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АСТРОИДА
Борислав Борисов, Деян Димитров, 

Николай Нинов, Теодор Христов
Природо-математическая гимназия – Ловеч (Болгария)

Аннотация. В статье представлены результаты работы Болгарской подко-
манды – части международной команды учащихся. Эта команда была создана для 
реализации сетевого исследовательского проекта «Энциклопедия замечательных 
плоских кривых: пишем сами». Исследование проводилось с использованием 
программных продуктов GeoGebra, Geometer’s Sketchpad и Maple. Для доказа-
тельства полученных гипотез использовался метод координат. Для организации 
сетевого взаимодействия участников использовались облачные сервисы Google.
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«Энциклопедия замечательных плоских кривых: пишем сами» – это меж-
дународный сетевой краутсорсинг – проект, который был предложен россий-
скими учеными: доцентом Г. А. Клековкиным и профессорами А. В. Ястребо-
вым и В. Р. Майером в 2017 году. Идея проекта состояла в подготовке силами 
учащихся разных стран материалов для электронной энциклопедии. Для ор-
ганизации работы был создан сайт «Пишем сами». Отправной точкой послу-
жили статьи-матрицы, подготовленный руководителями проекта. Статьи-ма-
трицы – это серии информационных и исследовательских задач, в результате 
решения которых должны быть найдены и систематизированы ранее извест-
ные в науке и получены новые результаты о какой-либо из замечательных 
кривых. В конце сентября 2018 года мы приступили к работе над задачами 
статьи – матрицы «Астроида», подготовленной профессором Г. А. Клековки-
ным. Здесь мы представляем основные результаты нашей работы.

1. Астроида как гипоциклоида. Кривая гипоциклоида получается как 
траектория движения точки P  окружности ω  радиуса r , которая катится 
без скольжения по окружности Ω  радиуса R  и имеет с ней внутреннее каса-
ние. Окружность Ω  называют направляющей окружностью. Когда выполне-
но равенство 4R r=  гипоциклоида называется астроида. В течение XІX в. 
употреблялись различные названия этой кривой, отражающие ее различные 
свойства: эволюта эллипса, огибающая семейства отрезков постоянной дли-
ны, концы которых скользят по взаимно перпендикулярным прямым (осям ко-
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ординат) и другие. Термин астроида ввел австрийский астроном Йозеф фон 
Литров (1838). Это название составлено из греческих слов αστρον (звезда) и 
ειδος (вид) и означает „звездообразная”.

2. Астроида и родственные гипоциклоиды. Рассматривается случай, 
когда точка P  находится внутри окружности ω  радиуса r , которая катится 
без скольжения по направляющей окружности Ω  центром O  и радиуса R  и 
имеет с ней внутреннее касание. В этом случае траектория точки P  называ-
ется укороченной гипоциклоидой.

Возможен и случай когда точка P  находится вне окружности ω  радиуса 
r  и катится без скольжения по направляющей окружности Ω  радиуса R , 
имея с ней внутреннее касание. В этом случае траектория точки P  называет-
ся удлиненной гипоциклоидой.

Укороченная и удлиненная гипоциклоиды имеют и общее название гипо-
трохоиды.

 

3. Параметрические уравнения гипоциклоид и астроидой. Введем си-
стему координат Oxy  с центром в точке O , которая является центром непод-
вижной окружности  Ω . Тогда общие параметрические уравнения, описы-
вающие движение произвольной точки P  находящейся на расстоянии p  от 
центра окружности ω , имеют вид:

( )1 	 ( )cos cos .R rx R r t p t
r
−

= − + , ( )sin sin .R ry R r t p t
r
−

= − − .

Отсюда когда 4R r=  получаются равенства 
3 cos cos3
4
Rx t p t= + , 

3 sin sin 3
4
Ry t p t= − . В случае, когда гипоциклоида является астроидой, 

имеем p r= , поэтому уравнения астроиды имеют вид:
3 cos cos3
4 4
R Rx t t= +

, 

3 sin sin 3
4 4
R Ry t t= −

.
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Так как справедливы равенства 34cos 3cos cos3t t t= +  и 
34sin 3sin sin 3t t t= − , то параметрические уравнения астроиды приводятся 

к виду:

( )2 	 3cosx R t= , 3siny R t= , 0 2t π≤ ≤ .

Пользуясь равенством 2 2cos sin 1t t+ =  получаем следующее уравнение:

( )3 	
2 2 2
3 3 3x y R+ = .

После некоторые преобразования в ( )3  имеем
3 32 2 2

3 3 3x y R
   

+ =   
   

, 
2 2 2 2

3 3 23 3 3 33x y x y x y R
 

+ + + = 
 

, 
2 2 2

3 3 23 3 33x y x y R R+ + = .

Отсюда ( )32 2 2 2 2 227 0x y R R x y+ − + = . Это означает что астроида явля-
ется алгебраической кривой шестого порядка.

Последнее уравнение указывает на то, что астроида симметрична относи-
тельно центра O  и координатных осей.

4. Астроида как решение дифференциального уравнения Клеро. Най-
дем такую кривую, часть касательной к которой в произвольной ее точке, за-
ключена между осями Ox  и Oy  системы координат Oxy  и имеет постоян-
ную длину R .

 

Пусть искомая кривая описывается уравнением: y = f(x). Тогда урав-
нение касательной к этой кривой в произвольной точке ( ),M x y  име-
ет вид ( )Y y X x y′= − + . Отсюда получаются точки пересечения этой 

прямой с координатными осями ,0xy yA
y
′ −

 ′ 
 и ( )0,B y xy′− . Так как 
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треугольник ВОА – прямоугольный, то для него справедливо равенство: 

( )
2

22 2xy yAB y xy R
y
′ − ′= + − = ′ 

. Отсюда получается диференциальное 

уравнение Клеро:

( ) ( ) ( )2 2 2 2 2 2 21 2 1 1 0y y y y xy y y x R y′ ′ ′ ′ ′+ − + + + − = , т.е. 
( )

1
2 21

Ryy xy
y

ε ′
′= +

′+
, 1ε = ± .

Положим y p′ = . Тогда 
21

Rpy xp
p

ε
= +

+
. Дифференцуя последнее ра-

венство получаем

( )
3

2 2

0
1

Rp x
p

ε
 
 ′ + = 
 + 

.

Отсюда 0p y′ ′′= = , y p C′ = =  и 1y Cx C= + . Так получаем общее ре-

шение уравнения Клеро 1y Cx C= +  и частое решение 

( )
3

2 21

Rx
p

ε
= −

+
, 

21
Rpy px

p
ε

= +
+

. Положив в частом решении p C=  получаем 

( )
3

2 21

Rx
C

ε
= −

+
, 

21
RCy Cx

C
ε

= +
+

. Отсюда и общее решение принимает 

вид: 121
RpCx Cx C

p
ε

+ = +
+

, 1 2 21 1
Rp RCC

p C
ε ε

= =
+ +

. Оно приводит нас к 

равенствам:

( )
3

2 21

Rx
C

ε
= −

+
, 

( )

3

3
2 21

RCy
C

ε
=

+
.

После исключения константы C  получаем уравнение 
2 2 2
3 3 3x y R+ = , кото-

рое совпадает с ( )3 . Следовательно, полученная кривая является астроидой.
5. Огибающая и астроида. Пусть дано уравнение ( ), , 0F x y α = . Для 

каждого фиксированного [ ]1 2,α α α∈  оно задает уравнение плоской кривой. 



416

Борислав Борисов, Деян Димитров, Николай Нинов, Теодор Христов

Множество всех этих кривых называется семейством линий с одним параме-
тром α . Если существует кривая γ , которая касается каждой кривой данного 
семейства, а также каждая точка γ  является точкой касания некоторой кри-
вой этого семейства, то кривая γ  называется огибающей. Точки огибающей 
удовлетворяют уравнениям ( ), , 0F x y α =  и ( ), , 0F x yα α′ = .

Пусть сейчас отрезок постоянной длины R скользит своими концами по 
двум взаимно перпендикулярным прямым. Найдем огибающую семейства 
прямых, на которых лежат эти отрезки.

 

Пусть прямая образует с положительной частью оси ординат Oy  

угол α . Из рисунки видим следующие равенства 
cos cos
MP yMA
α α

= =  

и 
sin sin
MQ xMB
α α

= = . Отсюда, так как MA MB R+ = , следует, что 

( ), , 0
sin cos

x yF x y Rα
α α

= + − =  и ( ) 2 2

cos sin, , 0
sin cos
x yF x y α α

α α
′ = − = . 

Из последнего равенства вытекает 

1
3

1
3

xtg
y

α = , так как 

1
3

2 1 1
3 3

sin
1

tg x
tg

x y

αα
α

= =
+

+

 и 

1
3

2 1 1
3 3

1cos
1

y
tg

x y

α
α

= =
+

+

, после за-
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мещения в ( ), , 0F x y α =  получаем 
2 2 2
3 3 3x y R+ = , которое является урав-

нением астроиды ( )3 .

6. Астроида как огибающая диаметра катящейся окружности. Пусть 

Ω  неподвижная окружность радиуса R . Круг с радиусом 
2
R

 катится без 

скольжения по окружности Ω  с ее внутренней стороны. В этом случае концы 
диаметра (расстояние между ними ровно R ) подвижного круга движутся по 
перпендикулярным прямым, поэтому огибающая любого диаметра этого кру-
га является астроидой.

 

7. Астроида и соосные эллипсы. Рассмотрим огибающую семей-
ства эллипсов aε , имеющих общие оси и заданную сумму полуосей. 
Пусть одна из полуосей имеет длину a , а другая ось – R a− , где R  кон-
станта. Тогда уравнение семейства эллипсов aε  можно найти из равенств 

( )
( )

2 2

22, , 1 0x yF x y a
a R a

= + − =
−

 и ( )
( )

2 2

33

2 2, , 0a
x yF x y a

a R a
′ = − + =

−
. Вто-

рое уравнение дает 

2
3

2 2
3 3

Rxa
x y

=
+

. После замена a  в первом уравнении и не-

которых преобразований получаем 
2 2 2
3 3 3x y R+ = . Вновь получили уравнение 

астроиды.
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8. Косая астроида. Рассмотрим две прямые x  и y , которые пересекаются 
в точке O  под углом α . Будем находит огибающую отрезка AB  постоян-
ной длины R , скользящего своими концами по этими прямым. Рассмотрим 
афинную систему коодинат Oxy  и предположим что прямая AB  состов-
ляет угол t  с осью Ox . Из теоремы синусов для треуголника OAB  следу-

ет 
( )sin sin sin
OA OB R
t tα α

= =
−

. Отсюда 
( )sin

sin
R t

OA
α

α
−

=  и 
sin

sin
R tOB

α
= . 

Следовательно, уравнение прямой AB  в отрезках 1x y
OA OB

+ =  принимает 

вид 
( )sin sin sin
x y R
t tα α

+ =
−

. Диференцируя это уравнение по t  получаем 

( )
( )2 2

cos cos 0
sin sin
x t y t

t t
α
α
−

+ =
−

. Последние два равенства дают параметрическое 

уравнение кривой называемой косая астроида:

( )2
2 cos sin

sin
Rx t t α
α

= − , ( )2
2 sin cos

sin
Ry t t α
α

= − .

Обычная (прямая) астроида получается при 
2
πα = .
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9. Правильные многоугольники, порожденные астроидой. Пусть точки 
1A , 2A ,  , nA  являются вершинами правильного n − угольника. Они распо-

ложены на окружности ω  круга радиуса r , который катится без скольжения 
по неподвижной окружности Ω  радиуса 4R r=  с внутренней ее стороны. 
Любопытно выяснить, каково взаимное расположение траекторий этих точек. 
На первый взгляд ясно что эти траектории являются астроидами. Для уста-
новления взаимного разположение этих астроид найдем их уравнения. Они 
получатся из общего уравнения гипоциклоиды.

 

Вывод формул ( )1  сделан при условие, что окружность ω  начинает свое 
движение когда точка P  находится на оси абсцисс Ox  (Borisov & al., 2018). 
Сейчас рассмотрим и случай в котором точка P имеет некоторое отклонение 
от Ox . Рассмотрим систему координат Oxy , центром которой является цен-
тром O  неподвижной окружности Ω  и точка P , находящаяся на расстояние 
p  от центра 1O  окружности ω . Пусть центр 1O  окружности ω  находится на 

оси абсцисс Ox  и 1O P→  получается после поворот положительное направле-
ние оси 1O x→  на угол 0ϕ . Как и при выводе равенств ( )1  (Borisov & al., 2018) 
получается, что общие параметрические уравнения, описывающие движение 
точки P  являются следующими:

( )4 	 ( )
0cos cos .R rx R r t p t

r
ϕ− = − + + 

 
, ( )

0sin sin .R ry R r t p t
r

ϕ− = − − + 
 

.

Сделаем замену системы координат Oxy  на систему координат Ox y′ ′  че-

рез поворот на угол 0
r
R

α ϕ= −  при помощи формул cos . sin .x x yα α′ ′= −  и 

sin . cos .y x yα α′ ′= + . Отсюда получаем

0 0cos . sin .r rx x y
R R
ϕ ϕ   ′ = −   

   
, 0 0sin . cos .r ry x y

R R
ϕ ϕ   ′ = +   

   
.
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После замены в равенствах (4) получаем уравнения гипоциклоиды в си-
стеме координат Ox y′ ′ :

( )5 	

( )

( )

0 0

0 0

cos cos . . ,

sin . sin . . .

r R r R rx R r t p t
R r R
r R r R ry R r t p t
R r R

ϕ ϕ

ϕ ϕ

− −   ′ = − + + +   
   

− −   ′ = − + − +   
   

Если подставим в (5) равенства 
4
Rr =  и p r= , то получим

0 03 cos cos3
4 4 4 4
R Rx t tϕ ϕ   ′ = + + +   

   
, 0 03 sin sin 3

4 4 4 4
R Ry t tϕ ϕ   ′ = + − +   

   
.

Отсюда, как при равенствах ( )2 , находим

3 0cos
4

x R t ϕ ′ = + 
 

, 3 0sin
4

y R t ϕ ′ = + 
 

, 0 2t π≤ ≤ .

Так мы получили параметрические уравнения астроиды ы системе коор-
динат Ox y′ ′ . Координатные оси Ox y′ ′  проходят через вершины астроиды, 
поэтому ее назовем канонической системой координат для астроиды.

 

Пусть сейчас вершина 1A  правильного многоугольника 1 2 nA A A , впи-
санного в окружность ω  находится на оси Ox . В этом случае 0 0ϕ =  и ка-
ноническая система координат Ox y′ ′  для астроиды, описанной 1A , совпадает 
с координатной систем Oxy . Для вершины kA  ( )1,2, ,k n=   канониче-
ская система координат Ox y′ ′  соответствующей астроиды, описанной kA  

( )1,2, ,k n=  , получается если 
( )0 2 1

4 4
k

n
πϕα

−
= − = −  ( )1,2, ,k n=   

между Ox  и Ox′ . Тогда вершины астроиды описанной точкой kA  повернуты 
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на угол 
2
4n
π

−  по отношению к соответствующим вершинам астроиды, опи-

санной вершиной 1kA − . Следовательно вершины астроиды описанные точка-
ми 1A , 2A ,  , nA  являются вершинами правильного 4n − угольника вписан-
ного в неподвижную окружность Ω .

10. Еще одна гипоцилоида, являющаяся астроида. Пусть точка M  ле-
жит на окружности ω  круга радиуса r , катящегося без скольжения по непод-
вижной окружности Ω  радиуса R  с внутренней ее стороны. Мы увидели, 
что эта гипоциклоида при 4R r=  является астроидой. Сейчас будем установ-
ливать, что траектория точки M  является астроидой и при 

4
3

R r= .

Поставим 
3
4
Rr =  и p r= в равенствах ( )1  и получим

3cos cos
4 4 3
R R tx t= + , 

3sin sin
4 4 3
R R ty t= − .

Отсюда следует, что 
3cos

3
tx R  = − 

 
, 3sin

3
ty R  = − 

 
.

Последние формулы указывают, что траектория точки M , находящаяся на 

окружности радиуса 
3
4
Rr = , является астроида, которая описывается в по-

соку обратной астроидой, получающаяся когда M находится на окружности 

радиуса 
4
Rr = . Кроме того астроида при 

3
4
Rr =  описывается 3 раза медле-

нее, чем астроидой при  
4
Rr = .
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11. Еще один вид правильных многоугольников, порожденный астро-
иды. Пусть точки 1A , 2A ,  , nA  ( )3n ≥  являются вершинами правильного 
n − угольника и расположены на окружности ω  круга радиуса r , который ка-

тится без скольжения по неподвижной окружности Ω  радиуса 
4
3

R r=  с вну-

тренней ее стороны. Было выяснено, что точки 1A , 2A ,  , nA  описывают 
астроиды. Любопытно установить как расположены вершины этих астроид.

Как и прежде рассмотрим систему координат Ox y′ ′ , которая получается 

из Oxy  при повороте на 0
r
R

α ϕ= − . При 
3
4

r R=  имеем 0
3
4

α ϕ= − . Кроме 

того при p r=  из равенств ( )5  следует

0 0 0 0
3 3 1 1 3 1 1 1 1cos cos . . cos . . cos3 . .

4 4 4 3 4 4 3 4 4 3 4
R R R Rx t t t tϕ ϕ ϕ ϕ       ′ = + + + = + + +       

       
,

0 0 0 0
3 3 1 1 3 1 1 1 1sin . sin . . sin . . sin 3 . .

4 4 4 3 4 4 3 4 4 3 4
R R R Ry t t t tϕ ϕ ϕ ϕ        ′ = + − + = − + − +                

.

Отсюда, как и в равенствах ( )2 , находим
3

0
1 1cos . .
3 4

x R t ϕ ′ = − − 
 

, 3
0

1 1sin . .
3 4

y R t ϕ ′ = − − 
 

, 0 2t π≤ ≤ .

Так мы получили параметрические уравнения астроиды по отношению к 
системе координат Ox y′ ′ . Координатные оси Ox y′ ′  проходят через вершины 
астроиды, поэтому ее назовем канонической системой координат для этой 
астроиды.

Пусть сейчас вершина 1A  правильного многоугольника 1 2 nA A A , описан-
ной окружности ω  находится на оси Ox . В этом случае 0 0ϕ =  и канониче-
ская система координат Ox y′ ′  для астроиды, описанной 1A , совпадает коорди-
натной системе Oxy . Для вершины kA  ( )1,2, ,k n=   каноническая система 
координат Ox y′ ′  соответствующая астроиде, описанной kA  ( )1,2, ,k n=  , 

получается при угле 
( )0 3.2 13

4 4
k

n
πϕα

−
= − = −  ( )1,2, ,k n=   между Ox  и 

Ox′ . Если 3n m= , то 
( )2 1

4
k

m
π

α
−

= − . Тогда вершины астроиды, описанной 

точкой kA , повернуты на угол 
2
4m
π

−  по отношению к соответствующим вер-

шинам астроиды, описанной вершиной 1kA − . Следовательно вершины астро-
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иды описанные точками 1A , 2A ,  , nA  являются вершинами правильного 
4m − угольника вписанного в неподвижную окружность Ω .

 

Как следствие из этого результата при 3n =  получаем, что вершины пра-
вильного треугольника 1A , 2A  и 3A  описывают одну и тоже астроиду. Так 
как каждый 3m − угольник составлен m  правильными треугольниками, то 
есть m  тройками точек которые описывают m  различных астроид.

Если 3 1n m= +  или 3 2n m= + , то вершины астроиды описанные точка-
ми 1A , 2A ,  , nA  являются вершинами правильного 4n − угольника вписан-
ного в неподвижную окружность Ω .

 

12. Эволюта астроиды Известно что для точки ( ),M x y  данной кривой, 
центр кривизны ( )0 0,C x y  имеет следующие координаты:

2 2

0
x yx x y
xy xy
+

= −
−

 



 

, 
2 2

0
x yy y x
xy xy
+

= +
−

 



 

.

Так как 3cosx R t= , 3siny R t= , то 23 cos .sinx R t t= − , 23 sin .cosy R t t= , 

( )23 cos 2 3cosx R t t= − , ( )23 sin 2 3siny R t t= − . Отсюда и из выше ука-
занных формул следует

( )2
0 cos 1 2sinx R t t= + , ( )2

0 sin 1 2cosy R t t= + .
Сделаем замену системы координат Oxy  на систему координат Ox y′ ′  

через поворот на угол 
4
π

 при помощи формул cos sin
4 4

x x yπ π′ ′= −  
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и sin cos
4 4

y x yπ π′ ′= + , т.е. ( )1
2

x x y′ ′= −  ( )1
2

y x y′ ′= + . От-

сюда ( )1
2

x x y′ = +  ( )1
2

y x y′ = − + . Таким образом получаем что 

3
0 2 cos

4
x R t π ′ = − 

 
 3

0 2 sin
4

y R t π ′ = − 
 

. Это параметрические уравнения 

астроиды по отношению к системе координат Ox y′ ′ , которая подобна данной 
с коэффициентом подобия 2 и повернута относительно неё на угол 45° .

 

13. Эволюта эллипса. Пусть дан эллипс своими параметрически-
ми уравнениями cosx a t= , y = bsint 0 2t π≤ ≤ . Отсюда sinx a t= − , 

cosy b t= , cosx a t= − , siny b t= − . Из формул центра кривизны следу-

ет 
2 2

3
0 cosa bx t

a
−

= , 
2 2

3
0 sina by t

b
−

= − . Отсюда получаем уравнение 

( ) ( ) ( )
22 2

2 2 33 3
0 0ax by a b+ = − . Эта кривая является астроида одна из осей, ко-

торой удлинённая.
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14. Свойства касательных. Раньше мы установили, что касатель-

ную t  в точке M(x.y) можно представить равенством 0
sin cos

x y R
α α
+ − = , 

т.е. она имеет уравнение cos . sin . sin cos 0x y Rα α α α+ − = . 
Касательные 1t  и 2t , которые перпендикулярны t  описыва-
ются уравнениями 1 : sin . cos . sin cos 0t x y Rα α α α− − =  и 

2 : sin . cos . sin cos 0t x y Rα α α α− + = . Отсюда получается, что точки 
их пересечения удовлетворяют следующему алгебраическому уравнению 

( ) ( )2 22 2 2 2 22R x y x y− = + . Это означает, что эти точки описывают алгебра-
ическую кривую четвертой степени. При переходе к полярным координатам 

получаем уравнение cos 2
2

Rρ ϕ= . Это значит, что полученная кривая есть 

четырехлепестковая роза. Таким образом мы пришли к выводу, что геометри-
ческое место вершин прямых углов, стороны которых касаются астроиды, 
– это четырехлепестковая роза.

 

Другое свойство касательных следующее: всякая касательная астроиды 
пересекает ее в двух точках, касательные в которых пересекаются в точке, 
лежащей на неподвижной окружности.
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Пусть 0m  прямая, которая касается астроиды в точке ( )0 0 0,M x y , где 

3
0 0cosx R t=  и 3

0 0siny R t= . Введем следующие обозначения: 
2
ttg a=  

и 0
02

ttg a= . Из формул универсальной подстановки имеем 2

2sin
1

at
a

=
+

, 

2

2

1cos
1

at
a

−
=

+
, 0

0 2
0

2sin
1

at
a

=
+

 и 
2
0

0 2
0

1cos
1

at
a

−
=

+
. Следовательно параметриче-

ские уравнения астроиды можно представить следующим образом: 
32

2

1
1

ax R
a

 −
=  + 

 и 
3

2

2
1

ay R
a

 =  + 
.

Касательная астроиды в точке ( )0 0 0,M x y  имеет уравнением 

( )
( ) ( )0

0 0
0

x t
y y x x

y t
− = −





. Так как 
( )
( )

0 0

0 0

sin
cos

x t t
y t t

= −




, то это уравнение при-

нимает вид ( )( )24 2 3
0 0 0 02 2 0a a a a a a a a+ − − − = . Равенство ( )2

0 0a a− =  
удовлетворяется точкой ( )0 0 0,M x y . Другие две общие точки ( )1 1 1,M x y  
и ( )2 2 2,M x y  касательной 0m  астроиды получаются при нахождении 1a  и 

2a  с помощью уравнения 4 2 3
0 0 02 2 0a a a a a a+ − − = . Уравнения касатель-

ных 1m  и 2m  в точках ( )1 1 1,M x y  и ( )2 2 2,M x y  соответственно следующие 
( )
( ) ( )1

1 1 1
1

:
x t

m y y x x
y t

− = −


  
и

 

( )
( ) ( )2

2 2 2
2

:
x t

m y y x x
y t

− = −




. После преобразова-

ния получаем

( ) ( ) ( )2 4 2
1 1 1 1 1 1: 2 1 1 2 1 0m a a x a y Ra a+ + − − − = ,

( ) ( ) ( )2 4 2
2 1 2 2 2 2: 2 1 1 2 1 0m a a x a y Ra a+ + − − − = .

Отсюда общая точка S  касательных 1m  и 2m  есть точка

( )( )( )
( )( )( )

( )
( )( )( )

2 2
1 2 1 2 1 2 1 2

2 2 2 2
1 2 1 2 1 2 1 2

1 1 1 4
,

1 1 1 1 1 1

R a a a a Ra a a a
S

a a a a a a a a

 − − − +
 
 + + + + + + 

.

Если 
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6 4 4 6 5 5 5 5 4 2 2 4 3 3 2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 22 2 4A a a a a a a a a a a a a a a a a a a a a= + + + + − − − + + + , 

то получаем, что 
( ) ( ) ( )

2
2 2

2 2 22 2
1 2 1 2

4

1 1 1

R AR OS
a a a a

− =
+ + +

. Отсюда следует, 

что необходимо доказать равенство 0A = . Пусть 1 1 2a aσ = +  и 2 1 2a aσ = . Тогда 
пользуясь равенствами 2 2 2

1 2 1 22a a σ σ+ = −  и 4 4 4 2 2
1 2 1 1 2 24 2a a σ σ σ σ+ = − +  по-

лучаем следующее равенство 2 4 5 4 2 2 3 2
1 2 2 1 2 1 2 2 1 26 2A σ σ σ σ σ σ σ σ σ σ= − + − + + − .

Сейчас в уравнении 4 2 3
0 0 02 2 0a a a a a a+ − − =  положим 0

2
aa x= −  и 

получим ( )4 3 2 4 5
0 0 0 016 24 16 2 3 0a x a x a x a− + − − = . 

Последнее уравнение представим в виде 

( ) ( )3 3 4
0 0 0 0 02 2

0 0
0 0 0

3 3 4
0 0 0 0 0

0

2 3 2 2
0

2 3 2

4

2

4

a u a u a
x u x x u x

a u a u
a u a u a   − + −

   + + − +
− − −

=
      

, 

где 0u  является корнем полинома ( ) ( )22 6 4 4 6 2 4
0 0 0 0 03 3 2P u a u a u a u a= − + − − . 

Одно решение этого полинома есть 
( )3 43

0 0 0
0 2

0

4 1a a a
u

a

+ −
= . Если 

1x  и x2 корни уравнения 
( )3 3 4

0 0

0 0

0 02
0

0 0
4

2 3 2 2a u a u
x u x

a u
a− −

+ + =
−

 или 

( )3 3 4
0 0 0 0 02

0
0 0

2 3 2 2
0

4

a u a u a
x u x

a u
− + −

− + = , из равенств 0
1 1 2

aa x= −  и 

0
2 2 2

aa x= −  следует что 1 2 1 2 0a a x x a+ = + −  и ( )
2

0 0
1 2 1 2 1 22 4

a aa a x x x x= − + + . 

Когда 1x  и 2x  являются корнями первого уравнения по формулами Виета по-

лучаем 1 0 0u aσ = − −  и 
( )3 2 2

0 0 0 0 0
2

0

2 2 2 2

4

u a u p a u q
u

σ
+ + + −

= . Отсюда следу-

ет, что 
( ) ( )0 0 1 0

5 5
0 032

P u P u
A

a u
= , где ( ) ( )22 6 4 4 6 2 4

0 0 0 0 0 0 0 0 03 3 2P u a u a u a u a= − + − −  и
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( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

3 9 4 8 5 7 2 4 6 3 4 5 4 4 4
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 38 4 3 2 4 4 2 3 4 4
0 0 0 0 0 0 0 0 0 0 0 0

7 20 2 14 3 2 7 8 2 7 11

4 7 9 3 2 2 10 3 7 2 2 .

P u a u a u a u a a u a a u a a u

a a a u a a a u a a u a

= + + + + + + − − −

− − − − − − − − − −

Так как ( )0 0 0P u = , то 0A = .

Когда 1x  и 2x  являются корными второго уравнения по формулами Виета 

получаем 1 0 0u aσ = −  и 
( )3 2 2

0 0 0 0 0
2

0

2 2 2 2

4

u a u p a u q
u

σ
− + + +

= . Отсюда сле-

дует, что  
( ) ( )0 0 2 0

5 5
0 032

P u P u
A

a u
= , где

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

3 9 4 8 5 7 2 4 6 3 4 5 4 4 4
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 38 4 3 2 4 4 2 3 4 4
0 0 0 0 0 0 0 0 0 0 0 0

7 20 2 14 3 2 7 8 2 7 11

4 7 9 3 2 2 10 3 7 2 2 .

P u a u a u a u a a u a a u a a u

a a a u a a a u a a u a

= − + − + + + + − −

− − − + − − − − + −

Опять от ( )0 0 0P u =  следует, что 0A = .
15. Подэра астроиды относительно точки, лежащей на биссектрисе 

первого квадранта. Подэрой кривой k  относительно точки P  плоскости 
кривой k  называется кривая, являющаяся геометрическим местом основа-
ний перпендикуляров, опущенных из точки P  на касательные к заданной кри-
вой k .

 

Пусть P  произвольная точка биссектрисы OL  первого квадранта коор-
динатной системы Oxy  и OP p= . Уже было показано, что астроиду можно 
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рассматривать как огибающую отрезка AB R= , скользящего своими конца-
ми по координатным осям. Подэру точки P  можно определить как геометри-
ческое место оснований M  перпендикуляров, опущенных из P  на прямую 
AB . Пусть Q  середина AB , точка C  лежит на прямой AB , для которой 
OC AB⊥  и точка D  находится на OC  и PD OC⊥ . Рассмотрим полярную 
координатную систему с полюсом P  и полярной осью PL . Введем обозначения 

PM ρ=  и LPM ϕ= . Легко увидеть, что 2QOC ϕ=  и cos 2
2
ROC ϕ= . 

С другой стороны cosOC OD DE OD PM p ϕ ρ= + = + = + . Следовательно 

cos 2 cos
2
R pρ ϕ ϕ= − . Рассмотрим прямоугольную координатную систему 

PXY  с началом P , по отношению к которой координаты точки M  являются X  
и Y , то cosX ρ ϕ=  и sinY ρ ϕ= . Отсюда получается следующее уравнение

( )( ) ( )
22 22 2 2 2 2 2

4
RX Y X Y pX X Y+ + + = − .

Таким образом мы установили, что искомая кривая является кривой ше-
стой степени. Она называется «жуком». Если 0p = , т.е. P O≡ , кривая ста-
новится четырехлепестковой розой.

16. Длина астроиды и площадь фигуры, ограниченной астроидой. 
Длину астроиды находим из параметрических уравнений ( )3  астроиды и ин-
тегральной формулы

2 22 2 2 2
0 0 0 0

4 4 3 sin .cos 2.3 sin 2 3 sin 2 2 6l x y dt R t tdt R tdt R td t R
π π π π

= + = = = =∫ ∫ ∫ ∫ 
.

Площадь σ  фигуры, ограниченной астроидой находим по форму-

ле 
1
2

xdy ydxσ = −∫ , где интеграл взят по астроиде. Так получается 

( )
2 22

0

3 31 cos 4
16 8
R Rt dt

π πσ = − =∫ .

17. Площадь поверхности и объем тела вращения, образованно-
го при вращении астроиды вокруг ее оси. Объем тело находим по фор-

муле 2b

a
V y dxπ= ∫ , где a R= − , b R=  и 

4 2 2 4
2 2 23 3 3 33 3y R R x R x x= − + −  

(это является следствием формулы ( )3 ). Так получаем 
4 2 2 4

2 2 2 33 3 3 3
0

322 3 3
105

R R

R
V y dx R R x R x x dx Rππ π

−

 
= = − + − = 

 
∫ ∫ .
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Площадь поверхности находим по формуле 22 1
b

a
S y y dxπ ′= +∫ , 

где a R= − , b R= , 

3
2 2 2
3 3y R x

 
= − 
 

 и 

1
1 2 2 2
3 3 3y x R x

−  
′ = − − 

 
. Так получается 

3
1 1 2 2 2
3 3 3 3

0
4

R
S R x R x dxπ

−  
= − 

 
∫ . В интеграле сделаем замену переменной 

2
3t x=  

и получим 
2
3

3 5 21 2 1 22 2 3 23 3 3 3
0

2 126 6 . .
5 50

R RS R R t dt R R t Rππ π
   

= − = − − =   
   

∫ .
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ASTROID

Abstract. The paper presents the results of the Bulgarian sub-team – a part of an 
international team of secondary students.  The ream was formed for the realization 
of the net research project “Encyclopedia of Notable Plane Figures: We Work by 
Ourselves”. The research was organized by using the software products GeoGebra, 
Geometer’s Sketchpad and Maple. The coordinate method was applied to prove the 
derived hypotheses. The cloud service Google was used in the organization of the 
net interaction among the participants. 
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