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Abstract. The main focus of this work is the research of the resulting sound 
caused by a constant airflow through the open end of a bottle by varying the 
relevant parameters. For a more in depth analysis, additional experiments with test 
tubes are carried out. The study aims to describe and document the influence of the 
parameters experimentally and with the help of theoretical apparatus, some of which 
are: Form, shape and material of the bottle, properties of the gas, filling agent. The 
aforementioned variables are defined and sorted on the basis of their effect on the 
process. Unpredicted acoustic properties emerge when the shape of the bottle is varied 
significantly. New methods for physical data collection such as an AFS (Acoustic 
Feedback System) and SRP (Solids of Revolution Parameterization) are introduced 
and compared to the already existing ones, in order to better equate for the emergent 
acoustic properties. For a holistic evaluation various samples and relations from the 
well-described acoustic properties are tested against their contemporary physical 
description for their predictive power. Similar methods are introduced to the analysis 
of the previously undescribed acoustic phenomena and presented with a multi-layered 
approach for full comparison.

Keywords: acoustic feedback system; airflow system; solid of revolution; 
resonance; Helmholtz resonance; standing wave

1. Introduction 
The contemporary theoretical modelling fails to account for the full spectral 

range of the acoustic feedback from a tested system. Present approximations, such 
as “Helmholtz Resonance” and “Standing Wave Resonance”, are ubiquitously ap-
plied, yet are not enough to describe emergent acoustic phenomena. The methodol-
ogy of acoustic excitation is crucial for the accurate data gathering and minimiza-
tion of external influences, foreign to the acoustic system. All of the aforementioned 
observations are fundamental to the motivations of conducting this research.

2. Experimental Setup
Two methods for data collection are described. The results from the systems will 

be compared in the section “Experimental Results”, labelled for their respective or-

From the Research Laboratories



596

G.I. Ivanov

igin (AS/AFS). In both instances the sound is recorded and analysed with the audio 
editing software “Audacity”. For setup one the signal transformations are carried 
out by the software and for AFS - done as described in section “Background”.

2.1 Airflow System (AS)
An SR (Solid of Revolution) and a stationary microphone are positioned with the 

space between them a constant - 0,5 m. This provides consistency in the data, which 
allows for their simultaneous application as a basis for comparison; For minimizing 
the fluctuations of the speed of air, the airflow is supplied with a hot air gun at a con-
stant setting of 30 C; The basic mechanism is that of “Acoustic Excitation”, where the 
resonant modes are respectively excited and produce a descriptive frequency.

2.2 Acoustic Feedback System (AFS)
This method for data acquisition was developed for minimizing external and 

background noise and focuses on the acoustic feedback, given by the system. The 
SR is positioned above a speaker and under a microphone (Fig.1). A sweep signal 
(Linear-Frequency Chirp) with time-domain function:
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tional range.  Novel parameterizations for the description of the physical bodies are 
introduced and evaluated.

3.1 Resonance
A specific section, dedicated to the topic of resonance, is required for clearing 

up the reason behind the phenomenon and validating the newly introduced experi-
mental setup (AFS): A phenomenon of resonance is observed when the frequency 
of a forced vibration approaches the natural frequency of the system  and in the pro-
cess is amplified. The mechanism of occurrence is the transfer of energy between 
two or more different modes. The mechanism of an AFS utilizes this phenomenon 
in the process of looping the feedback from the acoustic system - The continuous 
damping of the foreign frequency to the system, coupled with the amplification 
of the natural resonant modes leads to obtaining a clear spectrum of the acoustic 
properties of a given SR.

3.2 Signal Analysis
In order the audio signal to be processed and used as data a few transformations 

are required. The audio signal is recorded in small samples, making the setup a dis-
crete-time system (Fig.6). The given data points are obtained from the DAQ Setup 
(Data Acquisition).
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The type of signal that an AFS works with is periodic - the excited air column 
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Where N is the minimum integer for which the relation holds and is called a 
period. We define energy of the signal as:
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Therefore the spectral density function  is:
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This in turn will allow for the analysis in section “Parameter Correlation” with 

parameter a.

3.3 Existing Models
There are several existing models describing the acoustic properties of the os-

cillating air within a cavity, based on its form. The problem is that despite the accu-
rate results in their functional range, they are still highly limited in their predictive 
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power for the whole spectrum.  This section is split into two parts dedicated respec-
tively to each model and focuses on finding the border cases and their reason for 
emergence. Particular corrections to the definitions of the parameters are applied - a 
thorough explanation is present in the subsection “Experimental correction”. Each 
of the models is used for the description of a particular phenomenon. For clarity 
purposes at the point of application the reasoning behind it is cleared.

The described models are:

3.3.1 Helmholtz Resonance 
The original experiment is carried out with a specifically created object that is 

spherical and has a great relative difference between the radius of the cross section 
of the open end and the widest part, as seen from (Fig.4). This allows for modelling 
the movement of the air as a separate oscillation of a mass (m), where the rest of the 
volume acts as a spring. The speed with which the process happens is high, which 
then allows us to assume that the process is adiabatic (the system is thermally in-
sulated):

limit. For this reason, the best way is to scale down the spectrum to one that is represented by 
values of 𝐿𝐿𝑝𝑝
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1. Open at both ends (2.1) –as it is discussed later, this applies to the harmonic 
oscillations of the air within the neck of the SR (if present). In the equation n is the 
number of the harmonic oscillation (n = 1 is the fundamental frequency) and can have 
the value of any integer (n = 1, 2, 3... n). An illustration can be found in the 
“Appendix”. 

 

 



602

G.I. Ivanov

This can be then tested by changing the apparent volume of the cavity with some 
value of

cylinder on the top of the volume. From our experiments this proved to be a fairly inaccurate 
estimation. The newly defined value can be empirically deduced from the following 
functional relations: 

 

 

 

This can be then tested by changing the apparent volume of the cavity with some value of 

 

 

After an empirical examination a claim can be made of the physical background for such a 
difference in  - The air volume is active in L equal to the distance between the open end 
and the widest point of the SR. Fig (4) shows a table with some of the corrected values. 

 

 

 

3.3.3 Standing Wave 

In the case of the aforementioned model the subject of study is the oscillation of an air column 
within a cylinder. The expression describing the process has several variations. In the context 
of this work only two are used - a cylinder open at both ends and a cylinder open at one end. 
In this model there are clearly defined nodes (zero displacement) and anti-nodes (maximum 
displacement). This entails the presence of secondary harmonic oscillations because of the 
possibility to fit different patterns of air column displacements that fulfil the conditions. 

 

 

 

 

 

 

1. Open at both ends (2.1) –as it is discussed later, this applies to the harmonic 
oscillations of the air within the neck of the SR (if present). In the equation n is the 
number of the harmonic oscillation (n = 1 is the fundamental frequency) and can have 
the value of any integer (n = 1, 2, 3... n). An illustration can be found in the 
“Appendix”. 

 

 

After an empirical examination a claim can be made of the physical background 
for such a difference in  - The air volume is active in L equal to the dis-
tance between the open end and the widest point of the SR. Fig (4) shows a table 
with some of the corrected values.

cylinder on the top of the volume. From our experiments this proved to be a fairly inaccurate 
estimation. The newly defined value can be empirically deduced from the following 
functional relations: 

 

 

 

This can be then tested by changing the apparent volume of the cavity with some value of 

 

 

After an empirical examination a claim can be made of the physical background for such a 
difference in  - The air volume is active in L equal to the distance between the open end 
and the widest point of the SR. Fig (4) shows a table with some of the corrected values. 

 

 

 

3.3.3 Standing Wave 

In the case of the aforementioned model the subject of study is the oscillation of an air column 
within a cylinder. The expression describing the process has several variations. In the context 
of this work only two are used - a cylinder open at both ends and a cylinder open at one end. 
In this model there are clearly defined nodes (zero displacement) and anti-nodes (maximum 
displacement). This entails the presence of secondary harmonic oscillations because of the 
possibility to fit different patterns of air column displacements that fulfil the conditions. 

 

 

 

 

 

 

1. Open at both ends (2.1) –as it is discussed later, this applies to the harmonic 
oscillations of the air within the neck of the SR (if present). In the equation n is the 
number of the harmonic oscillation (n = 1 is the fundamental frequency) and can have 
the value of any integer (n = 1, 2, 3... n). An illustration can be found in the 
“Appendix”. 

 

 

3.3.3 Standing Wave
In the case of the aforementioned model the subject of study is the oscillation of 

an air column within a cylinder. The expression describing the process has several 
variations. In the context of this work only two are used - a cylinder open at both 
ends and a cylinder open at one end. In this model there are clearly defined nodes 
(zero displacement) and anti-nodes (maximum displacement). This entails the pres-
ence of secondary harmonic oscillations because of the possibility to fit different 
patterns of air column displacements that fulfil the conditions.

cylinder on the top of the volume. From our experiments this proved to be a fairly inaccurate 
estimation. The newly defined value can be empirically deduced from the following 
functional relations: 

 

 

 

This can be then tested by changing the apparent volume of the cavity with some value of 

 

 

After an empirical examination a claim can be made of the physical background for such a 
difference in  - The air volume is active in L equal to the distance between the open end 
and the widest point of the SR. Fig (4) shows a table with some of the corrected values. 

 

 

 

3.3.3 Standing Wave 

In the case of the aforementioned model the subject of study is the oscillation of an air column 
within a cylinder. The expression describing the process has several variations. In the context 
of this work only two are used - a cylinder open at both ends and a cylinder open at one end. 
In this model there are clearly defined nodes (zero displacement) and anti-nodes (maximum 
displacement). This entails the presence of secondary harmonic oscillations because of the 
possibility to fit different patterns of air column displacements that fulfil the conditions. 

 

 

 

 

 

 

1. Open at both ends (2.1) –as it is discussed later, this applies to the harmonic 
oscillations of the air within the neck of the SR (if present). In the equation n is the 
number of the harmonic oscillation (n = 1 is the fundamental frequency) and can have 
the value of any integer (n = 1, 2, 3... n). An illustration can be found in the 
“Appendix”. 

 

 

Open at both ends (2.1) –as it is discussed later, this applies to the harmonic 
oscillations of the air within the neck of the SR (if present). In the equation n is the 
number of the harmonic oscillation (n = 1 is the fundamental frequency) and can 
have the value of any integer (n = 1, 2, 3... n). An illustration can be found in the 
“Appendix”.

cylinder on the top of the volume. From our experiments this proved to be a fairly inaccurate 
estimation. The newly defined value can be empirically deduced from the following 
functional relations: 

 

 

 

This can be then tested by changing the apparent volume of the cavity with some value of 

 

 

After an empirical examination a claim can be made of the physical background for such a 
difference in  - The air volume is active in L equal to the distance between the open end 
and the widest point of the SR. Fig (4) shows a table with some of the corrected values. 

 

 

 

3.3.3 Standing Wave 

In the case of the aforementioned model the subject of study is the oscillation of an air column 
within a cylinder. The expression describing the process has several variations. In the context 
of this work only two are used - a cylinder open at both ends and a cylinder open at one end. 
In this model there are clearly defined nodes (zero displacement) and anti-nodes (maximum 
displacement). This entails the presence of secondary harmonic oscillations because of the 
possibility to fit different patterns of air column displacements that fulfil the conditions. 

 

 

 

 

 

 

1. Open at both ends (2.1) –as it is discussed later, this applies to the harmonic 
oscillations of the air within the neck of the SR (if present). In the equation n is the 
number of the harmonic oscillation (n = 1 is the fundamental frequency) and can have 
the value of any integer (n = 1, 2, 3... n). An illustration can be found in the 
“Appendix”. 

 

 
Open at one end (2.2) - this describes the oscillation of the air column within a 

cylinder with one open end and as it is later seen, it also applies to any SR with one 



603

Applied Sampling Methodology...

open end. In the equation n is the number of the harmonic oscillation (n = 1 is the 
fundamental frequency) and can have the value of any odd integer (n = 1, 3, 5... n).
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3.4 Solids of Revolution Parameterization 

As it is seen in the “Analysis” section the familiar parameterization of V, L, H and S is useful 
for determining particular frequencies, but is far from enough to describe the full acoustic 
properties, some of which are very important for their various applications. For this reason a 
new parameterization is introduced, in order to fully describe the given properties of the 
system. If we follow this line of reasoning the best parameterization of an object/cavity would 
be a 3-D render. The problem with such a method of course is that it is very resource-draining 
and experimentally hard to determine. This creates the need for a more optimal, but still an 
accurate estimation of the given shape. For this reason the Solids of Revolution 
Parameterization is introduced. Thus far all experiments are carried out with bodies that fit 
the description of a SR that is a shape that can be represented mathematically as the integral 
of a particular curve around the axis of symmetry: 
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A similar method of discrete sampling (in the section Signal Analysis) needs to 
be introduced in order for the parameterization to serve as input data. For this reason 
a process of sampling the SRs is created, where different shapes and dimensions are 
represented with the same sample size. The process of sampling goes through out-
lining the silhouette of the SR from a photo and then sampling equidistant points. 

This method allows for customization and modulation of the sample size - an 
optimization can be made based on the preferred goal - accuracy or resource effi-
ciency. On the x-axis the coordinates vary from 0 (at the base of the SR) to h, which 
is respectively the height of the SR. In our case the dimensions of [x] = meters for 
optimization purposes - as such every , for every tested SR 
is under 1 m in height. If necessary for the application redefinitions of the dimen-
sions can easily be made.

A sample point is , following the relation of ,  

where  and The data follows to be represented in a matrix, 
where:
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4. Experimental results & Analysis 

This section is dedicated to the experimental results from the 2 acoustic systems - AS & AFS 
and their analysis using the different methods, presented in section Background. The main 
focus is the evaluation of the produced data and the review of the achieved results with the 
various models. A few methods of increasing substantially the size of the datasets are 
discussed in the subsections Volume & Length of the neck 

4.1 Methods for increasing the size of the datasets 

The main problem with collecting physical data is that it is highly inefficient and almost 
impossible to do experiments with 1000+ bottles in order to achieve a sufficient database to 
make any claims onto the validity of the data. For that reason the following two methods are 
presented in order to tackle the fundamental problem we have with physical systems. Two 
ways to increase substantially the given datasets is by varying the acoustic properties of a 
single SR. By applying them we can achieve a highly increased efficiency in the data we can 
gather from using only one SR. That is possible by displacing the air within the cavity with a 
form of a medium, which does not itself change the acoustic properties other than with its 
own volume (as it can be seen in the subsection Filling agent). Another form of variation is 
discussed in subsection Length of the neck, where by respectively elongating the neck of the 
given cavity, the acoustic properties change themselves. The aforementioned methods are 
used in order to produce more training data - this allows for more than 100x10 acoustic 
variations per SR. 
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gather from using only one SR. That is possible by displacing the air within the cavity with a 
form of a medium, which does not itself change the acoustic properties other than with its 
own volume (as it can be seen in the subsection Filling agent). Another form of variation is 
discussed in subsection Length of the neck, where by respectively elongating the neck of the 
given cavity, the acoustic properties change themselves. The aforementioned methods are 
used in order to produce more training data - this allows for more than 100x10 acoustic 
variations per SR. 

4. Experimental results & Analysis
This section is dedicated to the experimental results from the 2 acoustic systems 

- AS & AFS and their analysis using the different methods, presented in section Back-
ground. The main focus is the evaluation of the produced data and the review of the 
achieved results with the various models. A few methods of increasing substantially 
the size of the datasets are discussed in the subsections Volume & Length of the neck

4.1 Methods for increasing the size of the datasets
The main problem with collecting physical data is that it is highly ineffi-

cient and almost impossible to do experiments with 1000+ bottles in order to 
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achieve a sufficient database to make any claims onto the validity of the data. 
For that reason the following two methods are presented in order to tackle the 
fundamental problem we have with physical systems. Two ways to increase 
substantially the given datasets is by varying the acoustic properties of a single 
SR. By applying them we can achieve a highly increased efficiency in the data 
we can gather from using only one SR. That is possible by displacing the air 
within the cavity with a form of a medium, which does not itself change the 
acoustic properties other than with its own volume (as it can be seen in the 
subsection Filling agent). Another form of variation is discussed in subsection 
Length of the neck, where by respectively elongating the neck of the given cavi-
ty, the acoustic properties change themselves. The aforementioned methods are 
used in order to produce more training data - this allows for more than 100x10 
acoustic variations per SR.

4.1.1 Volume
In this subsection water is used as a filling medium to the acoustic cavity. The 

air that previously filled the SR is displaced, and thus directly changing the volume 
that influences the process (described through the physical terms of the Helmholtz 
model (1) - a change in the air that acts as a spring). The reason behind using water 
as a filling medium rather than other variants is examined in the subsection “Filling 
agent”. As it can be seen in the charts bellow, with just one SR a lot of sample sizes 
can be achieved by simply displacing the air in the acoustic cavity.
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The way that the volume is displaced is by using some kind of a filling agent. This section 
proves that the effect the filling agent has on the acoustic properties is just with its effective 
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a lot more dense and viscous than water and yet the results are within the range of error. 

 

 

 

 

 

 

 

4.1.2 Filling Agent
The way that the volume is displaced is by using some kind of a filling agent. 

This section proves that the effect the filling agent has on the acoustic properties 
is just with its effective volume. The following experiments are done by adding 
glycerol to the system - a fluid that is a lot more dense and viscous than water and 
yet the results are within the range of error.



606

G.I. Ivanov

 

 

 

 

 

4.1.1 Volume 

In this subsection water is used as a filling medium to the acoustic cavity. The air that 
previously filled the SR is displaced, and thus directly changing the volume that influences 
the process (described through the physical terms of the Helmholtz model (1) - a change in 
the air that acts as a spring). The reason behind using water as a filling medium rather than 
other variants is examined in the subsection "Filling agent". As it can be seen in the charts 
bellow, with just one SR a lot of sample sizes can be achieved by simply displacing the air in 
the acoustic cavity. 

 

 

 

 

 

 

 

 

 

4.1.2 Filling Agent 

The way that the volume is displaced is by using some kind of a filling agent. This section 
proves that the effect the filling agent has on the acoustic properties is just with its effective 
volume. The following experiments are done by adding glycerol to the system - a fluid that is 
a lot more dense and viscous than water and yet the results are within the range of error. 
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From all for the presented spectra can be observed various frequency peaks 
and disturbances. To all of them there are recurrent patterns between the various 
frequencies that can easily be deduced as the secondary oscillations to the system. 
Average accuracy per noted peak on the table is 94%.

4.3 AFS Experimental Setup & Data Analysis
On the table below are depicted the initial input signal (AF1) and the respective 

acoustic response, given by the system for SR B1. Basing our reasoning on the 
physical phenomenon of Resonance described in the subsection from Background 
with the same name, we can claim that every peak, resting above the line of (AF1) 
is that of a resonant mode due to the observed amplification.
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Using the AFS method we are to expect a greater accuracy due to the elimina-
tion of a lot of the background noise and errors from the program. This can be seen 
from the slight increase in accuracy of 98% for the applied models at the peaks.

5. Transitional Forms
In the case of some bottles there are emergent acoustic properties that are not 

described by the aforementioned models. On Fig. 19, 20, 21 и 22 there are particu-
lar peaks that are different than the fundamental frequency. After a short analysis 
the main peaks can be attributed to the secondary harmonic oscillations of the air 
within the neck of the bottle  A more interesting observation is the pres-
ence of peak  After a comparison it can be seen that the value of that frequency 
corresponds to the resonant one in a cylinder that is open at one end and has the 
height of the investigated bottle. From those observations a conclusion can be made 
about the actual resonance in the bottle and it is the fact that the air oscillates with 
simultaneously with different frequencies. For some bottles the peak  is not that 
pronounced (the loudness is lower). A possible reason behind this phenomenon can 
be attributed to the shape of the bottle, which is studied in the following section.

6. Shape
The hypothesis that is tested in this section assumes that the shape determines 

the ratio between the loudness of the peaks from the two models. In the expression 
of the Helmholtz resonance there are 3 defining parameters. Those values do not 
serve as a sufficient condition to unambiguously depict the shape of the bottle. It is 
possible that for the same values of those 3 parameters, there could be significant 
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variation in its contour. In subsections “Relation between the two models” and 
“Parametric correlation” a method for testing the influence of the shape is laid out.

6.1 Correlation between the two models
For the hypothesis to be a valid claim (that the shape of the bottle is what deter-

mines the emergent properties). The ratio between the two peaks ( ) has to stay 
a constant. On Fig.23 the ratio between the loudnesses is plotted against the time. 
The ratio stays fixed, which then allows us to make the claim that it is dependent 
on the shape of the bottle.

In the case of some bottles there are emergent acoustic properties that are not described by the 
aforementioned models. On Fig. 19, 20, 21 и 22 there are particular peaks that are different 
can be attributed to the shape of the bottle, which is studied in the following section. 
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On Fig.24 there is a positive correlation, so the graph suggests a relationship 
between the parameter a and the formation of the 2 models. As it it is evident, the 
loudness of the frequency from (2.2) increases while the fundamental frequency 
(1) decreases. This proves that the shape has an influence, undocumented before. 
It is important to note that the relationship is not linear. What is seen is the local 
derivative of the function. Methods with which the relationship could be found are 
proposed in subsection “Analysis for future optimization”.

7. Applications
The project is structured in such a way, that every section has a personal contri-

bution and an application for it, which in turn can be used independently or simul-
taneously with the other. The main focuses are:

Acoustic Feedback System (AFS) - The construction of the AFS allowed for full 
optimization of the produced data and an empirical way of determining the acoustic 
modes. The applications fall in various fields like music instrument tuning, spatial 
mapping, metal vapour lasers and more. The mechanism of \Positive Feedback is 
used in various resonant systems, reaching further than even the field of acoustics.

Solids of Revolution Parameterization (SRP) - This is a method of transform-
ing 3-D symmetric objects into matrix form with different sample sizes and then be 
utilized for various algorithms and forthcoming theoretical models. Its application 
falls in the fields of nonlinear and spatial acoustics, as well as acoustic-tracing.

8. Educational Value
The general setup of the experiment provides and inexpensive and efficient 

way of studying fundamental concepts in acoustics. The study of the correspond-
ing physical modelling can be done on multiple educational levels, making it an 
accessible and interesting project for high schoolers and students alike. In acous-
tics the ability to model resonances and spectra without excessive mathematical 
apparatuses is hard to come by, making this an important introductory experiment 
into the field. For example, similar versions of the problem have been used in the 
IYNT and the IYPT, both of which are international tournaments in science for high 
schoolers. In the case of those competitions, the problem can be developed without 
using calculus or any university - level math (such is the appeal of the “Helmholtz 
resonance”). As with any physics problem, the possible development of this exper-
iment does not end with the simple concepts, mentioned in this paper, and provides 
yet unexplored opportunities for research.

9. Concluding Remarks
The contemporary theoretical modelling fails to account for the full spectral 

range of the acoustic feedback from the tested system. This project focused on de-
veloping different methods for solving that problem by introducing more effective 
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empirical and sampling methods (namely AFS & SRP). There are indications in 
the effectiveness of the newly-introduced AFS and SRP methods: The developed 
signal transformations and experimental setup are what is to prove crucial in the 
following analysis and experiments.
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