1 - 3yI) - xIyI.
Ако точката I лежи върху хиперболата  (Фиг. 15), 

кривите kc(I(C)) и  k
_
(O) имат обща безкрайна точка, определена с 

(19¢)	

В тези случаи kc(I(C)) и k
_
(O) имат обща асимптота.

Фигура 14

Аналогично на (19) намираме допирните точки Ua и Ub на k
_
(O) съответно с  

ka(I(A))и kb(I(B)) във вида:

(20)	

(21)	

където ua(I) = (1 - 3yI) (1 - 3zI) - yIzI и ub(I) = (1 - 3zI) (1 - 3xI) - zIxI.
Когато I е точка върху някоя от хиперболите  

и , съответната от кривите ka(I(A))и kb(I(B)) има обща 
асимптота с  k

_
(O).
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За да определим допирната точка Uc¢ на kc¢(I¢(C)) с k
_
(O), намираме, че цен-

търът на kc¢(I¢(C)) е

откъдето получаваме уравнението на kc¢(I¢(C)) във вида

Последното уравнение записваме в следния по-удобен вид
(22) 

От (16) и (22) получаваме координатите на допирната точка Uc¢ на kc¢(I¢(C)) 
с k

_
(O) във вида

(23)	

където 
Аналогично на (23) намираме допирните точки Ua¢ и Ub¢ на k

_
(O) съответно 

с ka¢(I¢(A)) и kb¢(I¢(B)) във вида:

(24)	

(25)	

където ua¢(I) = (1 - 2xI) (2(1 - 2yI) (1 - 2zI) + xI (1 - 2xI))  и ub¢(I) = (1 - 2yI) (2(1 - 2zI) 
(1 - 2xI) + yI (1 - 2yI)).

Когато I е точка върху някоя от параболите 
_
pa : 2(1 - 2y)(1 - 2z) + x (1 - 2x), _

pb : 2(1 - 2z)(1 - 2x) + y (1 - 2y) = 0 и 
_
pc : 2(1 - 2x)(1 - 2y) + z (1 - 2z) = 0 (Фиг. 16), 

съответната от кривите ka¢(I¢(A)), kb¢(I¢(B)) и kc¢(I¢(C)) има обща асимптота с k
_
(O).
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Фигура 15                                                    Фигура 16

Чевиани, породени от допирните точки. Естествено е да се запитаме дали 
допирните точки определят чевиани с върховете на DABC. Експериментите с GSP 
показват следните резултати

Свойство 8. Правите AUa, BUb и CUc минават през една точка U(I) (Фиг. 13).
Свойство 9. Правите AUa¢, BUb¢ и CUc¢ минават през една точка U¢(I) (Фиг. 

14).
В тези свойства се разбира, че точките U(I) и U¢(I) могат да бъдат безкрайни.

       

Фигура 17                                                    Фигура 18

Установяването на свойство 8 се извършва, като се намерят уравненията 
на правите AUa и BUb, а след това се намери решението на системата, получена 
от тези уравнения. Накрая проверяваме, че координатите на получената точка са 
решение и на уравнението на правата CUc. Резултатът, който получаваме за U (I), е
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(26)	

където u(I) = 1 - 4xIyI - 4yIzI - 4zIxI + 10xIyIcI.
Ако точката I лежи върху кривата от трета степен U3 : 1 - 4xy - 4yz - 4zx + 10xyz = 0 

(Фиг. 17), точката U(I) е безкрайна и в координати се представя по следния начин:

(26¢)	

Аналогично за точката U¢(I) получаваме

(27)	

където u¢(I) = -2(1 - 4xIyI - 4yIzI - 4zIxI + 6xIyIcI).
Когато точката I лежи върху кривата от трета степен 
U3¢  : 1 - 4xy - 4yz - 4zx + 6xyz = 0 (Фиг. 18), точката U¢(I) е безкрайна и 

координатите й са:

(27¢)	

Точките U(I) и U¢(I), също както T(I) и T¢(I), не могат да бъдат едновременно 
безкрайни.

Фигура 19

Едно свойство на колинеарност. Любопитно е да се намери връзка на 
получените точки U(I) и U¢(I) с други забележителни точки, определени от раз-
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глежданата конфигурация от асоцирани криви. Построенията с GSP показват, че 
е изпълнено следното

Свойство 10. Точките U(I), U¢(I), T(I), I  и O лежат на една права (Фиг. 19).

За да се докаже последното свойство, е достатъчно да се провери три пъти 
равенството (12) за тройките точки U(I), U¢(I), T(I); U(I), U¢(I), I и U(I), U¢(I), O 
като се използват (26), (27), (10) и координатите на O, получени в (Ненков, 2008), 
които се изразяват по следния начин:

(28)  
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TWO PAIRS OF POINTS,  
GENERATED BY CENTRAL CONICS 

WITH RESPECT TO A TRIANGLE

Abstract. The software program “The Geometer’s Sketchpad” (GSP) is 
used in the paper to discover various interesting properties of special conics associated 
with a given dABC. Mathematical proofs of the discovered properties are proposed too. 
For example, consider a point I in the plane of dABC and its conjugate dIAIBIC with re-
spect to dABC. The points I, IA, IB and IC are centres of conics k(I), k(IA), k(IB) and k(IC), 
inscribed in dABC, while the mid-points of the segments IA, IB, IC, IB IC, IC IA, and IA IB lie 
on a conic k

_
(O), which is circumscribed for dABC. Let the line I, parallel to IAIB, intersects 

CA and CB in points Ca and Cb respectively, while the line Ic, parallel to IAIB, intersects CA 
and CB in points Ca¢ and Cb¢ respectively. Let Lc(I) = ACa Ç BCb  and Lc¢(IC) = ACa¢ Ç BCb¢. 
Analogously, determine the points La (I), Lb (I), La¢ (IA) and Lb¢ (IB). Then, the lines ALa(I), 
BLb(I) and CLc(I) are concurrent with a point T(I). A variety of configurations and proper-
ties are considered in the paper too. 
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