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Abstract. We study the relationship between the areas of the consecutive 
quadrilaterals cut from a convex quadrilateral in the plane by means of a finite or 
infinite number of straight lines intersecting two of its opposite sides. Moreover, we 
obtain a geometric description of all possible areas obtained in this way given the 
ratios of the lengths of consecutive segments in which the lines divide these two 
opposite sides. 
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1. Introduction 
Let p1, p2, …, pn and p1', p2', …, pn' be given n-tuples of positive real numbers. 

For  a convex quadrilateral ABCD in the plane denote  by  A1, A2, …, An – 1  and     
D1, D2, …, Dn – 1 the points on the sides AB and CD, respectively such that AA1 : 
A1A2 : … : An–1B = p1 : p2 : … : pn and DD1 : D1D2 : … : Dn–1C = p1' : p2' : … : pn' 
(Fig. 1). The purpose of this note is to find a geometric description of the set 𝒜𝒜 of 
all possible n-tuples of areas 𝒜𝒜1, 𝒜𝒜2,…, 𝒜𝒜n, where  

𝒜𝒜1 = [AA1D1D], 𝒜𝒜2 = [A1A2 D2D1], …, 𝒜𝒜n = [An – 1BCDn – 1], 
when ABCD runs over all convex quadrilaterals in the plane. This problem is 
motivated by the linear and analytic relations between 𝒜𝒜1, 𝒜𝒜2 and 𝒜𝒜3 in the case 
when n = 3 and p1 : p2 : p3= p1' : p2' : p3' found in (Nikolov 2023). 

 
Figure 1 
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Here we consider the case of arbitrary n and arbitrary ratios (Section 2 and 
Section 3) as well as that when the sides of the quadrilaterals are divided into 
infinitely many segments (Section 4). We also show that the last case can be 
reduced to that when n = 3 and n =2 (Section 5). 

Understanding the article requires a basic knowledge of linear algebra and 
analytic geometry. 

2. Area attainable points in R3  
We will first consider the case when the sides of the quadrilaterals are divided 

into  3 segments.  Let  their  ratios be  determined by the triples  (p1, p2, p3)  and 
(p1', p2', p3'). 

Definition. A point (x1, x2, x3) in the 3-dimensional Euclidean space R3 is 
called area attainable if there is a convex quadrilateral ABCD in the plane such that 
(𝒜𝒜1, 𝒜𝒜2, 𝒜𝒜) = (x1, x2, x3). 

It is clear that the set  𝒜𝒜  of all area attainable points depends on the triples 
(p1, p2, p3) and (p1', p2', p3'), and is a union of rays in the open first octant R+

3 with 
a common initial point O = (0, 0, 0). 

Proposition 1. Set  = (p1 + p2 + p3) p1'p2p3' – (p1' + p2' + p3') p1'2'p3. 
a) If  ≠ 0, then 𝒜𝒜 is the union of two nonintersecting open trihedral angles 

with a common vertex O and a common face, and an open ray with origin O lying 
on this face and different from its edges. 

b) If  = 0, then 𝒜𝒜 is an open angle with vertex O in the plane 
(1)               α: (p2p3' – p3p2') x1 + (p3p1' – p1p3') x2 + (p1p2' – p2p1') x3 = 0, 
when p1 : p1' ≠ p3 : p3' or in the plane 
(2)                          α: 𝑝𝑝2+ 𝑝𝑝3

𝑝𝑝1
𝑥𝑥1 −

𝑝𝑝1+2𝑝𝑝2+ 𝑝𝑝3
𝑝𝑝2

𝑥𝑥2 +  𝑝𝑝1+ 𝑝𝑝2
𝑝𝑝3

𝑥𝑥3 = 0, 

when p1 : p1' = p3 : p3'. 
Note that if  = 0 and two of the ratios p1 : p1', p2 : p2', p3 : p3' are equal, then 

the third one is also equal to them.  
Proof. Set 𝑣𝑣1⃗⃗⃗⃗ = (𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3), 𝑣𝑣2⃗⃗⃗⃗ = (𝑝𝑝1

′ , 𝑝𝑝2
′ , 𝑝𝑝3

′ ), 𝑣𝑣0⃗⃗⃗⃗ = 𝑣𝑣1⃗⃗⃗⃗ + 𝑣𝑣2⃗⃗⃗⃗ , 
𝑣𝑣3⃗⃗⃗⃗ = (𝑝𝑝1𝑝𝑝1

′ , 𝑝𝑝2𝑝𝑝2
′ + 𝑝𝑝2𝑝𝑝1

′ + 𝑝𝑝2
′ 𝑝𝑝1, 𝑝𝑝3𝑝𝑝3

′ + 𝑝𝑝3(𝑝𝑝1
′ + 𝑝𝑝2

′ ) + 𝑝𝑝3
′ (𝑝𝑝1 + 𝑝𝑝2)), 

𝑣𝑣4⃗⃗  ⃗ = (𝑝𝑝1𝑝𝑝1
′ + 𝑝𝑝1(𝑝𝑝2

′ + 𝑝𝑝3
′ ) + 𝑝𝑝1

′ (𝑝𝑝2 + 𝑝𝑝3), 𝑝𝑝2𝑝𝑝2
′ + 𝑝𝑝2𝑝𝑝3

′ + 𝑝𝑝2
′ 𝑝𝑝3, 𝑝𝑝3𝑝𝑝3

′ ), 
and denote by 𝑙𝑙𝑘𝑘 = {𝑡𝑡𝑣𝑣𝑘𝑘⃗⃗⃗⃗ ∶ 𝑡𝑡 > 0} the rays determined by these vectors. 

Note first that if 𝐴𝐴𝐴𝐴 ∥ 𝐶𝐶𝐶𝐶, then 𝑙𝑙0 ⊂ 𝒜𝒜. Let now 𝐴𝐴𝐴𝐴 ∦ 𝐶𝐶𝐶𝐶 and denote by 𝒬𝒬1 
the set of convex quadrilaterals ABCD in the plane such that A lies between B and 
𝐸𝐸 = 𝐴𝐴𝐴𝐴 ∩ 𝐶𝐶𝐶𝐶 (the set 𝒬𝒬2 is defined analogously when B lies between A and E). 
Set 𝐸𝐸𝐸𝐸: 𝐴𝐴𝐴𝐴1 = 𝑝𝑝0: 𝑝𝑝1, 𝐸𝐸𝐸𝐸: 𝐷𝐷𝐷𝐷1 = 𝑝𝑝0

′ : 𝑝𝑝1
′ , 𝒜𝒜0 = [𝐸𝐸𝐸𝐸𝐸𝐸] = 𝑠𝑠𝑝𝑝0𝑝𝑝0

′ . Then 
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𝒜𝒜0 + 𝒜𝒜1
𝒜𝒜0

=
(𝑝𝑝0 + 𝑝𝑝1)(𝑝𝑝0

′ + 𝑝𝑝1
′ )

𝑝𝑝0𝑝𝑝0
′ , 

𝒜𝒜0 + 𝒜𝒜1 + 𝒜𝒜2
𝒜𝒜0

=
(𝑝𝑝0 + 𝑝𝑝1 + 𝑝𝑝2)(𝑝𝑝0

′ + 𝑝𝑝1
′ + 𝑝𝑝2

′ )
𝑝𝑝0𝑝𝑝0

′ , 
𝒜𝒜0 + 𝒜𝒜1 + 𝒜𝒜2 + 𝒜𝒜3

𝑆𝑆0
=

(𝑝𝑝0 + 𝑝𝑝1 + 𝑝𝑝2 + 𝑝𝑝3)(𝑝𝑝0
′ + 𝑝𝑝1

′ + 𝑝𝑝2
′ + 𝑝𝑝3

′ )
𝑝𝑝0𝑝𝑝0

′ , 
from where we get 

𝒜𝒜1 = 𝑠𝑠(𝑝𝑝1𝑝𝑝0
′ + 𝑝𝑝1

′𝑝𝑝0 + 𝑝𝑝1𝑝𝑝1
′ ), 

𝒜𝒜2 = 𝑠𝑠(𝑝𝑝2𝑝𝑝0
′ + 𝑝𝑝2

′ 𝑝𝑝0 + 𝑝𝑝2𝑝𝑝2
′ + 𝑝𝑝2𝑝𝑝1

′ + 𝑝𝑝2
′ 𝑝𝑝1), 

𝒜𝒜3 = 𝑠𝑠(𝑝𝑝3𝑝𝑝0
′ + 𝑝𝑝3

′ 𝑝𝑝0 + 𝑝𝑝3𝑝𝑝3
′ + 𝑝𝑝3(𝑝𝑝1

′ + 𝑝𝑝2
′ ) + 𝑝𝑝3

′ (𝑝𝑝1 + 𝑝𝑝2)). 
Let 𝑀𝑀1 be the 3 × 3 matrix with rows 𝑣𝑣1⃗⃗⃗⃗ , 𝑣𝑣2⃗⃗⃗⃗ , 𝑣𝑣3⃗⃗⃗⃗ . Then the identities above may 

be written in the following matrix form (𝒜𝒜1, 𝒜𝒜2, 𝒜𝒜3) = (𝑠𝑠𝑝𝑝0
′ , 𝑠𝑠𝑝𝑝0, 𝑠𝑠)𝑀𝑀1. Since the 

map 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 → (𝑠𝑠𝑝𝑝0
′ , 𝑠𝑠𝑝𝑝0, 𝑠𝑠) is a surjection from 𝒬𝒬1 onto the open first octant R+

3  of 
R3 (take, for example, ∠𝐴𝐴𝐴𝐴𝐴𝐴 = 90∘, 𝐴𝐴𝐴𝐴 = 2𝑝𝑝0 and 𝐸𝐸 = 𝑠𝑠𝑝𝑝0

′ ), it follows that the 
set 𝒜𝒜′ of area attainable points for which A lies between E and B is the image of 
R+

3 under the linear transformation 𝑀𝑀1 of R3 with matrix 𝑀𝑀1. 
Analogously, the set 𝒜𝒜′′ of area attainable points for which B lies between A 

and E is the image of R+
3 under the linear transformation 𝑀𝑀2 of R3 with matrix 𝑀𝑀2 

whose rows are 𝑣𝑣1⃗⃗⃗⃗ , 𝑣𝑣2⃗⃗⃗⃗ , 𝑣𝑣4⃗⃗  ⃗. 
It is clear that the set 𝒜𝒜 of all area attainable 

points is given by 𝒜𝒜 = 𝑙𝑙0 ∪ 𝒜𝒜′ ∪ 𝒜𝒜′′ and now 
we will describe geometrically this set depending 
on whether Δ ≠ 0 or Δ = 0, i.e. if rank 𝑀𝑀1 =
rank 𝑀𝑀2 is equal to 3 or 2 (the ranks of 𝑀𝑀1 and 
𝑀𝑀2 are never equal to 1.) 

Let Δ ≠ 0. Then 𝒜𝒜′ and 𝒜𝒜′′ are the open 
trihedral angles with edges the rays 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3 and 
𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙4 (the images of the positive axes under the 
linear transformations 𝑀𝑀1 and 𝑀𝑀2, respectively), 
and 𝑙𝑙0 lies on the face with edges 𝑙𝑙1 and 𝑙𝑙2 (Fig. 
2). It is easy to check that the scalar triple product of the vectors  𝑣𝑣1⃗⃗⃗⃗ , 𝑣𝑣2⃗⃗⃗⃗ , 𝑣𝑣3⃗⃗⃗⃗  is equal 
to det 𝑀𝑀1 = −∆, and that of  𝑣𝑣1⃗⃗⃗⃗ , 𝑣𝑣2⃗⃗⃗⃗ , 𝑣𝑣4⃗⃗  ⃗ is equal to det 𝑀𝑀2 = −∆. In particular, these 
two triples  of  vectors  determine  opposite  orientations on  R3  and  therefore  
𝒜𝒜′ ∩ 𝒜𝒜′′ = ∅. Note that this follows also from the identity: 

𝑣𝑣3 + 𝑣𝑣4⃗⃗  ⃗ = (𝑝𝑝1
′ + 𝑝𝑝2

′ + 𝑝𝑝3
′ )𝑣𝑣1⃗⃗⃗⃗ + (𝑝𝑝1 + 𝑝𝑝2 + 𝑝𝑝3)𝑣𝑣2⃗⃗⃗⃗ . 

 
Figure 2 
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Let now ∆= 0. Then det 𝑀𝑀1 = det 𝑀𝑀2 = 0 and the rays 𝑙𝑙0, 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4 lie on a 
plane 𝛼𝛼  𝒜𝒜. It is defined by (1) or (2), which follows respectively from       
𝛼𝛼  𝑣𝑣1⃗⃗⃗⃗ ×  𝑣𝑣2⃗⃗⃗⃗  or 𝛼𝛼  𝑣𝑣3⃗⃗⃗⃗ × 𝑣𝑣4⃗⃗  ⃗.  

Note that the image M1(R+
3) (resp. M2 (R+

3)) consists of the points in R3 whose 
vectors are linear combinations of  𝑣𝑣1⃗⃗⃗⃗ , 𝑣𝑣2⃗⃗⃗⃗ , 𝑣𝑣3⃗⃗⃗⃗  (resp. 𝑣𝑣1⃗⃗⃗⃗ , 𝑣𝑣2⃗⃗⃗⃗ , 𝑣𝑣4⃗⃗  ⃗ )  with positive 
coefficients. A direct check shows that 𝑣𝑣1⃗⃗⃗⃗  and 𝑣𝑣2⃗⃗⃗⃗  are linear combinations of  𝑣𝑣3⃗⃗⃗⃗  and 
𝑣𝑣4⃗⃗  ⃗   with  positive  coefficients.  Hence  in  the  case  𝑝𝑝1: 𝑝𝑝1

′ ≠ 𝑝𝑝3: 𝑝𝑝3
′ ,  we have 

𝒜𝒜′ = ∠(𝑙𝑙1, 𝑙𝑙3),  𝒜𝒜′′ = ∠(𝑙𝑙2, 𝑙𝑙4)   if  𝑙𝑙2 ⊂ ∠(𝑙𝑙1, 𝑙𝑙3)  and  𝒜𝒜′ = ∠(𝑙𝑙1, 𝑙𝑙3),              
𝒜𝒜′′ = ∠(𝑙𝑙1, 𝑙𝑙4) if  𝑙𝑙1 ⊂ ∠(𝑙𝑙2, 𝑙𝑙3); in particular, 𝑙𝑙0 ⊂ (𝑙𝑙1, 𝑙𝑙2) = 𝒜𝒜′ ∩ 𝒜𝒜′′. In the 
case 𝑝𝑝1: 𝑝𝑝1

′ = 𝑝𝑝3: 𝑝𝑝3
′  it follows that 𝒜𝒜′ = ∠(𝑙𝑙0, 𝑙𝑙3) and 𝒜𝒜′′ = ∠(𝑙𝑙0, 𝑙𝑙4). Hence in 

both cases 𝒜𝒜 = ∠(𝑙𝑙3, 𝑙𝑙4). 
The above arguments imply the following: 
Corollary 2. If 𝐴𝐴𝐴𝐴|| 𝐶𝐶𝐶𝐶, then 

(3)                          𝒜𝒜1 ∶ 𝒜𝒜2 ∶  𝒜𝒜3 = (𝑝𝑝1 + 𝑝𝑝1
′ ): (𝑝𝑝2 + 𝑝𝑝2

′ ): (𝑝𝑝3 + 𝑝𝑝3
′ ). 

Conversely, if ∆ ≠ 0 and (3) is fulfilled, then 𝐴𝐴𝐴𝐴 || 𝐶𝐶𝐶𝐶. 
Remark. a) If 𝑝𝑝1: 𝑝𝑝2: 𝑝𝑝3 = 𝑝𝑝1

′ : 𝑝𝑝2
′ : 𝑝𝑝3

′ , then 𝐴𝐴𝐴𝐴|| 𝐶𝐶𝐶𝐶 follows from the weaker 
assumptions 𝒜𝒜1 ∶ 𝒜𝒜2 = 𝑝𝑝1: 𝑝𝑝2, 𝒜𝒜2 ∶  𝒜𝒜3 = 𝑝𝑝2: 𝑝𝑝3 or 𝒜𝒜3 ∶ 𝒜𝒜1 = 𝑝𝑝3: 𝑝𝑝1. 

b) If  ∆ = 0, but 𝑝𝑝1: 𝑝𝑝1
′ ≠ 𝑝𝑝3: 𝑝𝑝3

′ , then there are quadrilaterals from 𝒬𝒬1 and 𝒬𝒬2, 
such that (3) is fulfilled. 

The proof of Proposition 1 implies also an analytic description of the area 
attainable points 𝒜𝒜. For example, we have the following: 

Corollary 3. (Nikolov 2023, Proposition 3) If 𝑝𝑝1: 𝑝𝑝2: 𝑝𝑝3 = 𝑝𝑝1
′ : 𝑝𝑝2

′ : 𝑝𝑝3
′ , then the 

area attainable points (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) are those for which (2) is fulfilled, 𝑥𝑥1 > 0 and 

(4)                           
𝑝𝑝32

𝑝𝑝1(𝑝𝑝1+2𝑝𝑝2+2𝑝𝑝3) < 𝑥𝑥3
𝑥𝑥1

< 𝑝𝑝3(2𝑝𝑝1+2𝑝𝑝2+𝑝𝑝3)
𝑝𝑝1

2 . 

Proof. Note that 
𝑙𝑙3 = {𝑡𝑡 (𝑝𝑝1

2, 𝑝𝑝2(𝑝𝑝2 + 2𝑝𝑝1), 𝑝𝑝3(2𝑝𝑝1 + 2𝑝𝑝2 + 𝑝𝑝3)) : 𝑡𝑡 > 0}, 
𝑙𝑙4 = {𝑡𝑡(𝑝𝑝1(𝑝𝑝1 + 2𝑝𝑝2 + 2𝑝𝑝3), 𝑝𝑝2(𝑝𝑝2 + 2𝑝𝑝3), 𝑝𝑝3

2): 𝑡𝑡 > 0} 
and it follows from the proof of Proposition 1 that the area attainable points 
(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) are those for which (2) is fulfilled, and  
𝑥𝑥1 = λ𝑝𝑝1

2 + μ𝑝𝑝1(𝑝𝑝1 + 2𝑝𝑝2 + 2𝑝𝑝3),  𝑥𝑥3 = λ𝑝𝑝3(2𝑝𝑝1 + 2𝑝𝑝2 + 𝑝𝑝3) + μ𝑝𝑝3
2,  λ, μ > 0.  

Solving this system with respect to λ and μ we see that it is equivalent to 𝑥𝑥1 > 0 
and (4). 

3. Area attainable points in Rn  
In this section we will obtain a geometric description of the set 𝒜𝒜 of area 

attainable points when the sides 𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶 of a convex quadrilateral 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 in the 
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plane are divided into 𝑛𝑛 segments. In this case 𝒜𝒜 is a subset of the 𝑛𝑛-dimensional 
Euclidean space Rn. 

Let (𝑝𝑝1, … , 𝑝𝑝𝑛𝑛) and (𝑝𝑝1
′ , … , 𝑝𝑝𝑛𝑛

′ ) be two 𝑛𝑛-tuples of real numbers which 
determine the ratios of the consecutive 𝑛𝑛 segments of which the sides 𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶 
are divided. The case when these two 𝑛𝑛-tuples coincide has been considered in 
(Nikolov 2023), where an analytic description of the set 𝒜𝒜 is given. 

If 𝑛𝑛 = 2, then the proof of Proposition (1) for 𝑝𝑝3 = 𝑝𝑝3
′ = 0 implies that 𝒜𝒜 is 

an open angle with vertex 𝑂𝑂 and arms 
{𝑡𝑡(𝑝𝑝1𝑝𝑝1

′ , 𝑝𝑝2𝑝𝑝2
′ + 𝑝𝑝2𝑝𝑝1

′ + 𝑝𝑝2
′ 𝑝𝑝1): 𝑡𝑡 > 0},  {𝑡𝑡(𝑝𝑝1𝑝𝑝1

′ + 𝑝𝑝1𝑝𝑝2
′ + 𝑝𝑝1

′𝑝𝑝2, 𝑝𝑝2𝑝𝑝2
′ ): 𝑡𝑡 > 0}. 

The analogue of Proposition (1) in higher dimensions is the following: 
Proposition 4. Let 𝑛𝑛 ≥ 4 and set: 

Δ𝑖𝑖 = (𝑝𝑝𝑖𝑖−1 + 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖+1)𝑝𝑝𝑖𝑖−1
′ 𝑝𝑝𝑖𝑖+1

′ 𝑝𝑝𝑖𝑖 − (𝑝𝑝𝑖𝑖−1
′ + 𝑝𝑝𝑖𝑖

′ + 𝑝𝑝𝑖𝑖+1
′ )𝑝𝑝𝑖𝑖−1𝑝𝑝𝑖𝑖+1𝑝𝑝𝑖𝑖

′,  2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. 
a) If at least one of the numbers Δ𝑖𝑖 is different from 0, then 𝒜𝒜 is the union of two 
nonintersecting open trihedral angles in the same 3-dimensional vector subspace 
of Rn with a common vertex 𝑂𝑂 = (0,0, … ,0) and a common face, and an open ray 
with origin 𝑂𝑂 lying in this face and different from its edges; 
b) If all numbers Δ𝑖𝑖 are equal to 0 then 𝒜𝒜 is an open angle with vertex 𝑂𝑂. 

Sketch of proof. Set 𝑣𝑣1⃗⃗⃗⃗ = (𝑝𝑝1, … , 𝑝𝑝𝑛𝑛), 𝑣𝑣2⃗⃗⃗⃗ = (𝑝𝑝1
′ , … , 𝑝𝑝𝑛𝑛

′ ), 𝑣𝑣0⃗⃗⃗⃗ = 𝑣𝑣1⃗⃗⃗⃗ + 𝑣𝑣2⃗⃗⃗⃗ ,    
𝑣𝑣3⃗⃗⃗⃗ = (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛), 𝑣𝑣4⃗⃗  ⃗ = (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛), where 

𝑠𝑠𝑖𝑖 = −𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖
′ + 𝑝𝑝𝑖𝑖 ∑𝑝𝑝𝑗𝑗

′
𝑖𝑖

𝑗𝑗=1
+ 𝑝𝑝𝑖𝑖

′ ∑𝑝𝑝𝑗𝑗

𝑖𝑖

𝑗𝑗=1
, 𝑡𝑡𝑖𝑖 = −𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖

′ + 𝑝𝑝𝑖𝑖 ∑𝑝𝑝𝑗𝑗
′

𝑛𝑛

𝑗𝑗=𝑖𝑖
+ 𝑝𝑝𝑖𝑖

′ ∑𝑝𝑝𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖
,  1 ≤ 𝑖𝑖

≤ 𝑛𝑛. 
Using the above notations and those in Section 1 we see that if 𝐴𝐴𝐴𝐴 ∦ 𝐶𝐶𝐶𝐶, then 

the areas 𝒜𝒜1, 𝒜𝒜2, … , 𝒜𝒜𝓃𝓃 are given by the following formulas: 𝒜𝒜𝒾𝒾 = 𝑠𝑠(𝑝𝑝0𝑝𝑝𝑖𝑖
′ +

𝑝𝑝0
′ 𝑝𝑝𝑖𝑖 + 𝑠𝑠𝑖𝑖), 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 or 𝒜𝒜𝒾𝒾 = 𝑠𝑠(𝑝𝑝0𝑝𝑝𝑖𝑖

′ + 𝑝𝑝0
′ 𝑝𝑝𝑖𝑖 + 𝑡𝑡𝑖𝑖), 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, depending on 

whether 𝐴𝐴 lies between 𝐸𝐸 = 𝐴𝐴𝐴𝐴 ∩ 𝐶𝐶𝐶𝐶 and 𝐵𝐵 or 𝐵𝐵 lies between 𝐴𝐴 and 𝐸𝐸. 
Denote by 𝑙𝑙𝑗𝑗 = {𝑡𝑡𝑣𝑣𝑗𝑗 ⃗⃗⃗⃗ : 𝑡𝑡 > 0} the rays determined by the vectors 𝑣𝑣𝑗𝑗, 0 ≤ 𝑗𝑗 ≤ 4. 
In case b) the set 𝒜𝒜 is an open angle with vertex 𝑂𝑂 and arms 𝑙𝑙3 and 𝑙𝑙4, which 

determine  a  plane   α   in   Rn.    Let   us   note   that  in   this   case   either            
𝑝𝑝𝑗𝑗 ∶ 𝑝𝑝𝑘𝑘 ≠ 𝑝𝑝𝑗𝑗 

′ : 𝑝𝑝𝑘𝑘
′ 𝑓𝑓 𝑜𝑜𝑜𝑜 𝑗𝑗 ≠ 𝑘𝑘, or  𝑝𝑝1 : 𝑝𝑝2 ∶ … : 𝑝𝑝𝑛𝑛 = 𝑝𝑝1

′ ∶ 𝑝𝑝2
′ : … : 𝑝𝑝𝑛𝑛

′ .  To  see  this  we  
set 𝑞𝑞𝑖𝑖 = 𝑝𝑝𝑖𝑖/𝑝𝑝𝑖𝑖−1, 𝑞𝑞𝑖𝑖

′ = 𝑝𝑝𝑖𝑖
′/𝑝𝑝𝑖𝑖−1

′  and rewrite the identities Δ𝑖𝑖 = 0 in the form 

𝑞𝑞𝑖𝑖+1 − 𝑞𝑞𝑖𝑖+1
′ =

(1 + 𝑞𝑞𝑖𝑖+1
′ )𝑞𝑞𝑖𝑖+1

(1 + 𝑞𝑞𝑖𝑖)
(𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑖𝑖

′). 
It follows that if 𝑞𝑞2 ≠ 𝑞𝑞2

′ , then the sequence with general term 𝑝𝑝𝑖𝑖+1/𝑝𝑝𝑖𝑖+1
′  is strictly 

monotonic and therefore 𝑝𝑝𝑗𝑗 : 𝑝𝑝𝑘𝑘 ≠ 𝑝𝑝𝑗𝑗
′ ∶ 𝑝𝑝𝑘𝑘

′  for 𝑗𝑗 ≠ 𝑘𝑘. If 𝑞𝑞2 = 𝑞𝑞2
′  then  𝑞𝑞𝑖𝑖+1 = 𝑞𝑞𝑖𝑖+1

′ , 
i.e. 𝑝𝑝1: 𝑝𝑝2: … : 𝑝𝑝𝑛𝑛 = 𝑝𝑝1

′ : 𝑝𝑝2
′ : … : 𝑝𝑝𝑛𝑛

′ . 
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Let us note also that the plane α is the intersection of the linearly independent 
hyperplanes α𝑖𝑖, 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1, defined by the equations: 
(5)   α𝑖𝑖: (𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖+1

′ − 𝑝𝑝𝑖𝑖+1𝑝𝑝𝑖𝑖
′)𝑥𝑥𝑖𝑖−1 + (𝑝𝑝𝑖𝑖+1𝑝𝑝𝑖𝑖−1

′ − 𝑝𝑝𝑖𝑖−1𝑝𝑝𝑖𝑖+1
′ )𝑥𝑥𝑖𝑖 + (𝑝𝑝𝑖𝑖−1𝑝𝑝𝑖𝑖

′ − 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖−1
′ )𝑥𝑥𝑖𝑖+1 = 0 

in case a) and 
(6)                    α𝑖𝑖:

𝑝𝑝𝑖𝑖+1+𝑝𝑝𝑖𝑖
𝑝𝑝𝑖𝑖−1

𝑥𝑥𝑖𝑖−1 − 𝑝𝑝𝑖𝑖−1+2𝑝𝑝𝑖𝑖+𝑝𝑝𝑖𝑖+1
𝑝𝑝𝑖𝑖

𝑥𝑥𝑖𝑖 + 𝑝𝑝𝑖𝑖−1+𝑝𝑝𝑖𝑖
𝑝𝑝𝑖𝑖+1

𝑥𝑥𝑖𝑖+1 = 0 

in case b). 
In case a) we have 𝒜𝒜 = 𝑙𝑙0 ∪ 𝒜𝒜′ ∪ 𝒜𝒜′′, where 𝒜𝒜′ is a trihedral angle with 

edges 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, and 𝒜𝒜′′ – that with edges 𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙4. The identity 𝑣𝑣3⃗⃗⃗⃗ + 𝑣𝑣4⃗⃗  ⃗ =
𝑣𝑣1⃗⃗⃗⃗ ∑ 𝑝𝑝𝑗𝑗

′𝑛𝑛
𝑗𝑗=1 + 𝑣𝑣2⃗⃗⃗⃗ ∑ 𝑝𝑝𝑗𝑗

𝑛𝑛
𝑗𝑗=1  shows that these two  trihedral  angles  lie  in  the  same  

3-dimensional vector subspace of Rn and 𝑙𝑙3, and 𝑙𝑙4 lie on different sides of the plane 
determined by 𝑙𝑙1 and 𝑙𝑙2. 

This 3-dimensional vector subspace can be described as the intersection  of 
𝑛𝑛 − 3 linearly independent hyperplanes β𝑖𝑖. For example, if Δ𝑘𝑘 ≠ 0 for some 𝑘𝑘 we 
may choose 
(7)   β𝑖𝑖:  𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑘𝑘−1,𝑖𝑖𝑥𝑥𝑘𝑘−1 + 𝑐𝑐𝑘𝑘,𝑖𝑖𝑥𝑥𝑘𝑘 + 𝑐𝑐𝑘𝑘+1,𝑖𝑖𝑥𝑥𝑘𝑘+1 = 0,  𝑖𝑖 = 1, … , 𝑘𝑘 − 2, 𝑘𝑘 + 2, … , 𝑛𝑛, 
where the coefficients 𝑐𝑐𝑘𝑘−1,𝑖𝑖, 𝑐𝑐𝑘𝑘,𝑖𝑖, 𝑐𝑐𝑘𝑘+1,𝑖𝑖 are the solutions 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 of the system: 

𝑝𝑝𝑘𝑘−1𝑥𝑥 + 𝑝𝑝𝑘𝑘𝑦𝑦 + 𝑝𝑝𝑘𝑘+1𝑧𝑧 = −𝑝𝑝𝑖𝑖 
𝑝𝑝𝑘𝑘−1

′ 𝑥𝑥 + 𝑝𝑝𝑘𝑘
′ 𝑦𝑦 + 𝑝𝑝𝑘𝑘+1

′ 𝑧𝑧 = −𝑝𝑝𝑖𝑖
′ 

𝑠𝑠𝑘𝑘−1𝑥𝑥 + 𝑠𝑠𝑘𝑘𝑦𝑦 + 𝑠𝑠𝑘𝑘+1𝑧𝑧 = −𝑠𝑠𝑖𝑖. 
The explicit formulas for these solutions are given by Kramer's formulas. 

4. Area attainable points in 1 

Now we will consider the case when the sides of the quadrilaterals are divided 
into infinitely many segments. 

Let 𝑝𝑝 = (𝑝𝑝𝑖𝑖)𝑖𝑖∈N and 𝑝𝑝′ = (𝑝𝑝𝑖𝑖
′)𝑖𝑖∈N be two infinite sequences of positive 

integers. We will say that an infinite sequence 𝑥𝑥 = (𝑥𝑥𝑖𝑖)𝑖𝑖∈N of real numbers is area 
attainable if there is a quadrilateral 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 in the plane and points 𝐴𝐴0 = 𝐴𝐴, 𝐴𝐴1, 𝐴𝐴2, … 
and 𝐷𝐷0 = 𝐷𝐷, 𝐷𝐷1, 𝐷𝐷2, … on the sides 𝐴𝐴𝐴𝐴 and 𝐷𝐷𝐷𝐷, such that 𝐴𝐴0𝐴𝐴1: 𝐴𝐴1𝐴𝐴2: … =
𝑝𝑝1: 𝑝𝑝2: …, 𝐷𝐷0𝐷𝐷1: 𝐷𝐷1𝐷𝐷2: … = 𝑝𝑝1

′ : 𝑝𝑝2
′ : … and 𝑥𝑥𝑖𝑖 = 𝒜𝒜𝒾𝒾 = [𝐴𝐴𝑖𝑖−1𝐴𝐴𝑖𝑖𝐷𝐷𝑖𝑖𝐷𝐷𝑖𝑖−1] for all 𝑖𝑖 ∈ N. 

Denote by 1 the space of all sequences 𝑟𝑟 = (𝑟𝑟𝑖𝑖)𝑖𝑖∈N of real numbers such that 
∑ |𝑟𝑟𝑖𝑖|∞

𝑖𝑖=1 < ∞. It is clear that the set 𝒜𝒜 of area attainable points is empty if 𝑝𝑝 1 or 
𝑝𝑝′ 1. 

Proposition 5. Let 𝑝𝑝, 𝑝𝑝′ ∈ 1 be given infinite sequences of positive real 
numbers and let Δ𝑖𝑖 (𝑖𝑖 ≥ 2) be the numbers defined in Proposition 4. 

a) If at least one of the numbers Δ𝑖𝑖 is different from 0, then 𝒜𝒜 is the union of 
two nonintersecting open trihedral angles in the same 3-dimensional vector 
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subspace of 1 with a common vertex 𝑂𝑂 = (0, 0, … ) and a common face, and an 
open ray with origin 𝑂𝑂 lying on this face and different from its edges. 

b) If all numbers Δ𝑖𝑖 are equal to 0, then 𝒜𝒜 is an open (2-dimensional) angle 
in 1 with vertex 𝑂𝑂. 

The proof of this proposition is the same as that of Proposition 4 with some 
obvious changes. For example, in the description of the set 𝒜𝒜′′ we may assume that 
𝐴𝐴𝑛𝑛 → 𝐵𝐵, 𝐷𝐷𝑛𝑛 → 𝐶𝐶 and then the identity: 

∑ 𝒜𝒜𝒿𝒿
∞
𝑗𝑗=𝑖𝑖
𝒜𝒜0

=
(𝑝𝑝0 + ∑ 𝑝𝑝𝑗𝑗

∞
𝑗𝑗=𝑖𝑖 )(𝑝𝑝0

′ +  ∑ 𝑝𝑝𝑗𝑗
′∞

𝑗𝑗=𝑖𝑖 )
𝑝𝑝0𝑝𝑝0

′  

implies that in this case 𝒜𝒜𝒾𝒾 = 𝑠𝑠(𝑝𝑝0𝑝𝑝𝑖𝑖
′ + 𝑝𝑝0

′ 𝑝𝑝𝑖𝑖 + 𝑡𝑡𝑖𝑖), where                                               
𝑡𝑡𝑖𝑖 = −𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖

′ + ∑ 𝑝𝑝𝑗𝑗
′∞

𝑗𝑗=𝑖𝑖 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖
′ ∑ 𝑝𝑝𝑗𝑗

∞
𝑗𝑗=𝑖𝑖 , 𝑖𝑖N.  

Then 𝑣𝑣3⃗⃗⃗⃗ , 𝑣𝑣4⃗⃗  ⃗  1 since ∑ (𝑠𝑠𝑖𝑖 + 𝑡𝑡𝑖𝑖)∞
𝑖𝑖=1 = 2 ∑ 𝑝𝑝𝑖𝑖 ∑ 𝑝𝑝𝑖𝑖

′∞
𝑖𝑖=1

∞
𝑖𝑖=1 . 

The three and two dimensional vector subspaces of 1 containing the set 𝒜𝒜 of 
area attainable sequences can be defined as intersections of countably many linearly 
independent hyperplanes in 1. Note also that Proposition 4 is a particular case of 
Proposition 5 in view of the natural embedding of Rn in 1. 

5. Back to R3 and R2 
The considerations in previous sections allow us to reduce the case of 1          

(in particular, Rn) to the cases R3 or R2. 
Proposition 6. Let 𝑝𝑝, 𝑝𝑝′ ∈ 1. 
a) If Δ𝑘𝑘 ≠ 0 for some 𝑘𝑘 ≥ 2, then 𝑥𝑥 ∈ 𝒜𝒜′precisely when (7) is fulfilled for all 

𝑖𝑖 ≠ 𝑘𝑘 − 1, 𝑘𝑘, 𝑘𝑘 + 1 and (∑ 𝑥𝑥𝑗𝑗
𝑘𝑘−1
𝑗𝑗=1 , 𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘+1) is an area attainable point in R3 

corresponding to the triples (∑ 𝑝𝑝𝑗𝑗
𝑘𝑘−1
𝑗𝑗=1 , 𝑝𝑝𝑘𝑘 , 𝑝𝑝𝑘𝑘+1) and (∑ 𝑝𝑝𝑗𝑗

′𝑘𝑘−1
𝑗𝑗=1 , 𝑝𝑝𝑘𝑘

′ , 𝑝𝑝𝑘𝑘+1
′ ), such 

that 𝐴𝐴 is between 𝐵𝐵 and 𝐸𝐸. 
Analogously, 𝑥𝑥 ∈ 𝒜𝒜′′ precisely when (7) is fulfilled for all 𝑖𝑖 ≠ 𝑘𝑘 − 1, 𝑘𝑘, 𝑘𝑘 + 1 

and (𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘 , ∑ 𝑥𝑥𝑗𝑗
∞
𝑗𝑗=𝑘𝑘+1 ) is an area attainable point in R3 corresponding to the 

triples (𝑝𝑝𝑘𝑘−1, 𝑝𝑝𝑘𝑘 , ∑ 𝑝𝑝𝑗𝑗
∞
𝑗𝑗=𝑘𝑘+1 ) and (𝑝𝑝𝑘𝑘−1

′ , 𝑝𝑝𝑘𝑘
′ , ∑ 𝑝𝑝𝑗𝑗

′∞
𝑗𝑗=𝑘𝑘+1 ), and such that 𝐵𝐵 is between 

𝐴𝐴 and 𝐸𝐸. 
b) If Δ𝑘𝑘 = 0 for all 𝑘𝑘 ≥ 2, then 𝑥𝑥 ∈ 𝒜𝒜 precisely when 𝑥𝑥1 > 0, (5) or (6) is 

fulfilled for all 𝑖𝑖 ≥ 2 and 
Σ2
Σ1

< 𝑥𝑥2
𝑥𝑥1

< 𝑝𝑝2𝑝𝑝2
′ + 𝑝𝑝2𝑝𝑝1

′ + 𝑝𝑝2
′ 𝑝𝑝1

𝑝𝑝1𝑝𝑝1
′ , 

where 
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Σ1 = 𝑝𝑝1𝑝𝑝1′ + 𝑝𝑝1∑𝑝𝑝𝑗𝑗′
∞

𝑗𝑗=2
+ 𝑝𝑝1′ ∑𝑝𝑝𝑗𝑗

∞

𝑗𝑗=2
, Σ2 = 𝑝𝑝2𝑝𝑝2′ + 𝑝𝑝2∑𝑝𝑝𝑗𝑗′

∞

𝑗𝑗=3
+ 𝑝𝑝2′ ∑𝑝𝑝𝑗𝑗

∞

𝑗𝑗=3
. 

We leave the proof to the readers noting that case b) is similar to that in 
Corollary 3. 

In case b) we have 
𝑝𝑝1 𝑝𝑝1 𝑝𝑝𝑖𝑖+1  
𝑝𝑝1′  𝑝𝑝2′  𝑝𝑝𝑖𝑖+1′  = 0 
𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑖𝑖+1  

and if 𝑝𝑝1:𝑝𝑝2: … ≠ 𝑝𝑝1′ :𝑝𝑝2′ : …, then 

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥1(𝑝𝑝2𝑝𝑝𝑖𝑖+1′ −𝑝𝑝𝑖𝑖+1𝑝𝑝2′ )+𝑥𝑥2(𝑝𝑝𝑖𝑖+1𝑝𝑝1′−𝑝𝑝1𝑝𝑝𝑖𝑖+1)
𝑝𝑝2𝑝𝑝1′−𝑝𝑝1𝑝𝑝2′

,  𝑖𝑖 ∈ N. 
Set 𝑥𝑥𝑖̃𝑖 = 𝑥𝑥𝑖𝑖/𝑝𝑝𝑖𝑖 , 𝑖𝑖 ∈ N and 

𝑠𝑠𝑖𝑖 = 𝑝𝑝1 + 𝑝𝑝𝑖𝑖
𝑝𝑝1 + 𝑝𝑝2

+ 2
𝑝𝑝1 + 𝑝𝑝2

∑𝑝𝑝𝑗𝑗
𝑖𝑖−1

𝑗𝑗=2
,  𝑖𝑖 ≥ 3. 

Corollary 7. If 𝑝𝑝 = 𝑝𝑝′ ∈ 1    then   a  sequence  of  positive  real  numbers  
𝑥𝑥 = (𝑥𝑥𝑖𝑖)𝑖𝑖∈N is area attainable if and only if 𝑥𝑥1 > 0, 

(8)                            𝑥𝑥𝑖𝑖 = 𝑥𝑥1̃ + 𝑠𝑠𝑖𝑖(𝑥𝑥2̃ − 𝑥𝑥1̃),  𝑖𝑖 ≥ 3  
and 

1 − 𝑝𝑝1 + 𝑝𝑝2
𝑝𝑝1 + 2∑ 𝑝𝑝𝑗𝑗∞

𝑗𝑗=2
< 𝑥𝑥2̃
𝑥𝑥1̃

< 2 + 𝑝𝑝2
𝑝𝑝1

. 

Proof. It is enough to check (8). For that purpose, we rewrite (6) in the form 
𝑥𝑥𝑗𝑗+1̃ − 𝑥𝑥𝑗̃𝑗
𝑝𝑝𝑗𝑗+1 + 𝑝𝑝𝑗𝑗

=
𝑥𝑥𝑗̃𝑗 − 𝑥𝑥𝑗𝑗−1̃
𝑝𝑝𝑗𝑗 + 𝑝𝑝𝑗𝑗−1

. 
Then  

𝑥𝑥𝑗𝑗+1̃ − 𝑥𝑥𝑗̃𝑗 = (𝑝𝑝𝑗𝑗+1 + 𝑝𝑝𝑗𝑗)
𝑥𝑥2̃ − 𝑥𝑥1̃
𝑝𝑝2 + 𝑝𝑝1

 

and it remains to sum up these identities for 𝑗𝑗 = 2, … , 𝑖𝑖 − 1.  
Note that for 𝑝𝑝 = 𝑝𝑝′ ∈ N the above corollary is a more compact expression of 

Proposition 4 in (Nikolov 2023). 
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Σ1 = 𝑝𝑝1𝑝𝑝1′ + 𝑝𝑝1∑𝑝𝑝𝑗𝑗′
∞

𝑗𝑗=2
+ 𝑝𝑝1′ ∑𝑝𝑝𝑗𝑗

∞

𝑗𝑗=2
, Σ2 = 𝑝𝑝2𝑝𝑝2′ + 𝑝𝑝2∑𝑝𝑝𝑗𝑗′

∞

𝑗𝑗=3
+ 𝑝𝑝2′ ∑𝑝𝑝𝑗𝑗

∞

𝑗𝑗=3
. 

We leave the proof to the readers noting that case b) is similar to that in 
Corollary 3. 

In case b) we have 
𝑝𝑝1 𝑝𝑝1 𝑝𝑝𝑖𝑖+1  
𝑝𝑝1′  𝑝𝑝2′  𝑝𝑝𝑖𝑖+1′  = 0 
𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑖𝑖+1  

and if 𝑝𝑝1:𝑝𝑝2: … ≠ 𝑝𝑝1′ :𝑝𝑝2′ : …, then 

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥1(𝑝𝑝2𝑝𝑝𝑖𝑖+1′ −𝑝𝑝𝑖𝑖+1𝑝𝑝2′ )+𝑥𝑥2(𝑝𝑝𝑖𝑖+1𝑝𝑝1′−𝑝𝑝1𝑝𝑝𝑖𝑖+1)
𝑝𝑝2𝑝𝑝1′−𝑝𝑝1𝑝𝑝2′

,  𝑖𝑖 ∈ N. 
Set 𝑥𝑥𝑖̃𝑖 = 𝑥𝑥𝑖𝑖/𝑝𝑝𝑖𝑖 , 𝑖𝑖 ∈ N and 

𝑠𝑠𝑖𝑖 = 𝑝𝑝1 + 𝑝𝑝𝑖𝑖
𝑝𝑝1 + 𝑝𝑝2

+ 2
𝑝𝑝1 + 𝑝𝑝2

∑𝑝𝑝𝑗𝑗
𝑖𝑖−1

𝑗𝑗=2
,  𝑖𝑖 ≥ 3. 

Corollary 7. If 𝑝𝑝 = 𝑝𝑝′ ∈ 1    then   a  sequence  of  positive  real  numbers  
𝑥𝑥 = (𝑥𝑥𝑖𝑖)𝑖𝑖∈N is area attainable if and only if 𝑥𝑥1 > 0, 

(8)                            𝑥𝑥𝑖𝑖 = 𝑥𝑥1̃ + 𝑠𝑠𝑖𝑖(𝑥𝑥2̃ − 𝑥𝑥1̃),  𝑖𝑖 ≥ 3  
and 

1 − 𝑝𝑝1 + 𝑝𝑝2
𝑝𝑝1 + 2∑ 𝑝𝑝𝑗𝑗∞

𝑗𝑗=2
< 𝑥𝑥2̃
𝑥𝑥1̃

< 2 + 𝑝𝑝2
𝑝𝑝1

. 

Proof. It is enough to check (8). For that purpose, we rewrite (6) in the form 
𝑥𝑥𝑗𝑗+1̃ − 𝑥𝑥𝑗̃𝑗
𝑝𝑝𝑗𝑗+1 + 𝑝𝑝𝑗𝑗

=
𝑥𝑥𝑗̃𝑗 − 𝑥𝑥𝑗𝑗−1̃
𝑝𝑝𝑗𝑗 + 𝑝𝑝𝑗𝑗−1

. 
Then  

𝑥𝑥𝑗𝑗+1̃ − 𝑥𝑥𝑗̃𝑗 = (𝑝𝑝𝑗𝑗+1 + 𝑝𝑝𝑗𝑗)
𝑥𝑥2̃ − 𝑥𝑥1̃
𝑝𝑝2 + 𝑝𝑝1

 

and it remains to sum up these identities for 𝑗𝑗 = 2, … , 𝑖𝑖 − 1.  
Note that for 𝑝𝑝 = 𝑝𝑝′ ∈ N the above corollary is a more compact expression of 

Proposition 4 in (Nikolov 2023). 
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pp. 30-33 (in Bulgarian).  
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