
107

Математика 	 Volume 66,	 Mathematics
и информатика 	 Number 2, 2023	 and Informatics

ALGORITHMS FOR CONSTRUCTION,
CLASSIFICATION AND ENUMERATION

OF CLOSED KNIGHT’S PATHS
Prof. DSc. Stoyan Kapralov1), Assoc. Prof. Dr.Valentin Bakoev2),

Kaloyan Kapralov3)

1)University of Gabrovo (Bulgaria)
2)“St. Cyril and St. Methodius” University of Veliko Tarnovo (Bulgaria)

3)Sofia (Bulgaria)
Abstract. Two algorithms for constructing all closed knight’s paths of lengths

up to 16 are presented. An approach for classification (up to equivalence) of all such
paths is considered. Two closed knight’s paths are called equivalent if one can be
obtained from the other by applying one or more of the equivalences: translation,
rotation, symmetry, or when the corresponding polygons (whose vertices are the cells
visited by the knight), are geometrically congruent. By applying the construction
algorithms and classification approach, we enumerate both nonequivalent and non-
self-intersecting knight’s paths and show the obtained results. Some pedagogical
aspects related to the problems under consideration and the teaching of subjects
such as “Programming”, “Algorithms and Data Structures”, “Graph Algorithms”
and “Competitive Programming” are also discussed.

Keywords: knight graph; closed knight’s path; nonequivalent path; non-self-
intersecting path; equivalence; enumeration

1. Introduction
In graph theory, a knight graph is a graph that represents all legal moves of a

chess knight on a chessboard. An m  n knight graph is that for an m  n chess-
board. An open knight’s path visits every square on the chessboard exactly once
and so it is a Hamiltonian path in the corresponding knight graph. When the start-
ing point coincides with the endpoint, the knight’s path is called a closed knight’s
path. It is a Hamiltonian cycle in this knight graph. The types of knight graphs and
their properties, such as, for instance, that an n  n knight graph contains 4(n – 2)
(n – 1) edges are discussed in Knight Graph page1.

The search for Hamiltonian paths and cycles and solving the many related prob-
lems has a long history – see (Rouse Ball 1892) and the excellent survey presented
on the internet2. In the late 17th and early 18th centuries, mathematicians such as De
Montmort and De Moivre provided solutions to the closed knight’s path problem
on the classical 8×8 board. But the first scientist who proposed a method for solving
this problem and published an article about it was the famous Leonard Euler (Euler

https://doi.org/10.53656/math2023-2-1-alg Science in education
Научно-методически статии

108

Stoyan Kapralov, Valentin Bakoev, Kaloyan Kapralov

1766). After him, well-known mathematicians such as Legendre, Vandermonde,
and others also provided solutions to this problem. Special attention deserves the
ingenious solution to the knight’s path problem proposed by Warnsdorff in 1823. To
get a solution, he suggests following a very simple rule: “Starting from an arbitrary
square, always move the knight to an unvisited square from which there are as few
subsequent moves as possible.” This rule is the basis of a greedy algorithm that runs
in linear time O(n2). Algorithms based on the “divide and conquer” strategy having
the same type of time complexity are considered in (Parberry 1977). Such types of
approaches and algorithms are also discussed, starting with Euler’s ideas. Although
the problem of finding a Hamiltonian cycle is NP-complete in the general case,
the knight graph has a special structure and such efficient solutions are possible.
However, the problem of finding all nonequivalent (with respect to rotations and
symmetries) solutions is very hard. That is why it was solved successfully only at
the end of the 20th century (McKay 1997).

In this paper, we consider a slightly different problem: to find, classify and enu-
merate all Hamiltonian cycles (i.e. undirected closed knight’s paths) of definite
lengths, both nonequivalent and non-self-intersecting (when viewed as polygons).
Two cycles are called equivalent if one can be obtained from another by applying
operations (one or more) translation, rotation, and symmetry on the chessboard,
otherwise, they are nonequivalent. Here we classify and enumerate all nonequiva-
lent cycles of lengths 12, 14, and 16. This problem has been solved for smaller cy-
cle length values (6, 8 and 10) in our previous publications (Kapralov et al. 2017),
(Kapralov et al. 2018).

In Section 2 we outline two algorithms for the construction of closed knight’s
paths and experimentally compare their execution times. In Section 3 we describe,
via an example, the equivalences – what it means for two paths to be equivalent,
and for a given solution to be minimal. New results on the number of non-self-in-
tersecting cycles are shown in Section 4. In the last section, we discuss some meth-
odological aspects of the problem under consideration and its use in teaching sub-
jects such as “Algorithms and Data Structures”, “Competitive Programming”, etc.

2. Algorithms for construction of closed knight’s paths
Each closed knight’s path has an even length, say k = 2l, since the knight’s steps

alternate the colors of the cells it steps on, for example black, white, black, white,
…, black, or conversely: white, black, white, black, ..., white (an odd number of
vertices in a path means an even number of edges, i.e. even length). Hence such a
path can be embedded in a board of size (k + 1)  (k + 1). So we take an m  n board
with m=n=k+1 and number the cells with integers from 1 to (k + 1)2, row-wise.
We apply two similar approaches as outlined below.

In Algorithm 1, for each s from the set s of starting cells, we run a modified ver-
sion of a depth-first search. Thus, via exhaustive backtracking, we build all knights’

109

Algorithms for Construction...

paths of length k (with k vertices and k – 1edges). Finally, we check whether the last
square is adjacent (via a chess knight’s move) to the starting one, and if it is, that
means that a new solution is found. Such a solution is saved if it is lexicographi-
cally minimal – the description of minimality and minimality check is given in the
next section. Here is the C++ code of Algorithm 1:

void dfs()
{int u = p[len-1]; // p – list of the path cells
	 if(len< k)
	 {for (int v:adj[u])
		 if(!vis[v])
		 {p[len++] = v;vis[v] = true;
		 dfs();len--;vis[v] = false;
		 }
}
else
	 if(adjacent(u,s))
	 {pathpt(p,p+k);
		 if(is_min(pt))sol.push_back(pt);
	 }
}

int main()
{...
	 for(s:S)
	 {p[0] = s;vis[s] = true;len = 1;
		 dfs();
	 }
	 ...
}

In Algorithm 2, for each pair of starting cell s and ending cell t, we construct all
connecting paths of length k/2. We then try to assemble a whole path of length k
from two halves. Of course, we may concatenate two paths if they do not intersect,
that is, they have no common point except the two endpoints. It is sufficient to
consider only cycles, which cannot be translated up or left, meaning that they have
at least one point on the top row of the board and at least one point in the leftmost
column. Thus, we define the equivalence between two cycles with respect to trans-
lation, i.e., sliding on the board. Hence, as well as for symmetry reasons, we may
assume that we have to consider only the set S = {1, 2,…, k/2 + 1} as a set of pos-
sible starting points. A comparison between the speed of Algorithm 1 (slower) and

110

Stoyan Kapralov, Valentin Bakoev, Kaloyan Kapralov

Algorithm 2 (faster) is shown in Table 1. The comparison was made on a common
laptop with an 8th-generation Intel core i5 processor. Programs are written in C++.

Table 1. The number of nonequivalent closed knight’s paths and the elapsed
time in seconds of the two algorithms

k Number
of nonequivalent cycles Algorithm 1 Algorithm 2

6 25  1 s  1 s
8 480  1 s  1 s
10 12000 2 s 1 s
12 350256 44 s 18 s
14 10780549 2097 s 692 s
16 344680960 ??? ≈ 24 hours

2. Equivalent solutions
Let’s take a look at the figures in Table 2. They are all obtained from the main

figure in the upper left corner by rotating (counter-clockwise) in steps of 90° and
applying symmetry about the vertical axis. We say that these 8 figures are equiva-
lent to each other. Our task to enumerate and classify the closed knight’s paths of a
given length is essentially to enumerate some set of figures up to equivalence, i.e.
to give just one representative from each equivalence class.

1 (slower) and Algorithm 2 (faster) is shown in Table 1. The comparison was made on a common
laptop with an 8th-generation Intel core i5 processor. Programs are written in C++.

𝑘𝑘 Number of
nonequivalent cycles Algorithm 1 Algorithm 2

6 25 < 1 s < 1 s
8 480 < 1 s < 1 s
10 12000 2 s 1 s
12 350256 44 s 18 s
14 10780549 2097 s 692 s
16 344680960 ??? ≈ 24 hours

Table 1. The number of nonequivalent closed knight's paths
and the elapsed time in seconds of the two algorithms

3. Equivalent solutions
Let's take a look at the figures in Table 2. They are all obtained from the main figure in the upper

left corner by rotating (counter-clockwise) in steps of 90 and applying symmetry about the vertical
axis. We say that these 8 figures are equivalent to each other. Our task to enumerate and classify the
closed knight’s paths of a given length is essentially to enumerate some set of figures up to equivalence,
i.e. to give just one representative from each equivalence class.

For pruning the unnecessary solutions, we apply the following approach, illustrated in Figure 1 for

paths of length 8. The fields on the board are numbered row by row with the numbers 1, 2, …, (k+1)2.
In our example, the cells are numbered from 1 to 25 row-wise. Then every figure is represented by a
sequence of 8 cell numbers. Each individual geometric figure represents 16 different sequences (8 ways
to choose the starting point and two ways to choose the direction of the figure – clockwise or counter-
clockwise). It is easy to see that for each of the 8 cases in Figure 1, the lexicographically smallest of
these 16 sequences is chosen to represent the corresponding figure. The figure in the upper left corner,
represented by the sequence “2,9,18,15,24,17,6,13” is minimal because this sequence is
lexicographically smaller than the representing sequences of the other 7 figures, that start with

 2,9,18,15,24,17,6,13 4,7,18,11,22,19,10,13 3,10,19,22,13,16,7,14 3,6,17,24,13,20,9

 2,9,20,13,24,17,8,11 4,7,16,13,22,19,8,15 4,7,16,23,12,19,10,13 2,9,20,23,14,17,6,13

Figure 1. The 8 equivalent solutions Figure 1. The 8 equivalent solutions

For pruning the unnecessary solutions, we apply the following approach, il-
lustrated in Figure 1 for paths of length 8. The fields on the board are numbered

111

Algorithms for Construction...

row by row with the numbers 1, 2, …, (k+1)2. In our example, the cells are num-
bered from 1 to 25 row-wise. Then every figure is represented by a sequence of
8 cell numbers. Each individual geometric figure represents 16 different sequences
(8 ways to choose the starting point and two ways to choose the direction of the
figure – clockwise or counter-clockwise). It is easy to see that for each of the
8 cases in Figure 1, the lexicographically smallest of these 16 sequences is chosen
to represent the corresponding figure. The figure in the upper left corner, represent-
ed by the sequence “2,9,18,15,24,17,6,13” is minimal because this sequence is lex-
icographically smaller than the representing sequences of the other 7 figures, that
start with “2,9,20,…”, “3,…” or “4,…”. Each of the other 7 figures is not minimal,
because with a finite number of rotations and symmetries, it can be transformed
into a figure with a lexicographically smaller representing sequence.

In the process of generating the figures with Algorithm 1 or Algorithm 2, if a fig-
ure whose sequence is not minimal is obtained, it is not taken into account, because
it is equivalent to the figure with the corresponding minimal sequence.

In such a way, there is no need to check if a newly constructed solution is equiv-
alent to any of the already obtained thousands of solutions. It is sufficient just to
check if its representing sequence is a minimal one.

In (Kapralov et al. 2018) we began to distinguish closed knight’s paths that con-
tain the same sets of visited cells but the corresponding polygons are not congruent.
We call such paths geometrically distinct closed knight’s paths. The first such case
occurs for length k = 8 and is illustrated on Figure 2.

“2,9,20,…” “3,…” or “4,…”. Each of the other 7 figures is not minimal, because with a finite number
of rotations and symmetries, it can be transformed into a figure with a lexicographically smaller
representing sequence.

In the process of generating the figures with Algorithm 1 or Algorithm 2, if a figure whose
sequence is not minimal is obtained, it is not taken into account, because it is equivalent to the figure
with the corresponding minimal sequence.

In such a way, there is no need to check if a newly constructed solution is equivalent to any of the
already obtained thousands of solutions. It is sufficient just to check if its representing sequence is a
minimal one.

In (Kapralov et al. 2018) we began to distinguish closed knight’s paths that contain the same sets
of visited cells but the corresponding polygons are not congruent. We call such paths geometrically
distinct closed knight's paths. The first such case occurs for length k = 8 and is illustrated on Figure 2.

4. New results
An important problem related to the task of all knight paths (open or closed) in an m  n chessboard

is the problem of finding the uncrossed (i.e., non-self-intersecting) knight paths of maximum length
(Knuth 1975, Jelliss 2023). This problem was proposed by T. R. Dowson in 1930, who gave two
solutions of length 35 for an 8 × 8 chessboard, and he later claimed (without proof) that they were of
maximum length (Knuth 1975). More about the solutions of the task in its various variants and the
current results can be seen on the site (Jelliss 2023).

With a suitable modification of the algorithms, we enumerated the non-equivalent and
geometrically distinct closed knight’s paths as well as all non-self-intersecting ones among them. Table
2 presents all currently known results for the number of closed knight’s paths of length k, as well as
the number of non-self-intersecting closed paths. New ones are marked with '*'. The previously known
results are from (Kapralov et al. 2017) and (Kapralov et al. 2018).

Length

𝑘𝑘
Number of

nonequivalent cycles
Number of

non-self-intersecting cycles
4 3 3
6 25 [2] 13*
8 480 [3] 178*

10 12000 [3] 3034*
12 350256* 64877*
14 10780549* 1503790*
16 344680960* 36930111*

Table 2. The new results

5. Conclusion

 3, 7, 15, 11, 24, 28, 20, 16 3, 7, 15, 28, 20, 16, 24, 11 3, 7, 20, 28, 15, 11, 24, 16

Figure 2. Three geometrically distinct closed knight’s paths of length 8 Figure 2. Three geometrically distinct closed knight’s paths of length 8

4. New results
An important problem related to the task of all knight paths (open or closed) in

an m  n chessboard is the problem of finding the uncrossed (i.e., non-self-inter-
secting) knight paths of maximum length (Knuth 1975), (Jelliss 2023). This prob-
lem was proposed by T. R. Dowson in 1930, who gave two solutions of length 35
for an 8 × 8 chessboard, and he later claimed (without proof) that they were of
maximum length (Knuth 1975). More about the solutions of the task in its various
variants and the current results can be seen on the site (Jelliss 2023).

112

Stoyan Kapralov, Valentin Bakoev, Kaloyan Kapralov

With a suitable modification of the algorithms, we enumerated the non-equiv-
alent and geometrically distinct closed knight’s paths as well as all non-self-in-
tersecting ones among them. Table 2 presents all currently known results for the
number of closed knight’s paths of length k, as well as the number of non-self-inter-
secting closed paths. New ones are marked with ‘*’. The previously known results
are from (Kapralov et al. 2017) and (Kapralov et al. 2018).

Table 2. The new results
Length

k
Number

of nonequivalent cycles
Number

of non-self-intersecting cycles
4 3 3
6 25 [2] 13*

8 480 [3] 178*

10 12000 [3] 3034*

12 350256* 64877*

14 10780549* 1503790*

16 344680960* 36930111*

5. Conclusion
So far, the problem under consideration has been presented as a research prob-

lem. It was inspired by a competition task proposed by the first author at the 2015
National Spring Tournament in Informatics2. It is well known that the knight’s walk
problem and the 8 queens’ problem are classic examples in the study of recursion and
backtracking. That is why they occupy a well-deserved place in the relevant books
or textbooks. So, the general problem of finding all open or closed knight’s paths on
an m  n chessboard and related problems have a pedagogical meaning. This general
problem offers many possibilities and relevant examples in teaching subjects like
“Programming”, “Algorithms and data structures”, “Graph algorithms”, “Competi-
tive programming”, etc. It can be included in the study of topics like recursion, ex-
haustive search and backtracking, depth-first search, greedy algorithms, etc. For each
of these subjects, the theme of the knight’s paths or cycles can be used for lectures,
labs, homework, and projects. Their difficulty can have different levels:

 initial – search for only one knight’s path or cycle, experiments with chess
boards of different sizes, square and rectangular;

 intermediate – search and enumerate all knight’s paths/cycles, checking for
the non-existence of a cycle in boards of certain sizes, search for semi-magic
knight’s paths/cycles. For details see (Jelliss 2023), etc.;

 high – learning and applying as a computer programs some equivalences and
rejecting equivalent solutions which can be added to some intermediate-level
problems;

113

Algorithms for Construction...

 challenge – to check some results presented here and/or get new results.
Finally, we note that the knight’s path problem continues to evolve, mostly due

to the power of the latest processors. The site (Jelliss 2023) shows a lot of recent
solutions to the various types of the knight’s path problem in m  n chess boards,
the size of which is increasing more and more.

Acknowledgment
This work was supported in part by Grant No. 2209E/2022 of the Tech-

nical University of Gabrovo and by VelikoTarnovo University Project
FSD-31-243-23/21.03.2023.

NOTES
1. Knight Graph. http://mathworld.wolfram.com/KnightGraph.html. Accessed

30/03/2023.
2. National Competitions in Informatics for High School Students (in Bulgarian),
http://www.math.bas.bg/infos/files/2015-06-14-B3.pdf. Accessed 30/03/2023.

REFERENCES
EULER, L., 1766. Solution d’une question curieuse qui ne paroitsoumise

à aucuneanalyse (Solution of a curious question which does not seem to
have been subject to any analysis), Mémoires de l’Académie Royale de
Berlin, Année 1766, vol.15, 310 – 337.

http://euler.free.fr/knight/index2.html, Accessed 30/03/2023.
JELLISS, G. P., 2023. Knight’s Tours Notes, Available at:

http://www.mayhematics.com/t/t.htm, Accessed 30/03/2023.
KAPRALOV, S., BAKOEV, V., KAPRALOV, K., 2017. Enumeration

of some closed knight paths, Proc. of the International Scientific
Conference UNITECH-2017, Nov. 17–18, 2017, ISSN 1313-230X.
Technical University of Gabrovo, Gabrovo, Bulgaria, pp. II416 – II418;
arXiv:1711.06792.

KAPRALOV, S., BAKOEV, V., KAPRALOV, K., 2018. Enumeration of
the Closed Knight’s Paths of Length 10, 15th International Conference
on Informatics and Information Technologies, CIIT 2018, April 20 – 22,
2018, Mavrovo, Macedonia, 76 – 78.

KNUTH, D., 1975. Estimating the Efficiency of Backtrack Programs,
Mathematics of Computation, Vol. 29, № 129, Jan. 1975, 121 – 136.

MCKAY, B. D., 1997. Knight’s tours of a chessboard. Technical
Report TR-CS-97-03, Department of Computer Science, Australian
National University, Australia, February 1997.

114

Stoyan Kapralov, Valentin Bakoev, Kaloyan Kapralov

PARBERRY, I., 1977. An efficient algorithm for the Knight’s tour problem,
Discrete Applied Mathematics, 73, 1997, 251 – 260.

ROUSE BALL, W. W., 1892. Mathematical Recreations and Essays,
Project Gutenberg, 2008 [EBook #26839] (1st Ed., Feb. 1892, Reprinted,
May 1892; 2nd Ed., 1896, Reprinted, 1905).

 Prof. Stoyan Kapralov, DSc.
ORCID iD: 0000-0002-5713-1488

Technical University of Gabrovo
Gabrovo, Bulgaria

E-mail: s.kapralov@tugab.bg

 Dr. Valentin Bakoev, Assoc. Prof.
ORCID iD: 0000-0003-2503-5325

“St. Cyril and St. Methodius” University of VelikoTarnovo
Veliko Tarnovo, Bulgaria

E-mail: v.bakoev@ts.uni-vt.bg

 Mr. Kaloyan Kapralov
ORCID iD: 0000-0003-4971-9422

Sofia, Bulgaria
E-mail: kaloyan.kapralov@gmail.com

