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Abstract. We study the relationship between the areas of the consecutive
quadrilaterals cut from a convex quadrilateral in the plane by means of a finite or
infinite number of straight lines intersecting two of its opposite sides. Moreover, we
obtain a geometric description of all possible areas obtained in this way given the
ratios of the lengths of consecutive segments in which the lines divide these two
opposite sides.
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1. Introduction

Let p1, p2, ..., prand pi', p2', ..., p,' be given n-tuples of positive real numbers.
For a convex quadrilateral ABCD in the plane denote by A4i, A, ..., A,—1 and
D1, D», ..., D, the points on the sides AB and CD, respectively such that A4, :
Aidr: ... i AeB=pi1:p2: ... ipnand DD\ : DDy ... : DyiC=pi':p2': ... : pi
(Fig. 1). The purpose of this note is to find a geometric description of the set A of
all possible n-tuples of areas A1, Ab,..., A, where

A= [AA]D]D], Ao = [A]AzDzD]], T A= [An, 1BCD, - 1],

when ABCD runs over all convex quadrilaterals in the plane. This problem is
motivated by the linear and analytic relations between A, A and A3 in the case
when n =3 and p; : p> : p3=pi': p2' : p3' found in (Nikolov 2023).
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Here we consider the case of arbitrary »n and arbitrary ratios (Section 2 and
Section 3) as well as that when the sides of the quadrilaterals are divided into
infinitely many segments (Section 4). We also show that the last case can be
reduced to that when n = 3 and n =2 (Section 5).

Understanding the article requires a basic knowledge of linear algebra and
analytic geometry.

2. Area attainable points in R®

We will first consider the case when the sides of the quadrilaterals are divided
into 3 segments. Let their ratios be determined by the triples (pi, p2, p3) and
(p1', p2', p3).

Definition. A point (xi, x2, x3) in the 3-dimensional Euclidean space R® is
called area attainable if there is a convex quadrilateral ABCD in the plane such that
(A1, Az, A) = (x1, X2, X3).

It is clear that the set A of all area attainable points depends on the triples
(p1, p2, p3) and (p1', p2', p3'), and is a union of rays in the open first octant R:> with
a common initial point O = (0, 0, 0).

Proposition 1. Set A = (p1 + p2+ p3) pi'paps' — (pi' + p2'+ p3') pi'2'ps.

a) If A#0, then A is the union of two nonintersecting open trihedral angles
with a common vertex O and a common face, and an open ray with origin O lying
on this face and different from its edges.

b) If A= 0, then A is an open angle with vertex O in the plane

(D o (paps' = ppa’) X1+ (p3pr' — pips') xa+ (pip2' — papi') x5 = 0,
when pi1 : p\' # ps : p3' or in the plane

P2t P P1+2p+ D pitp
() o 2p13x1— L pzz 2x, + 1p32x3=0,

when p1 : p\'=ps3 : p3'.

Note that if A =0 and two of the ratios p1 : pi', p2 : p2', p3: p3' are equal, then
the third one is also equal to them.

Proof. Set U1 = (p1,P2,P3), V2 = (P1,P2,P3), Vg = V1 + V3,

V3 = (P1P1,P2P5 + P2p1 + P2P1, P3P + P3(p1 +p2) + P3Py + p2)),

Uy = (P1p1 + P2 (P2 + p3) + P1(P2 + P3), P2P2 + P2P3 + P2P3,P3P3),
and denote by [, = {tvy : t > 0} the rays determined by these vectors.

Note first that if AB || CD, then [, € A. Let now AB } CD and denote by Q4
the set of convex quadrilaterals ABCD in the plane such that 4 lies between B and
E = AB N CD (the set Q, is defined analogously when B lies between A and F).
Set EA: AA; = po: 1, ED: DDy = pg: p1, Ao = [EAB] = spypg. Then
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Aot A _ (po + p1) (o + p1)

)

Ap PoDo , , ,
Ao+ A+ A, _ (po + 01 +p2)(po + p1 +p2)
Ay PoDo , , ' ) ,
Ao+ A+ Ay + Aj _ (po + p1 + P2 +03)(Po + 01 + P2 +D3)
So Do ’

from where we get
Ay = s(p1po + Pipo + P1P1),
Ay = 5(P2Po + P2Po + P22 + P21 + P2P1),
Az = 5(pspo + pipo + paps + P31 +p2) + P31 +p2))-

Let M, be the 3 X 3 matrix with rows vy, U5, V5. Then the identities above may
be written in the following matrix form (A4, A5, A3) = (Spg, SPo, S)M;. Since the
map ABCD — (spg, Spy, S) is a surjection from Q; onto the open first octant R ,* of
R? (take, for example, ZAED = 90°, AE = 2p, and E = sp)), it follows that the
set A’ of area attainable points for which 4 lies between E and B is the image of
R.> under the linear transformation M, of R with matrix M,.

Analogously, the set A" of area attainable points for which B lies between 4
and E is the image of R under the linear transformation M, of R® with matrix M,
whose rows are U7, Uy, U,.

It is clear that the set A of all area attainable
points is given by A =1y U A" U A" and now
we will describe geometrically this set depending

on whether A# 0 or A=0, i.e. if rank M; = i s ~

rank M, is equal to 3 or 2 (the ranks of M; and b,

M, are never equal to 1.) .
Let A # 0. Then A" and A" are the open i - I

trihedral angles with edges the rays 4, [,, 3 and 0

11,15, 1, (the images of the positive axes under the i

linear transformations M; and M,, respectively), Figure 2

and [, lies on the face with edges /; and [, (Fig.
2). It is easy to check that the scalar triple product of the vectors vy, V5, V5 is equal
to det M; = —A, and that of V7, V5, U, is equal to det M, = —A. In particular, these
two triples of vectors determine opposite orientations on R* and therefore
A'N A" = @. Note that this follows also from the identity:

v3+ v, = (p1 + 02 +p3)V1 + (p1 + 02 + P33
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Let now A= 0. Then det M; = det M, = 0 and the rays l,, [1, [,, I3, I, lieon a
plane a > A. It is defined by (1) or (2), which follows respectively from
alvy X vyora Lvs X v,

Note that the image Mi(R.?) (resp. M2 (R, %)) consists of the points in R* whose
vectors are linear combinations of V7,7V, V5 (resp. vy, V5, U, ) with positive
coefficients. A direct check shows that v; and v, are linear combinations of 5 and
v, with positive coefficients. Hence in the case p;:p; # p3:p5, we have
A =2(,l3), A" =c2(1l) if lLcz(y,l;) and A = 2(1,13),
A" = 2(,1,)if 1} € £(l,,13); in particular, Iy € (I3,1,) = A' NA".In the
case py:p; = p3: ps it follows that A" = 2(ly,l3) and A" = 2(ly,1,). Hence in
both cases A = 2(l3,1y).

The above arguments imply the following:

Corollary 2. If AB|| CD, then
3) Ay i Ay s Az = (py +p1): (p2 + p2): (p3 + p3).
Conversely, if A # 0 and (3) is fulfilled, then AB || CD.

Remark. a) If p;: p,: p3 = p1: p3:p3, then AB|| CD follows from the weaker
assumptions A4 : Ay = pP1:P, Ay i Az = pyips or Az + A = p3ip-

b) If A= 0, but p,:p; # p3: p3, then there are quadrilaterals from Q, and Q,,
such that (3) is fulfilled.

The proof of Proposition 1 implies also an analytic description of the area
attainable points A. For example, we have the following:

Corollary 3. (Nikolov 2023, Proposition 3) If py: p,: 3 = b1:D3: P3, then the
area attainable points (x1, X, X3) are those for which (2) is fulfilled, x; > 0 and

p3 X3 p3(2p1+2p2+D3)
“4) —< 2 :
p1(P1+2p2+2p3) X1 p1
Proof. Note that
3={t (p%.pz(pz +2p1),p3(2py + 2p, + p3)) 1t >0},

ly = {t(p1(p1 + 2p2 + 2p3), P2 (P2 + 2p3), p3): t > 0}
and it follows from the proof of Proposition 1 that the area attainable points
(x4, x5, x3) are those for which (2) is fulfilled, and
x1 = Ap{ + up1 (p1 + 2p; + 2p3), X3 = Ap3(2py + 2p; + p3) + ups, A u > 0.
Solving this system with respect to A and g we see that it is equivalent to x; > 0
and (4).

3. Area attainable points in R"
In this section we will obtain a geometric description of the set A of area
attainable points when the sides AB and CD of a convex quadrilateral ABCD in the
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plane are divided into n segments. In this case A is a subset of the n-dimensional
Euclidean space R”.

Let (py,..,py) and (pq,...,ps,) be two n-tuples of real numbers which
determine the ratios of the consecutive n segments of which the sides AB and CD
are divided. The case when these two n-tuples coincide has been considered in
(Nikolov 2023), where an analytic description of the set A is given.

If n = 2, then the proof of Proposition (1) for p; = p3 = 0 implies that A is
an open angle with vertex O and arms

{t(p1p1,P2p2 + Pap1 + Pap1):t > 0}, {t(p1p1 + P1p2 + P1D2, P2P2): t > 0},
The analogue of Proposition (1) in higher dimensions is the following:
Proposition 4. Let n = 4 and set:

A = (Di—1 + Pi + P )Pi-1PisaPi — Dica + Di + Piv)Pi-1PisaPis 2Sisn— 1L

a) If at least one of the numbers A; is different from 0, then A is the union of two
nonintersecting open trihedral angles in the same 3-dimensional vector subspace
of R" with a common vertex 0 = (0,0, ...,0) and a common face, and an open ray
with origin O lying in this face and different from its edges;

b) If all numbers A; are equal to 0 then A is an open angle with vertex O.

Sketch of proof. Set vy = (py, ..., Pn), V2 = (01, -, Pr), Vo = Vq + V3,
V3 = (S, .., Sp), Vg = (tq, ..., t,), Where

4 L n n
i =—pip{+pi2p}+p22pj,ti =—pip£+pi2p}+p52pj, 1<i
j=1 j=1 j=i j=i
=n

Using the above notations and those in Section 1 we see that if AB I CD, then
the areas Ay, Ay, ..., A, are given by the following formulas: A; = s(pyp; +
pobi + i), 1<i<n or A; =s(pep; +pop; +ti),1 <i<n, depending on
whether A lies between E = AB N CD and B or B lies between A and E.
Denote by [; = {tv;":t > 0} the rays determined by the vectors v;,0 < j < 4.
In case b) the set A is an open angle with vertex O and arms [ and l,, which
determine a plane o in R”. Let us note that in this case either
Dj i Pk # Pj:DPrf Orj # k, 0 pyipy i .iPp =P1: D3Py To see this we
set q; = p;i/Pi—1,9; = p;/Pi—, and rewrite the identities A; = 0 in the form
o (1+Q£+1)Qi+1( —q)
di+1 qi+1 (1 + qi) qi q;)-
It follows that if g, # g3, then the sequence with general term p; 41 /p; 4 is strictly
monotonic and therefore p; : py # pj : py for j # k. If q; = q then g1 = qi1q,

L. P12 1Dy = D1 D3 i Py
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Let us note also that the plane a is the intersection of the linearly independent
hyperplanes a;,2 < i < n — 1, defined by the equations:
(5) i (Pipis1 — Piv1PDXic1 + PigaPiy — PicaPir )X + Picali — PiPi—1)Xi41 =0
in case a) and

(6) (08}

in case b).

In case a) we have A = [y U A" U A", where A’ is a trihedral angle with
edges ly,1ly,15, and A" — that with edges [,l5,1,. The identity v5 + v, =
U1 Xjo1 D) + V3 Xj=1 pj shows that these two trihedral angles lie in the same

:Pi+1‘|'29ixi_1 __ Pi-1+2pi+Dit1 x; + Pi-1tDi
Pi-1 pi Pi+1

i+1 =

3-dimensional vector subspace of R” and [, and [, lie on different sides of the plane
determined by [, and [,.
This 3-dimensional vector subspace can be described as the intersection of
n — 3 linearly independent hyperplanes f3;. For example, if A;, # 0 for some k we
may choose
(7) Bt x; + Cpoq,iXp—q + CriXp + Cryr,iXi41 =0, i =1,k =2,k +2,..,n,
where the coefficients cy_1 ;, Cx ;, Cx+1,; are the solutions x, y, z of the system:
Pk-1X + DY + Pk+1Z = —D;
Pie—1X + DY + P12 = —P;
Sk—1X + Sky + Sg+1Z = —S;.
The explicit formulas for these solutions are given by Kramer's formulas.

4. Area attainable points in /'

Now we will consider the case when the sides of the quadrilaterals are divided
into infinitely many segments.

Let p = (p;)ien and p' = (p;)iex be two infinite sequences of positive
integers. We will say that an infinite sequence x = (x;);en of real numbers is area
attainable if there is a quadrilateral ABCD in the plane and points Ay = 4, 41, A5, ...
and Dy =D, D4,D,,... on the sides AB and DC, such that AygA;:4:4;,:...=
P1:D2: s DgD1:D1Dy: ... = p1ipy: .and x; = A; = [A;_1A;D;D;_1] foralli € N.

Denote by ¢' the space of all sequences r = (17) ;e of real numbers such that
¥ || < oo. Tt is clear that the set A of area attainable points is empty if pe ¢' or
pl$ ﬁl,

Proposition 5. Let p,p’ € [' be given infinite sequences of positive real
numbers and let A; (i = 2) be the numbers defined in Proposition 4.

a) If at least one of the numbers A; is different from 0, then A is the union of
two nonintersecting open trihedral angles in the same 3-dimensional vector
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subspace of ¢' with a common vertex 0 = (0,0, ...) and a common face, and an
open ray with origin O lying on this face and different from its edges.

b) If all numbers A; are equal to 0, then A is an open (2-dimensional) angle
in " with vertex 0.

The proof of this proposition is the same as that of Proposition 4 with some
obvious changes. For example, in the description of the set A'' we may assume that
A, = B, D,, = C and then the identity:

Yii Ay _ (Po + Z?ozipj)(P(') + Z?‘;ip})
Aoy PoPo
implies  that in  this case  A; =s(pop; + pop; +t;),  where
ti = —pipi + X5 PjDi t Pi Xj=ipj, LEN.
Then 73,75 ¢ (' since $52,(s; +t;) = 252, p; X241 Pi-

The three and two dimensional vector subspaces of ¢' containing the set A of
area attainable sequences can be defined as intersections of countably many linearly
independent hyperplanes in ¢'. Note also that Proposition 4 is a particular case of
Proposition 5 in view of the natural embedding of R” in ¢'.

5. Back to R® and R?

The considerations in previous sections allow us to reduce the case of ¢
(in particular, R") to the cases R* or R?.

Proposition 6. Let p,p’ € ¢'.

a) If A, # 0 for some k = 2, then x € A'precisely when (7) is fulfilled for all

i+k—1kk+1 and (Z;‘;ll xj,xk,xk+1) is an area attainable point in R>

corresponding to the triples (Z?;ll pj,pk,pk+1) and (Z?;ll p]'-,p;'c,p;'ﬁl), such

that A is between B and E.
Analogously, x € A" precisely when (7) is fulfilled for all i # k — 1,k, k + 1
and (xk_l,xk,z;'; k+1xj) is an area attainable point in R® corresponding to the
triples (py—1, Pior Djek+1 p;) and (pr.—1, D ikt p]'-), and such that B is between
AandE.
b) If A, = 0 for all k = 2, then x € A precisely when x; > 0, (5) or (6) is
fulfilled for all i = 2 and
§<Q<mm+mﬁ+MM
X X P1P1

)

where
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Zy —p1p1+plzp, +p12p,.22 = p2p> +pzZp, +p22p,

We leave the proof to the readers noting that case b) is s1m11ar to that in
Corollary 3.
In case b) we have

P1 P11 DPi+1
! ! ! —
P1 P2 DPis1 | =0
X1 X2 Xi4q
and if py: py: ... # P1:p3: .., then
_ x1(P2p1{+1—pi+1pé)+x2(pi+1P£—P1pi+1) .
xi+1 - 7 7 ) l E N.
P2P1—P1D>

Set X; = x;/p;,i € N and

+ p; 2
mrn 2Ny
p1tDP2 P1t+D2 =
Corollary 7. If p = p’ € (' then a sequence of positive real numbers
x = (x;)ien is area attainable if and only if x; > 0,

(8) xp =% +s5;07-%), =3
and
n =
1-—P1thr %2, P2
p1+2X5L,pi X P1
Proof. It is enough to check (8). For that purpose, we rewrite (6) in the form
a-% _ %%
Pj+1+D; Pj+tDj-1
Then

— Xz — X1
X1 — % = (pjsr +p;) P
and it remains to sum up these identities for j = 2, ...,i — 1.
Note that for p = p’ € N the above corollary is a more compact expression of
Proposition 4 in (Nikolov 2023).
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