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АНАЛИЗ НА ДВЕ ЗАДАЧИ
ОТ МЕЖДУНАРОДНАТА ОЛИМПИАДА 

ПО МАТЕМАТИКА

Сава Гроздев

Резюме. Успешното решаване на първите две задачи от темата на  Международна-
та олимпиада по математика през 2012 г. е било достатъчно за получаване на бронзов 
медал. Статията е посветена на тяхното анализиране. Останалите задачи са предста-
вени с условията им. 

Keywords: Olympiad, problem solving, orthocentеr, derivative.

Петдесет и третата международна олимпиада по математика се проведе от 7 
до 16 юли 2012 г. в Аржентина. Шестимата български ученици спечелиха общо 
1 златен, 2 сребърни и 2 бронзови медала, а в отборното класиране България раз-
дели 19–21 място с Бразилия и Украйна. Ето условията на шестте задачи, върху 
които се сътезаваха 548 представители на 100 държави. 

Задача 1. Центърът на външновписаната окръжност спрямо страната BC  на 
даден ABC∆  е означен с I . Окръжността се допира до правите AB , BC  и 
AC  съответно в точки K , M  и L . Правите ML  и BI  се пресичат в точка F , 
а правите MK  и CI − съответветно в точка G . Ако S  и T  са пресечните точки 
на BC  съответно с AF  и AG , да се докаже, че M  е средата на отсечката ST . 

(предложена от Евангелос Психас, Гърция)
Задача 2. Нека 3n ≥  е цяло число и 2a , 3a , …, na  са такива положителни 

реални числа, че 2 3... 1na a a = . Да се докаже, че 2 3
2 3(1 ) (1 ) ...(1 )n n

na a a n+ + + > . 
(предложена от Анжело ди Паскуале, Австралия) 

Задача 3. Отгатване е игра между двама играчи A  и B . Правилата на играта 
зависят от две естествени числа k  и n , които са известни и на двамата. Отначало A  
избира цели числа x  и N , за които 1 x N≤ ≤ , като пази в тайна x , а на B  съоб-
щава само N . Играч B  се опитва да получи информация за x , задавайки въпроси 
на A  по следния начин: B  избира множество от естествени числа S  за всеки свой 
въпрос  и пита A  дали x S∈  (не е задължително всеки път S  да е различно). Броят 
на въпросите на B  е неограничен, но краен. Играч A  отгонаря с да или не, но не е 
задължен да казва истината. Единственото условие е измежду всеки 1k +  последо-
вателни отговори на A  поне един  да е верен. След като B  завърши със задаването 
на въпроси, той трябва да определи множество X  с най-много n  естествени числа. 
Ако x X∈ , то B  е победител. В противен случай той губи играта. Да се докаже, че 
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Анализ на две задачи...

1). Ако 2kn ≥ , то B  има печеливша стратегия. 
2). За всяко достатъчно голямо k  съществува 1,99kn ≥  така, че B не може да 

си гарантира победа.
(предложена от Дейвид Артур, Канада)

Задача 4. Да се намерят всички функции :f →   така, че за произволни 
цели числа a , b  и c , за които 0a b c+ + = , е изпълнено равенството 

2 2 2( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )f a f b f c f a f b f b f c f c f a+ + = + + .
(  е множеството на целите числа.)

(предложена от Лайъм Бейкър, Южна Африка)
Задача 5. Даден е правоъгълен триъгълник ABC  ( 090ACB∠ = ). С D  е оз-

начена петата на височината от върха C . Нека X  е точка от вътрешността на 
отсечката CD . Точката K  от отсечката AX  е такава, че BK BC= , а точката L  
отсечката BX  е такава, че AL AC= . Ако M  е пресечната точка на AL  и BK , 
да се докаже, че MK ML= .  

(предложена от Джозеф Ткадлец, Чехия)
Задача 6. Да де намерят всички естествени числа n , за които съществуват 

неотрицателни цели числа 1a , 2a , …, na  така, че 

1 2 1 2

1 1 1 1 2... ... 1
2 2 2 3 3 3n na aa a a a

n+ + + = + + + =
.

(предложена от Душан Джукич, Сърбия)

Първите две задачи се оказаха достатъчни за 
завоюване на мезал по време на олимпиадата. 
Предлагаме ви решения на тези задачи.
Първо решение на задача 1: Тъй като IF GK⊥  

и IG FL⊥ , то M  е ортоцентър на GFI∆ . Оттук 
следва, че IFL IGK∠ = ∠  и значи точките F
, G , I , K  и L   лежат на една окръжност. От 
друга страна IL AL⊥  и IK AK⊥ , което озна-
чава, че точката A  лежи на същата окръжност. В частност имаме, че IF AS⊥  
и IG AT⊥ . От друга страна BF  и CG  са ъглополовящи съответно на ABS∠  
и ACT∠ . Получаваме, че триъгълниците ABS  и ACT  са равнобедрени, т.е. 
AB SB=  и AC TC= . Но тогава AK AB BK SB BM SM= + = + =  (тъй като 
BK BM= ) и AL AC CL TC CM TM= + = + =  (тъй като CL CM= ). Сега е 
достатъчно да забележим, че AK AL= . Заключаваме, че SM TM= , т.е. M  е 
средата на отсечката ST .
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 Второ решение на задача 1: От теоремата на Менелай за ABT∆  и права-

та GM  имаме 1AG TM BK
GT MB AK

⋅ ⋅ = , а от теоремата на Менелай за ASC∆   и права-

та FM  – съответно 1AF SM CL
FS MC LA
⋅ ⋅ = . Тогава 

AG TM BK AF SM CL
GT MB AK FS MC LA

⋅ ⋅ = ⋅ ⋅   

и като вземем предвид, че BK BM= , CM CL=  и AK AL=  след съкращаване 

получаваме 
AG AFTM SM
GT FS

⋅ = ⋅ . Оттук  следва, че равенството TM SM=  е ек-

вивалентно с 
AG AF
GT FS

= , т.е. с успоредността FG BC . Но в първото решение 

доказахме, че M  е ортоцентър на GFI∆ , откъдето заключаваме, че IM FG⊥  и 
понеже IM BC⊥ , то наистина FG BC . 

Решение на задача 2: Ще докажем неравенството 1( 1)
( 1)

k
k

k kk

ka a
k −+ ≥ ⋅
−

 за 

всяко 2, 3, ...,k n= . Вместо ka  да разгледаме произволно реално 0x ≥ . Тогава 

неравенството става 1( 1)
( 1)

k
k

k

kx x
k −+ ≥ ⋅
−

 и при фиксирано k  дясната част е 

линейна функция, чиято графика (права линия) минава през началото на коор-
динатната система. Ако ( ) ( 1)kf x x= + , то въпросът се свежда до намиране на 
права линия y ax=  така, че ( )f x ax≥ . В случай, че съществува 0 0x > , за което 

0 0( )f x ax= , то правата y ax=  е допирателна към графиката на ( )f x  в точката 

0x . Ще потърсим a  именно с такова свойство. Имаме 1
0 0'( ) ( 1)ka f x k x −= = + . 

Оттук 

1
1

0 1
kax

k
−⎛ ⎞= −⎜ ⎟⎝ ⎠

 и като заместим в условието 0 0( )f x ax=  (което означава, 

че точката на допиране е с абсциса 0x ), намираме 

1
1 1

1
k

k ka aa
k k

− −
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

Последното е еквивалентно с  

1 1
1 1

1
k ka a aa

k k k
− −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 и оттук 

1
1 11 1

ka
k k

−⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠  
,

т.е. 
1 1

1

1

k
k

k ka
k

−
− =

−
 и следователно 1( 1)

k

k

ka
k −=
−

. Получихме, че 1( )
( 1)

k

k

kf x x
k −≥
−
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Анализ на две задачи...

за всяко 0x ≥  и сега е достатъчно да приложим това неравенство последова-
телно за 2 3, , ..., nx a a a= . Като умножим всичките 1n −  на брой неравенства, 

получаваме 2 3
2

( 1) ...
n

k n n
k n

k

a n a a a n
=

+ ≥ =∏ . Равенство би могло да се достигне 

единствено в случай, че  
1

1ka
k

=
−

 за всяко 2, 3, ...,k n= , което е невъзможно, 

защото тогава се нарушава условието 2 3... 1na a a = . 
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ANALYSIS OF TWO PROBLEMS
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 Sava Grozdev

Abstract. Successful solutions of the fi rst two problems from the paper of the International 
Mathematical Olympiad in 2012 were enough for a bronze medal. The paper is dedicated to 
the analysis of these problems. The other problems are stated only.  
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