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ЧЕВИАНА И СИМЕДИАНА В ТРИЪГЪЛНИК. 
ТЕОРЕМА НА СТЮАРТ

Румяна Несторова
Враца

Резюме. В статията се разглеждат понятията чевиана, симедиана, теорема 
на Стюарт и някои техни приложения в несложни задачи. Целта е подходящо 
надграждане на геометричните познания на учениците за медиана, височина 
и ъглополовяща на триъгълник. Предложената разработка е насочена към гим-
назиалните учители, търсещи възможности за развитие на една от ключовите 
компетентности – математическата компетентност.

Keywords: mathematical competence, cevian, symmedian, Stewart’ s theorem

В отговор на очакванията към българското училищно образование и 
преосмисляне на философията му основна задача на българския учител 
е да формира у учениците не просто знания и умения, а ключови компе-
тентности, ориентирани към личностно развитие на ученика през целия 
му живот. Основните начини за развитие на компетентностите са обога-
тяване на знанията, усъвършенстване на уменията и придобиване на опит. 
Предложената разработка е в помощ на учителите, търсещи възможности 
за разширяване на математическата ключова компетентност. Понятията 
медиана, ъглополовяща и височина в триъгълник са основни геометрични 
понятия в прогимназиален и гимназиален етап на обучението по матема-
тика. Запознаването на учениците от гимназиален етап в ЗИП/ПП, СИП 
или извънкласните форми на работа по математика с понятията чевиана, 
симедиана, теоремата на Стюарт и някои техни приложения е подходящо 
разширяване на тези геометрични познания.

Определение 1. Чевиана1) от даден връх в триъгълник се нарича всяка 
отсечка, която съединява върха с точка от срещулежащата му страна или 
нейното продължение.

В някои източници вместо понятието чевиана се използва понятието 
недиана (Коларов et al. 1989, с.18), (Гроздев & Лесов, 2012), (Гроздев et al., 
2012), (Grozdev, 2007), (Grozdev & Nenkov, 2010).
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В разработката ще използваме термина недиана, синоним на термина чевиана.

C 

D B A 

На черт. 1 отсечката CD, където D – произволна точка от страната AB или 
продължението є, е недиана от върха С в Δ ABC.

Определение 2. Симедиана от даден връх в триъгълник се нарича отсеч-
ка, която съединява върха с точка от срещулежащата му страна и сключва с 
ъглополовящата от същия връх ъгъл, равен на ъгъла между ъглополовящата и 
медианата на триъгълника от дадения връх.
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C
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2
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γ
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На черт. 2 са построени симедианата СС1 (C1∈ ΑΒ), ъглополовящата CL 
на γ=∠ACB (L∈AB), медианата CM (M ∈ AB) и съгласно определението 

ϕ=∠=∠ LCMCLC1 .
От определенията за медиана, ъглополовяща и височина в даден триъгъл-

ник и дадените по-горе определения следва, че можем да разглеждаме медиа-
ната, ъглополовящата, височината и симедианата от даден връх в произволен 
триъгълник като частни случаи на недианата от този връх.

Чертеж 2

Чертеж 1
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При означенията на черт. 1:
1) ако точката D е среда на AB⇔ AD = DB, то отсечката CD е медианата 

cm  от върха С в ΔABC;
2) ако точката D лежи на страната AB и 

2
γ

=∠=∠ BCDACD , то отсечката 
CD е ъглополовящата cl  на γ=∠ACB

 
в Δ ABC;

3) ако точката D лежи на страната AB и CD ⊥ AB, то отсечката CD е висо-
чината ch от върха С в Δ ABC;

4) ако точката D лежи на страната AB и ( ) ( )ccc mllCD ,, ∠=∠ , където cl  и cm
са съответно ъглополовящата и медианата от върха С, то отсечката CD е си-
медианата от върха С в ΔABC.

Теорема (аналог на теоремата за ъглополовящата). Всяка вътрешна симе-
диана в триъгълник дели срещулежащата страна на отсечки, пропорционални 
на квадратите на дължините на прилежащите към тях страни.

Доказателство. Ще докажем теоремата за симедианата CC1 при означе-

нията на черт. 2, т.е. ще докажем, че 2

2

2
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1

1

a
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  Аналогично теоремата се 

доказва и за останалите симедиани.

За лицата на Δ AС 1 C и Δ ВМC е в сила равенството
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Аналогично за лицата на ∆ AМC и ∆ ВС1C имаме
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От AM=BM (CM – медиана) и почленното умножаване на (1) и (2) получа-
ваме 

2

2
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2

1

1

a
b

BC
AC
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Теорема на Стюарт2). Нека е даден Δ ABC със страни AB = c, BC = a, 
AC = b и произволна точка D, лежаща на страната AB. Ако CD = d, AD = m, 
и DB = n, то 222 ... bnammndc   (черт.3).
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Доказателство. Нека ϕ=∠ADC . От ко-
синусова теорема за ∆ADC и ∆BDC получа-
ваме AC2 = CD2 + AD2 – 2.AD.CD.COS(1) и 
BC2 = CD2 + DB2 – 2.DB.CD.cos(1800 – .

Но cos(1800 –  = – COS, откъдето следва 
BC2 = CD2 + DB2 + 2.DB.CD.cos  (2).

Умножаваме двете страни на първото и 
второто равенство съответно с DB и AD и 
събираме почленно, в резултат на което по-
лучаваме последователно

ADDBADCDDBADDBCDADBCDBAC ...... 222222  

DBADCDABABDBADABCDDBADDBADDBADCD ........ 222  

Окончателно получаваме 222 ... bnammndc  ⇔ nm
c

bnamd ... 22
2 −

+
=

(последното равенство е известно още като уравнение на вятърната мелница).
Твърдението може да бъде доказано и с теоремата на Питагор (задача № 8).
Отделно ще разгледаме теоремата на Стюарт в случаите, когато точката D 

е от продължението на страната AB (задачи № 9 и № 10).
Чрез теоремата на Стюарт може да се намери дължината на всяка недиана 

в триъгълник.

Следствия от теоремата на Стюарт
Даден e Δ ABC със страни AB =c, BC = a, AC = b и точка D, лежаща на 

страната AB, като CD = d, AD = m  и DB = n.

(1) Нека точката D е среда на AB, AD = DB (т.е. CD – медиана) ⇔
2
cnm ==

⇒ CD2 
( ) ( )

4
.2
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.
2... 2222

22
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2 cbac
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c

bnamd −+
=−

+
=−

+
== ⇒медианата 

CD =
 

( ) 2222
2
1 cbamc −+= , което учениците знаят от Х клас.

(2) Нека точката D лежи на страната AB и
 BC

AC
DB
AD

 
 a

b
n
m

 (т.е. CD – ъгло-

половяща) и тъй като AD + DB = AB  m + n = c ⇒m =
ba

bc  , n = 
ba

ac
 ⇒ 

m n 

b a 

D 

C 

B A 

d 

ϕ 

Чертеж 3

с
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ъглополовящата , което учениците знаят от Х клас.

(3) Нека точката D лежи на страната AB и CD⊥ AB (т.е. CD – височина)⇒

но от косинусова теорема 
bc

acb
2
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= ⇒ височината CD =
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.2
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c
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.

Чрез тази формула може да се намери директно дължината на всяка висо-
чина в триъгълник, ако са дадени неговите страни. Без познанията за теоре-
мата на Стюарт това се постига чрез пресмятане на лицето на триъгълника по 
Херонова формула и използване на равенствата 

c
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b
Sh

a
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(4) Нека точката D лежи на страната   AB  и   (т.е. CD – си-

медиана) и тъй като AD + BC =  AB⇔ cnm =+ ⇒ 22
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дължината на симедианата
 
CD = 222

22 .2. cba
ba

ab
.

Приложения в задачи
Задача 1. Недианите BD и BE на Δ ABC разделят ∠ B на три рав-

ни части. Да се намерят отсечките AD, DE и EC, ако AB:BD:BE:BC=
32:2:3:2 , АС=12 cm и D e между А и Е. Намерете дължините на 

страните AB и BC и недианите BD и BE.

Решение. Нека AB:BD:BE:BC=

kkkk .32:.2:.3:.2 , където k – естест-
вено число (черт.4). Съгласно условие-
то BD – ъглополовяща в ABEΔ , откъдето 

DEAD
k
k

DE
AD

BE
AB

DE
AD 1

.2

.2
 
 (1)

Съгласно условието BE – ъглополо-
вяща в DBCΔ , откъдето

DEEC
k

k
EC
DE

BC
DB

EC
DE .2

2
1

.32
.3    (2)

От (1), (2) и АС=12 cm, следва, че AD = DE = 3 cm и EC = 6 cm.

Ако използваме теоремата на Стюарт за недианата BE в DBCΔ , то 

3.6
9

.32.3.3.6.2...
22

2
22

2 kkkDEEC
DC

BCDEDBECBE

⇒=⇒=⇒ 392 kk BЕ 6 cm, DB 3.3=  cm, BC 3.6=  cm и 
тъй като AB = BE, то AB = 6  cm. Задачата може да бъде решена и по други 
начини.

Задача 2. Недианите AM и BN на ABCΔ  се пресичат в точка О. Да 
се намери лицето на ABCΔ , ако лицата на BMOΔ , ABOΔ  и ΔAON  са 
съответно 1 cm 2 , 4 cm 2  и 6 cm 2

 (черт.5).

D 

E 

C 

B A 
Чертеж 4
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Решение. За лицата на ABOΔ  и AONΔ  е в 

сила равенството 
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S
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Аналогично за лицaта на ΔOBM и ΔOMN 

имаме 25,1
3
21 cmS
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BO

S
S
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OMNOMN

OBM

 
За лицата на ΔNBM и ΔNMC е в сила равенс-

твото 
MC
BM

S
S

AMC

ABM , а за лицата на ABMΔ  и AMCΔ  имаме 
MC
BM

S
S

NMC

NBM ,
 
откъ-

дето 
AMC

ABM

NMC

NBM

S
S

S
S  ⇒ 

NMCNMC SS 5,7
55,2

 ⇒ SNMC = 7,5 cm2. 

Задача 3. Намерете височината CD, медианата BM  и ъглополовяща-
та AL на ABCΔ , D∈AB, M∈AC, L∈BC, ако дължините на страните на 
триъгълника са AB = c = 10, 
Решение. Прилагаме изведената формула за пресмятане на височината

10.2

1057710.510.775.772
....2

.2
1

444222222

444222222 cbacbcaba
c

hCD c

 

5
481

20
7696

20
1655424250

10.2
1002577100.25100.7725.772 222

chCD .

Без следствията от теоремата на Стюарт, за да намерим височина-
та CD, трябва да пресметнем лицето S на Δ ABC по Хероновата формула 

( )( )( )cpbpappS −−−= , където 
2

cbap ++
= , т.е. 

 и от равен-

ството 
c
Shc
.2

=  получаваме .

C 

N 

M

B A 

O 24 cm

26 cm 21cm

Чертеж 5

.

.
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За намиране на медианата BM прилагаме познатата формула 

2
329510772.

2
12.

2
1 222222 bcamBM b  . 

От формулата AL 
( )2

2

cb
bcabcla
+

−==
 
намираме 

AL = la  .

Задача 4. Докажете, че в правоъгълен триъгълник ΔABC (C = 900) 
симедианата CD (D∈AB) към хипотенузата съвпада с височината ch към 
хипотенузата.

Решение. Съгласно изведената формула симедианата 
 .

По условие ΔABC – правоъгълен, следователно  222 cba =+  и лицето 

2
.

2
. chcbaS == . Окончателно получаваме  ch

c
S

c
bacc

c
abCD .2..2. 22

2
.

Задача 5. Отсечките AD и BF са съответно недиана и ъглополовяща 
в ABCΔ , D∈BC, F∈AC. Да се намери FD, ако AC = 7, AF = 3, CD = 5 
и DB = 4.

Решение. FC = AC – AF = 4, CB = CD + DB = 9 
(черт.6).

От BF – ъглополовяща, следва 

Ъглополовящата 

.

Прилагаме теоремата на Стюарт за недианата FD в ΔBCF и получа-

ваме  

C 

F 
D 

BA 
Чертеж 6
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Даденото решение е примерно, задачата може да бъде решена и по други 
начини.

Задача 6. В окръжност е вписан ΔABC , в който AC = CB = a  и AB = b . 
През върховете B и C са построени допирателни, пресичащи се в точка 
Р, а D e пресечната точка на BC и AP. Намерете CD, DB и АD.

 

P C 

B A 

DO

M

a
x

y

k

b

Решение. Ако точката О е център на описаната окръжност k, то от 
условието AC = CB = a  следва, че O ∈ CM, където CM⊥AB, M ∈ AB 
(черт.7). Построяваме допирателните към k в точките B и C и пресечната 
им точка Р, откъдето следва CP = BР.

От CP ⊥ CO, CM ⊥ AB ⇒ CP II AB 
⇒ ABCPCB ∠=∠ като кръстни ъгли (1).
От AC = CB ⇒ CAB = ABC (2) 
и от CP = BP ⇒ PCB = CBP (3).

Освен това ADBCDP ∠=∠  като връхни ъгли (4). От подобието на ABCΔ  

и CBPΔ  съгласно (1), (2) и (3) следва  

От подобието на PDCΔ  и ADBΔ  съгласно (1) и (4) следва 

 (5), където x = CD, y = DB. 

Чертеж 7
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Но CD + DB = CB  x + y = a (6).  От (5) и (6) получаваме системата 
ayx

b
a

y
x

=+

= 2

2

 

с решения . Прилагаме теоремата 

на Стюарт за недианата AD в ABCΔ  и получаваме

По-наблюдателните ученици могат още от равенство (5) да стигнат до извода, 
че AD е симедиана и да намерят дължината є по съответната формула.

Задача 73). Отсечката AM (M∈BC) е недиана в равнобедрения правоъгълен 
ΔABC (AC = BC). Да се намери sin CAM, ако kMAB −=∠ 1sin . При 
коя стойност на k недианата АМ е ъглополовяща на CAB∠ ?

Решение. Нека α=∠MAB ⇒sin CAM = sin (450 – a) 

CAM =−=∠⇒ .
2
2sin.

2
2cos.

2
2sin αα ( ) ( )kk −−−− 1.

2
211 2

 sin =∠CAM ( )
2

12.2 2 −+− kkk .

 

 

xx

M 

C 

B A 

90 0  

45 0α
Чертеж 8
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Ако АМ е ъглополовяща на CAB∠ , то  но 

 

Задачи за самостоятелна работа

Задача 8. Докажете теоремата на Стюарт чрез теоремата на Питагор.
 

 
n-xx m

b a 

C 

B H D A 

h 

090

Упътване4): постройте височината CH (H ∈ AB) и при означенията на 
черт.9 приложете Питагорова теорема за HBCΔ , AHCΔ  и DHCΔ  и идеята 
от доказателството чрез косинусова теорема.

Задача 9. Нека е даден ABCΔ  със страни AB = c, BC = a, AC = b и точка 
D, лежаща на правата AB. Ако точката B лежи между точките A и D, CD = d, 
AD = m и DB = n, то докажете, че c.(d2 – mn) = m.a2 – n.b2.

Упътване. Приложете теоремата на Стюарт за недианата CB в ADCΔ .

Задача 10. Нека е даден ABCΔ  със страни AB = c, BC = a, AC = b и точка 
D, лежаща на правата AB. Ако точката А лежи между точките D и B, CD = d, 
AD = m и DB = n, то докажете, че c.(d2 – mn) = –m.a2 + n.b2.

Упътване: приложете теоремата на Стюарт за недианата CA в DBCΔ .

Чертеж 9
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NOTES / БЕЛЕЖКИ:
1. http://dic.academic.ru/dic.nsf/ruwiki/1190794
2. https://bg.wikipedia.org/wiki/Теорема_на_Стюарт
3. https://www.math10.com/forumbg/viewtopic.php?t=13068 
4. https://www.math10.com/forumbg/viewtopic.php?t=9564
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CEVIAN AND SYMMEDIAN IN THE TRIANGLE.
STEWART’ S THEOREM

Abstract. The article examines the concepts of cevian, symmedian, Stewart’ s 
theorem and some of their applications in simple tasks. The aim is an appropriate 
upgrade of students  geometric knowledge related to the median, the angle bisector 
and the altitude in the triangle. The proposed research is directed to High school 
teachers looking for opportunities to develop one of the key competences – the 
mathematical one.
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