Mamemamuxa Volume 67, Mathematics
U uHGopmamuxa Number 4, 2024 and Informatics

Science in Education

https://doi.org/10.53656 /math2024-4-3-ani Hayuo-memoduseck cmamuy

AN ITERATIVE ALGORITHM FOR DETERMINING
THE GREATEST COMMON DIVISOR OF TWO
OR MORE UNIVARIATE POLYNOMIALS

Verica Milutinovié
Faculty of Education, University of Kragujevac — Jagodina (Serbia)

Abstract. The GCD problem in polynomial rings has long intrigued
mathematicians for its diverse applications, leading to methods like the Eu-
clidean algorithm, Routh array, and matrix-based approaches. Despite the
low costs of the Euclidean algorithm, it faces numerical instability, while
matrix-based techniques, though stable, involve higher computational ex-
penses. The goal of this paper is to introduce a novel approach to deter-
mining the greatest common divisor (GCD) of multiple polynomials in a
single variable, particularly suitable for interdisciplinary teaching in mathe-
matics and programming. Our methodology involves iterating through the
entire set of polynomials directly, aiming to enhance the procedure's effi-
ciency while maintaining low computational costs. Numerous examples
are provided to illustrate its practical application in teaching, ranging
from easy to challenging scenarios, as well as Python implementation of
the given procedure.

Keywords: greatest common divisor; univariate polynomials; algorithm;
Python program

1. Introduction

The issue of determining the greatest common divisor (GCD) of two or
more members of a polynomial ring has long attracted the attention of math-
ematicians, and it has a wide range of applications (Christou et al. 2011; Pace
& Barnett 1973). Over the years different methods have been developed.
Some of them are the Euclidien algorithm, Routh’s array algorithm (Fryer
1959), Barnett’s use of the companion matrix (Barnett 1970), Blankinship’s
matrix methods (Blankinship 1963), Weinstock’s iterative method (Pace &
Barnett 1973; Weinstock 1960), Extended Row Equivalence and Shifting op-
erations (ERES) method (Christou et al. 2010; Karcanias 1987), and a lot of
different matrix methods (Boito 2012; Christou et al. 2017; Christou et al.
2011; Mitrouli & Karcanias 1993). The basic Euclidean algorithm is compu-
tationally efficient, with a cost that scales quadratically with the degree of the

392

An Iterative Algorithm for Determining the Greatest Common Divisor...

input polynomials. However, it suffers from numerical instability. However,
while the majority of matrix-based variants are numerically stable, they often
have higher than quadratic computational costs (Boito 2012).

Any method that works for two polynomials may be adapted to work for
more. However, the fact that we typically have to deal with a high number
of polynomials is a key difficulty for some applications of the GCD, and the
pairwise type techniques for GCD (Blankinship 1963) are not suited for such
applications. Matrix-based approaches tend to have higher performance and
numerical stability, especially when dealing with large sets of polynomials,
due to the usage of the complete set of polynomials. In this paper, based
on algorithm developed by Presi¢ (Presi¢ 1997) that refers to systems of two
algebraic equations, we have come to an iterative new algorithm for finding
GCD of more polynomials in one variable simultaneously. The objective
is to reduce computation costs while achieving improved performance and
numerical stability. The main advantage of the presented method is that it
works with complete set of polynomials directly.

In Section 2 of this paper, we present several definitions, theorems, and
lemmas related to our method of computing polynomials’ GCD. This was the
mathematical background for the algorithm we developed. A few examples
are given in Section 3 along with a practical explanation of how to use this
approach to find GCD. The description of the algorithm was provided and
computational costs are discussed in Section 4. The Python implementa-
tion of the method and the testing outcomes are shown in Section 5. The
conclusion with practical implications is presented in Section 6.

2. Mathematical background for calculating greatest com-
mon divisor of polynomials

In this section, we provide an overview of the definitions, theorems, and
lemmas related to GCD of polynomials.

Let R be a commutative ring with identity. Considerations below are
for the ring of integers (although the procedure works with some rational
coefficients too). Let R[z] be the polynomial ring over R.

Theorem 1. (Division Algorithm) For any polynomials f(x) € R[x] and
0 # g(x) € R[z], 3! polynomials q(x),r(x) € R[x] and f(x) = q(z)g(z)+r(z),
where either deg(r(x)) < deg(g(x)) or r(xz) = 0.

We denote traditionally f|g when g = q.f.

Definition 1. A monic polynomial d(z) € R[] is called greatest common
divisor (GCD) of f(x) and g(x) € R[z] iff d|f,d|g, and Ve € R[z](e|f Ne|lg =
e|d). Remark A monic polynomial is a polynomial with only one variable
whose leading coefficient is equal to 1.

In this paper the greatest common divisor of f(z) and g(x) is denoted by

393

Verica Milutinovic

ged(f (), 9(x)) or {f(z), g(x)). IF ged(f(x), g(x)) = 1, then the polynomials
f(x) and g(z) are said to be relatively prime.
Lemma 1. Let p1(z),p2(x) € R[z] be any nonzero polynomials. Then

(p1(2), p2(2)) = (p1(x), p2(z) — A(x) - p1(2)).

The Euclidean algorithm for finding GCD of two polynomials actually
represents a special case of Lemma 1 when for two nonzero polynomials f(z)
and g(z) € Rlz], deg(f) > deg(g) and f(z) = q(x)g(z) +r(x) (deg(r(z)) <
deg(g(x)) or r(x) = 0), we choose g(x) such that r(x) is division remainder
of polynomial f(z) with polynomial g(x). In this case:

o If r(z) = 0 then g(z) divides f(x) and (f(x), g(z)) = ¢ - g(x) for some
constant ¢ € R.

o If r(x) # 0 then it is easy to show that (f(x), g(z)) = (g(z),r(z)).

The Euclidean algorithm continually implements the special case of Lemma
1 and the division algorithm to achieve a remainder equal to 0. The degrees
of the polynomials are decreasing while the procedure is repeated, and the
GCD of the two polynomials may then be calculated in a limited number of
steps.

Lemma 2. Let pi(x),p2(x),...,pn(z) € R[z] be n nonzero polynomials.
Then we have:

(p1(2), p2(), . ., pa(@)) = (Pi(2), p1(2) = M (2)pi(2),
p2(x) = Ao (@)pi(2), - -, pu() — An(x)ai(z)),

where p;(x) # 0 is a polynomial of minimal degree among p1(x),...,pn(x).
Let us denote by rem(p(x), ¢(x)) the remainder of the division of p(x) by
the polynomial ¢(z). Then a special case of Lemma 2 would be:

(p1(2),p2(2), - . ., pu(@)) = (pi(x), rem(p1(x), pi(z)),
rem(pg(x),pi(x)), s ,rem(pn(x),pi(x))).

3. New method for determining the GCD of two or more
univariate polynomials

Let the set of polynomials P = {p1,p2,...,pr},k > 1, is given and cor-
responding degrees of the polynomials are (ny, nga,..., ng). The set P will
be called an (ni,ng,...,ng)-ordered polynomial set. This section provides
detailed explanations of our method using examples.

Task. Find the GCD of the following sets of polynomials in R[x]:

a. 23+ 22 —x + 2,223 — 522 + 5z — 3;

b. 23 +1,2% + 1;

c. Tall +29 722+ 1, 72" — 25 4+ 72% + 1;

394

An Iterative Algorithm for Determining the Greatest Common Divisor...

d. 223 4522 + 20+ 5,2 + 2% + 1222 + 2 4+ 11,324 + 723 + 72?2 + Tx + 1,
—4a* + 523 — 22 4 5x + 3.

Instruction. The method we will employ to calculate the GCD of a set of
polynomials implements Lemma 2 and the Division algorithm. This method
is comparable to Gauss’ algorithm for solving a systems of linear equations.
We consider each polynomial p of degree n of the set as a linear equations
p = 0 with unknowns 2, z"~!,...2% In order to obtain the unique GCD
of the polynomial set (if there is one) or some non-zero element of R (in
case the polynomials are relatively prime), we build a chain of equivalences
successively for as long as needed.

Solutions:

a) Let us denote g,(x) = (23 + 2% — x + 2,223 — 52 + 5z — 3).

In this subtask we are dealing with a (3, 3)-ordered polynomial set, where
the degrees of polynomials are equal. Rule: when the degrees are equal, the
first polynomial will always be retained. So, we multiply the first polynomial
by —2 and add the obtained polynomial to the second (like in Gauss elimi-
nation). Then, as (223 — 522 +5x —3) —2(z3 + 22 —2+2) = —T22 + T2 - 7,
based on Lemma 2 we get (multiplying result by —1/7 in order to simplify it)

galx) =@+ 22—z +2,22 —x+1).

It is worth noticing that now, rather than working with two cubic polyno-
mials, we have "shifted situation down* to finding the GCD of one cubic and
one quadratic polynomial. So, we ”descended” from a (3, 3)-ordered polyno-
mial set to a (3,2)-ordered polynomial set.

Now we multiply the second polynomial by —z (because of the lower de-
gree) and add it to the first:

(342 —242)—z@®—z+1) =222 -2z +2.
After multiplying this polynomial by 1/2 we get
o) =<a?—z+ 1,22 —x+1>,

shifting down from a (3,2) to a (2,2) set. Because (z2—z+1)—(22—z+1) = 0,
we have gq(z) = (2> — 2 +1,0) =22 — 2 + 1. O
b) Let us denote gy(z) = (x3 + 1,22 + 1).
In this subtask we have a (3,2) set. We rewrite the second polynomial at
the first place, and as (2% + 1) —2(2? + 1) = —x + 1 we get

g(x) = (a:2 +1,—z+1),

reducing to a (2,1) set.
With a similar to the previous step, since (22 + 1) + z(—x + 1) = = + 1,

395

Verica Milutinovic

we get
g(z) =(—z+ 1,z +1).

Now, we have an (1,1) set and as (—z + 1) + (x + 1) = 2 we get
g(z)=(—z+1,2) =1.

The new case is an (1,0) set but we came to the non-zero value 2 as a second
polynomial in the set. This leads to the conclusion that the GCD of our
polynomial set is 1, i.e. the polynomials are relatively prime. O

c. Let us denote g.(z) = (7ot + 2%, 72? + 1, - 72" — 25 + 722 + 1).

In this subtask we should find the GCD of three univariate polynomials
that form an (11, 2, 7) set. First, we find a polynomial of the lowest degree
(which is the second). We rewrite it on the first place in the list. Every
other polynomial will be replaced by a new one, calculated as in previous
examples, except that now we look at the pairs composed of the polynomial
with the lowest degree and another one whose turn is for replacement. The
new polynomial that we get by transformations of polynomials p(x) and ¢(z)
is denoted by rep(f(x),g(x)). The procedure could be written in this way:

ge(x) = (722 + 1, rep(Tatt + 2°, 722 + 1), rep(=7z" — 25 + 72% +1,72% +1)).

For the first replacement we obtain 7o't + 2% — 29(72% + 1) = 0 and for
the second (—7z" — 2% + 722 + 1) + 2°(72? + 1) = 7z + 1 thus we now have

ge(x) = <7x2 +1,0,72% + 1)

and the GCD of the three polynomials is g.(x) = 722 + 1. O
d. Let us denote gq(v) = (223 + 522 + 22 + 5, % + 23 4+ 1222 + 2 + 11,
3zt 4 Tad 4 Ta? + 7o + 1,—42* + 52° — 22 + 52 + 3) = (p1,p2,p3,p4) — A
(3,4,4,4) set. The polynomial of the lowest degree is p; so
g9a(z) = (p1,rep(pz, p1), rep(ps, p1), rep(pa, p1))-
Now we calculate three replacements
q2(x) = rep(pa, p1) = rep(z* + 23 + 1222 + 2 + 11,223 + 522 4+ 22 + 5) =

20zt + 23 + 1222 + 24+ 11) — 2(22% + 52% + 22+ 5) = —323 + 2202 — 32+ 22;

oqg(m) ep(ps, p1) = rep(3z* + 723 + 722 + Tz + 1,223 + 522 + 22+ 5) =
=232 + 723 + 72 + Tr 4+ 1) - 32(22° + 52 4+ 204+ 5) = —a3 + 222 — 2 + 2
o qy(x) ep(ps, p1) = rep(—4a* + 5% — 22 + 52 + 3,223 + 522 + 22+ 5) =

(—4z* + 52° — 2% + 52 + 3) + 22(22% + 522 + 22 + 5) = 152° + 322 + 150+ 3

396

An Iterative Algorithm for Determining the Greatest Common Divisor...

Note that in order to avoid rational coefficients in the second replacement,
we multiplied the first polynomial by 2, and second by —3z, and then calcu-
lated the addition. And more, we simplify the fourth polynomial multiplying
it by 1/3 and g4(z) = 523 + 2% 4+ 5z + 1. In this way we got a new (3,3,3,3)-
set. By applying the rule when degrees are equal, the first polynomial p; is
retained, so

9a(x) = (p1,q2, 43, qa) = (p1,7ep(q2, p1),7ep(qs, p1), rep(qa, p1))-

We calculate the three replacements:

o rep(qe, p1) = 2(—323 42222 —324-22) 4+ 3(203 +522 + 22 +5) = 5922 +59,

e rep(qs,p1) = 2(—2% + 222 — x4+ 2) + (22 + 522 + 22+ 5) = 922 + 9,

o rep(qq,p1) = 2(52% + 22 + 52+ 1) — 5(22% + 522 + 22 +5) = —2322 — 23,
and after simplifying

ga(x) = (22 +52% + 22+ 5,2% + 1,2° + 1,2° + 1)

Now we got a new (3,2,2,2)-set, where the second, third and fourth polyno-
mials are equal and of the lowest degree. But 223+ 522422 +5—2x(2? +1) =
522 4 5 is simplified to 2 + 1 and this is the GCD of the four polynomials. [J

4. Algorithm for calculating GCD of two or more univariate
polynomials

For two polynomials p(z) and ¢(z),deg(p) = d, > d; = deg(q) and
Az% and Bz% are their monomials of higher degree we define the function
rep(p(z), a(z)) = Bp(z) + (— Azt—a)q(),

Let us describe the general procedure for calculating GCD of list
L = (p1,p2,...,pr) of polynomials of variable z and (ny,ne,...,nk) are the
degrees of the polynomials. Let us also denote: with M — the minimal degree
of a polynomial of L, with ¢ — the ordinal of the current polynomial, and with
D — the length of the list.

4.1. Algorithm for determining GCD of polynomials

Step 1 (Initialisation). D = k, M = min(ny,ne,...,np) and let (without
limiting the generality) the polynomial of degree M be p;.

Step 2 (Outer loop). If D > 1 then go to Step 3. If deg(p1) > 0 then
it is the GCD of our polynomials. Otherwise the polynomials are relatively
prime. Stop.

Step 3 (Inner loop). Create a new list Lj. Its first polynomial will be p.
Then loop for ¢ = 2 to D with step 1 and do:

Step 3.1. q(z) = rep(pi, p1).
Step 3.2. If deg(q) > 0 push it in L; and continue.

397

Verica Milutinovic

Step 3.3. If q(x) = 0 continue, else the polynomials are relatively
prime. Stop.
Step 4. Rearrange the elements of L1 in order that the polynomial with
smaller degree to be p1, M = deg(p1) and rename L; to L. Let D be the
length of L. Go to Step 2.

4.2. Complexity of the algorithm
For estimating the complexity of our algorithm we will compare it with the
complexity of the FEuclidean algorithm for finding GCD of two polynomials

pl() and q(x):

while(deg(r(x) = p(x) % q(x)) !'= 0)
{px) = qx); qx) = r(x); }

return q(x);

where the % sign denote the operation finding remainder of p(z) modulo ¢(z).
Suppose we must find GCD of the polynomials p; (x) of degree ny and pa(x)
of degree no. The Euclidean algorithm generates a sequence of polynomials:
P1,P2,P3 = P1%0p2, P4 = P20P3; - - - » Pm = Pm—2"0Pm—1; Pm+1 = Pm—1%0Dm,

where deg(pm+1) = 0, the degrees of the polynomials are
Ny >MnNg >nNg > >Ny > N1 = 0,

and g(x) = pm(z). The division of the polynomials of degrees n; and n;;
needs n; — n;4+1 + 1 rounds with n;4; multiplications on each round. The
worst case will be the sequence of degrees

n>n—-1)>Mn-2)>...>2>1
and the complexity will be
T=mn-n+1+1)(n-1)+n—-1-n+2+1)(n—-2)+---+2-1+1).1=
=2(n—1)+2n—2)+---+21=n(n—1)=0(n?.
Let now estimate the complexity of our algorithm. Instead of finding the

remainder it uses the replacement operation:

while(deg(r(x) = rep(p(x), m(x))) !'= 0)
{ p(x) = r(x); rearrange(p(x), m(x)) }
return r(x);

So, our algorithm also generates a sequence of replacement polynomials of de-
creasing degrees. Because the replacement operation in our method involves

398

An Iterative Algorithm for Determining the Greatest Common Divisor...

multiplying two polynomials of degrees m and n by a monomial, which re-
quires m + 1+ n + 1 multiplications, the worst-case scenario is 2(n + 1) mul-
tiplications (because n > m). Additionally, we must perform max deg(r(z))
replacements, which, in the worst case, is n replacements, and the rearrange-
ment of the two polynomials has a complexity of O(1). When both polyno-
mials are of degree n and are relatively prime, the number of multiplications
is of the order n? +n, indicating that our algorithm will find the GCD of two
polynomials with asymptotically the same time complexity as the Euclidean
algorithm.

When the algorithm must find GCD of |P| polynomials the asymptotic
estimation will be the same because |P| is not a function of n.

5. Algorithm implementation in Python

Let us now describe the Python implementation of algorithm. Various
programming paradigms, such as functional, object-oriented, and procedural
programming, are supported by the flexible, high-level programming language
Python. Currently, it is one of the most widely used programming languages.
Algebra, numerical mathematics, number theory, calculus, and combinatorics
are just a few of the mathematical topics that are covered in its extensive
library. Despite this, we wanted to develop the fundamental program using
structured programming without utilizing the library NumPy to enable big,
multi-dimensional arrays and matrices.

For the program, a polynomial is presented as a list of ordered integer
triples [a, b, c], where a is the coefficient numerator, b is the coefficient de-
nominator, and ¢ is the degree of the monomial az®/b. For example, the
polynomial 523 — 2z + 3 is presented by the list [[5,1,3],[—2,1,1],[3,1,0]].

The program will utilize a list of lists to store and manage the set of
polynomials we are operating with. This structure will be used to store both
the initial set and the additional sets (mid-sets, let’s call them ”drop down”
sets) that are obtained using the procedure.

The initial step, after starting the program, is entering a set of polynomials
to determine their GCD with the procedure inputPolys() which puts each
of them in a list of ordered triples.

def inputPolys():

PSet = []
i=1
n = int(input("How many polynomials do you want to input?"))

while n != O:
print("Input {0}. polynomial: ".format(i))
Poly = []

399

Verica Milutinovic

Term = list(map(int,input("Enter the term in the form:
coeff_numerator coeff_denominator integer_exponent\n
(For example 3 4 2 for 3/4x”2 or 1 1 3 for x°3),\n
or for the end of polynomial press <Enter> twice.\n
Note: coeff_numerator, coeff_denominator, and
integer_exponent should be separated with space:

") .strip() .split())) [:3]

while Term != []:
if Term[1] ==

print("Coefficient denominator is O,
please enter again")

else:

Poly.append(Term)

Term = list(map(int,input("Enter the next term:
coeff_numerator coeff_denominator integer_exponent,
or press <Enter> twice for the end of polynomial:
") .strip() .split())) [:3]

n=n-1

i=1+1

if Poly !'= []:

PSet.append(Poly)
print("Find GCD of: ", PSet)
return PSet

The main program executes a procedure for the polynomial set input
(inputPolys), and a function for that set’s GCD calculation (poly_GCD).
PolySet=inputPolys();
print("Find GCD of: ", PolySet)
poly_GCD(PolySet)

The main function of the program, poly_GCD(k), will be executed after
inputting data. This is its code with explanations in the comments:

def poly_GCD(k):
while len(k) > 1: # set k of more then 1 element
newk = []
m = min_degree(k) # find minimal degree of polynomial
newk . append (m)
while there are polynomials in the set
take the next polynomial
for p in k:
n = replace(m,p)
if n! = [] and len(n) > 1:

400

An Iterative Algorithm for Determining the Greatest Common Divisor...

new = arrange(n)
else:
new = n

if new! = [] and exppoly(new) > O:
newk . append (new)
elif new! = [] and exppoly(new) == 0:
print("GCD is 1")
return [(1,0)]
elif new == []:
continue
k = newk
print("<=> \n", k)
print("GCD is: ", k)
return k

This function calls the following auxiliary functions:

e addpoly(p1l,p2) and multipoly(pl,p2) — to add or multiply two poly-
nomials;

e poly_coefficients(p) and poly_exponents(p) — to list the polyno-
mial’s coefficients or exponents;

e exppoly(p) — to return the degree of a polynomial;

e min_degree(s) — to return a polynomial with minimal degree in the list
of polynomials s;

e replace(p, m) — to implement the rep(p, m) operation defined above

e gcd_2num(x, y) — to find the GCD of two numbers;

e gcd_array (1) — to find the GCD of an array of numbers;

e div_poly_w_const(a, p) — to divide the polynomial p by the constant
a;

e multi_poly_w_const(a, p) — to multiply the polynomial p by the con-
stant a;

e arrange(p) — to arrange the polynomial p in descending order of expo-
nents.

For example the source code of the important function replace(p, m) is
given below:

def replace(m, p):
newpoly = [[-p[0]1[0], p[0][1], p[0]l[2] - m([0][2]]]
multim = multipoly(newpoly, m)
newpolyl = [[m[0][0], m[0][1], 0]]
multip = multipoly(newpolyl, p)
fin = addpoly(multim, multip)
return fin

401

Verica Milutinovic

The program for calculating the GCD prints all intermediate results. Let
us look at the output from the following examples:

Task. Find the GCD of the following set of polynomials from R[z]:

a. 23—z’ —Adx+4, 2 4+32% — 422 12z, 2* + 223 — T2 — 82412, 27 — 162> — 2% +4.

§x2 ym—i—% 61 3 233 2 237 +243 37 3 341 22 607 393
10 20 17107 T 20" T2 20°107 T20" T 20" 20"

Solutions:

a. After the polynomials’ data has been entered, the set will be stored in
the following form:

[[[1a173]7 ['17172]7 ['47171]7 [471a0”7

[[1,1,4], [3,1,3], [-4,1,2], [-12,1,1]],

[[1,1,4], |2,1,3], |-7,1,2], [-8,1,1], [12,1,0]],

[[1,1,7], [-16,1,3], [-1,1,2], [4,1,0]]]

This is the output we obtain (with intermediate results "drop down” sets)
after entering the data and running the function poly GCD:

Find GCD of:

(ff1,1,31, [-1,1,2]1, [-4,1,1], [4,1,0]1],
[[1,1,4], [3,1,3], [-4,1,2], [-12,1,1]1],
[[1,1,41, [2,1,31, [-7,1,2]1, [-8,1,11, [12,1,01],
(f1,1,71, [-16,1,3]1, [-1,1,2], [4,1,0]1]

<=>

(ff1,1,31, [-1,1,2]1, [-4,1,1], [4,1,0]1],
(f-1,1,3], [4,1,111, [[1,1,3], [-1,1,2],
([1,1,61, [4,1, 5], [-4,1,4], [-16,1,3],
<=>

(cre,1,31, [-1,1,21, [-4,1,11, [4,1,011,
[([-1,1,2], s[4,1,0]11,

((5,1,51, [-20, 1,31, [-1,1,2], [4,1,01]]
<=>

(re-1,1,21, [4,1,011, [[-1,1,2], [4,1,0]1],
[([-1,1,2], [4,1,0]1]]

<=>

(ff-1,1,21, [4,1,0]]1]

GCDis: [[[-1,1,2],[4,1,011]

/M
|
-

1,11, [4,1,0]1],
1,21, [4,1,0]]1]

m
|
-

402

An Iterative Algorithm for Determining the Greatest Common Divisor...

Since we obtained the set with a single polynomial, the GCD is that poly-
nomial i.e. 22 — 4.

b) The polynomial data set is stored in the following form:

[[[29,10,2], [297,20,1], [63,4,0]],

[[61,10,3], [233,20,2], [237,20,1], [243,20,0]],

[[37,10,3], [341,20,2], [607,20,1], [393,20,0]]].

The output with intermediate “drop down” sets obtained after running the
function poly GCD:

Find GCD of:

[C[29,10,2], [297,20,1], [63,4,0]11,

[[61,10,3], [233,20,2], [237,20,1]1, [243,20,011,
([37,10,3]1, [341,20,2], [607,20,1], [393,20,0]1]1]
<=>

[C[29,10,2], [297,20,1], [63,4,0]],
[[-284,1,2], [-6171,20,1], [7047,40,01],
[[-11,1,2], [1487,25,1], [11397,100,011]

<=>

[C[29,10,2], [297,20,1], [63,4,0]11,

(f1,1,11, [3,2,011, [[1,1,11, [3,2,0]11]

<=>

(cfs,1,11, [3,2,011, [[1,1,11, [3,2,0]1]1]

<=>

(Cf1,1,11, [3,2,011]

GCDhis: [[[1,1,1], [3,2,011]

The GCD is x + 3/2.

6. Discussion and conclusion

It is a challenging task to compute the GCD of a set of many polynomials.
Numerous algorithms exist, the majority of which are based on matrix tech-
niques. However, the computational costs associated with these techniques
are rather considerable. In this study, we suggested the application of the
algebraic properties of the GCD of sets of numerous univariate polynomials
in order to compute their GCD in a more efficient way.

The program is completely adequate to the proposed algorithm and might
have a wide range of applications, particularly in teaching mathematics and
informatics. Applying it allows us to not only observe all intermediate out-
comes (also referred as "drop down* sets) in the computation of GCD, but
also solve systems of algebraic equations. It may be applied in the process
of system elimination using Alfred Tarski’s method (Van Den Dries 1988).

403

Verica Milutinovic

The Euclidean algorithms are among the fundamental examples in any se-
rious book on algorithms (Knuth 2014), and the Euclidean algorithm is the
special case of our method. The associated problem, which is of importance
in some applications, is finding polynomials b; (termed multipliers) such that

n
Zaibi = g, where g is the GCD of P = {aj,ag,...,an},n > 1.
i=1
The program we provided might be simply modified to compute multipliers
simultaneously with the GCD. Furthermore, the proposed program might be
of use in creating educational software for the purpose of assisting students
in learning the given procedure and checking their outcomes.

REFERENCES

BARNETT, S., 1970. Greatest common divisor of two polynomials.
Linear algebra and its applications, vol. 3, no. 1, pp. 7 —9.
doi: 10.1016,/0024-3795(70)90023-6.

BLANKINSHIP, W.A., 1963. A new version of the Euclidean algorithm.
The American mathematical monthly, vol. 70, no. 7, p. 742.
doi: 10.2307/2312260.

BOITO, P., 2012. Structured matrix based methods for approximate poly-
nomial GCD (Vol. 15). Springer Science+Business Media, New York.

CHRISTOU, D., KARCANIAS, N., MITROULI, M., TRIANTAFYLLOU,
D., 2011. Numerical and symbolical methods for the GCD of several
polynomials. In Lecture Notes in FElectrical Engineering, vol. 80.
Dordrecht: Springer Netherlands, pp. 123 — 144.
doi: 10.1007/978-94-007-0602-6 7

CHRISTOU, D., KARCANIAS, N., MITROULI, M., 2010. The ERES
method for computing the approximate GCD of several polynomials.
Applied numerical mathematics: transactions of IMACS, vol. 60,
no. 1 -2, pp. 94 — 114. doi: 10.1016/j.apnum.2009.10.002.

CHRISTOU, D., MITROULI, M., TRIANTAFYLLOU, D., 2017. Struc-
tured matrix methods computing the greatest common divisor of poly-
nomials. Special Matrices, vol. 5, no. 1, pp. 202 — 224.
doi: 10.1515/spma-2017-0015.

FRYER, W., 1959. Applications of Routh’s algorithm to network-theory
problems. IRE transactions on circuit theory, vol. 6, no. 2, pp. 144 — 149.
doi: 10.1109/tct.1959.1086534.

KARCANIAS, N., 1987. Invariance properties, and characterization of the
greatest common divisor of a set of polynomials, International journal of
control, vol. 46, no. 5, pp. 1751 — 1760. doi: 10.1080/00207178708934007.

404

An Iterative Algorithm for Determining the Greatest Common Divisor...

KNUTH, D. E., 2014. The Art of Computer Programming: Seminumerical
Algorithms, Volume 2. Addison Wesley Professional, Boston, MA.

MITROULI, M., KARCANIAS, N., 1993. Computation of the GCD of
polynomials using gaussian transformations and shifting, International
journal of control, vol. 58, no. 10, pp. 211 — 228.
doi: 10.1080/00207179308922998.

PACE, I.S., BARNETT, S., 1973. Comparison of algorithms for calcula-
tion of g.c.d. of polynomials. International journal of systems science,
vol. 4, no. 2, pp. 211 — 226. doi: 10.1080/00207727308920007.

PRESIC, S., 1997. Raznice. Prosvetni pregled, Beograd.

ISBN 86-7055-023-7

VAN DEN DRIES, L., 1988. Alfred Tarski’s elimination theory for real
closed fields. Journal of Symbolic Logic, vol. 53, no. 1, pp. 7 — 19.
doi: 10.2307/2274424.

WEINSTOCK, R., 1960. Greatest common divisor of several integers and
an associated linear Diophantine equation. The American mathematical
monthly, vol. 67, no. 7, p. 664. doi: 10.2307/2310105.

= Dr. Verica Milutinovié, Assoc. Prof.
ORCID iD: 0000-0003-0325-7285

Faculty of Education, University of Kragujevac
14, Milan Mijalkovié¢ St.

Jagodina, Serbia

E-mail: verica.milutinovic@pefja.kg.ac.rs

405

