
107

Математика  	 Volume 66,	 Mathematics 
и информатика 	 Number 2, 2023	 and Informatics

ALGORITHMS FOR CONSTRUCTION, 
CLASSIFICATION AND ENUMERATION

OF CLOSED KNIGHT’S PATHS
Prof. DSc. Stoyan Kapralov1), Assoc. Prof. Dr.Valentin Bakoev2),  

Kaloyan Kapralov3)

1)University of Gabrovo (Bulgaria)
2)“St. Cyril and St. Methodius” University of Veliko Tarnovo (Bulgaria)

3)Sofia (Bulgaria)
Abstract. Two algorithms for constructing all closed knight’s paths of lengths 

up to 16 are presented. An approach for classification (up to equivalence) of all such 
paths is considered. Two closed knight’s paths are called equivalent if one can be 
obtained from the other by applying one or more of the equivalences: translation, 
rotation, symmetry, or when the corresponding polygons (whose vertices are the cells 
visited by the knight), are geometrically congruent. By applying the construction 
algorithms and classification approach, we enumerate both nonequivalent and non-
self-intersecting knight’s paths and show the obtained results. Some pedagogical 
aspects related to the problems under consideration and the teaching of subjects 
such as “Programming”, “Algorithms and Data Structures”, “Graph Algorithms” 
and “Competitive Programming” are also discussed.
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1. Introduction
In graph theory, a knight graph is a graph that represents all legal moves of a 

chess knight on a chessboard. An m  n knight graph is that for an m  n chess-
board. An open knight’s path visits every square on the chessboard exactly once 
and so it is a Hamiltonian path in the corresponding knight graph. When the start-
ing point coincides with the endpoint, the knight’s path is called a closed knight’s 
path. It is a Hamiltonian cycle in this knight graph. The types of knight graphs and 
their properties, such as, for instance, that an n  n knight graph contains 4(n – 2)
(n – 1) edges are discussed in Knight Graph page1.

The search for Hamiltonian paths and cycles and solving the many related prob-
lems has a long history – see (Rouse Ball 1892) and the excellent survey presented 
on the internet2. In the late 17th and early 18th centuries, mathematicians such as De 
Montmort and De Moivre provided solutions to the closed knight’s path problem 
on the classical 8×8 board. But the first scientist who proposed a method for solving 
this problem and published an article about it was the famous Leonard Euler (Euler 
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1766). After him, well-known mathematicians such as Legendre, Vandermonde, 
and others also provided solutions to this problem. Special attention deserves the 
ingenious solution to the knight’s path problem proposed by Warnsdorff in 1823. To 
get a solution, he suggests following a very simple rule: “Starting from an arbitrary 
square, always move the knight to an unvisited square from which there are as few 
subsequent moves as possible.” This rule is the basis of a greedy algorithm that runs 
in linear time O(n2). Algorithms based on the “divide and conquer” strategy having 
the same type of time complexity are considered in (Parberry 1977). Such types of 
approaches and algorithms are also discussed, starting with Euler’s ideas. Although 
the problem of finding a Hamiltonian cycle is NP-complete in the general case, 
the knight graph has a special structure and such efficient solutions are possible. 
However, the problem of finding all nonequivalent (with respect to rotations and 
symmetries) solutions is very hard. That is why it was solved successfully only at 
the end of the 20th century (McKay 1997). 

In this paper, we consider a slightly different problem: to find, classify and enu-
merate all Hamiltonian cycles (i.e. undirected closed knight’s paths) of definite 
lengths, both nonequivalent and non-self-intersecting (when viewed as polygons). 
Two cycles are called equivalent if one can be obtained from another by applying 
operations (one or more) translation, rotation, and symmetry on the chessboard, 
otherwise, they are nonequivalent. Here we classify and enumerate all nonequiva-
lent cycles of lengths 12, 14, and 16. This problem has been solved for smaller cy-
cle length values (6, 8 and 10) in our previous publications (Kapralov et al. 2017), 
(Kapralov et al. 2018). 

In Section 2 we outline two algorithms for the construction of closed knight’s 
paths and experimentally compare their execution times. In Section 3 we describe, 
via an example, the equivalences – what it means for two paths to be equivalent, 
and for a given solution to be minimal. New results on the number of non-self-in-
tersecting cycles are shown in Section 4. In the last section, we discuss some meth-
odological aspects of the problem under consideration and its use in teaching sub-
jects such as “Algorithms and Data Structures”, “Competitive Programming”, etc.

2. Algorithms for construction of closed knight’s paths
Each closed knight’s path has an even length, say k = 2l, since the knight’s steps 

alternate the colors of the cells it steps on, for example black, white, black, white, 
…, black, or conversely: white, black, white, black, ..., white (an odd number of 
vertices in a path means an even number of edges, i.e. even length). Hence such a 
path can be embedded in a board of size (k + 1)  (k + 1). So we take an m  n board 
with m=n=k+1 and number the cells with integers from 1 to (k + 1)2, row-wise. 
We apply two similar approaches as outlined below.

In Algorithm 1, for each s from the set s of starting cells, we run a modified ver-
sion of a depth-first search. Thus, via exhaustive backtracking, we build all knights’ 
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paths of length k (with k vertices and k – 1edges). Finally, we check whether the last 
square is adjacent (via a chess knight’s move) to the starting one, and if it is, that 
means that a new solution is found. Such a solution is saved if it is lexicographi-
cally minimal – the description of minimality and minimality check is given in the 
next section. Here is the C++ code of Algorithm 1:

void dfs() 
{int u = p[len-1]; // p – list of the path cells 
	 if(len< k) 
	 {for (int v:adj[u])
		  if(!vis[v]) 
		  {p[len++] = v;vis[v] = true;
		  dfs();len--;vis[v] = false;
		  }
}
else
	 if(adjacent(u,s)) 
	 {pathpt(p,p+k);
		  if(is_min(pt))sol.push_back(pt);
	 }
}

int main() 
{...
	 for(s:S) 
	 {p[0] = s;vis[s] = true;len = 1;
		  dfs();
	 }
	 ...
}

In Algorithm 2, for each pair of starting cell s and ending cell t, we construct all 
connecting paths of length k/2. We then try to assemble a whole path of length k 
from two halves. Of course, we may concatenate two paths if they do not intersect, 
that is, they have no common point except the two endpoints. It is sufficient to 
consider only cycles, which cannot be translated up or left, meaning that they have 
at least one point on the top row of the board and at least one point in the leftmost 
column. Thus, we define the equivalence between two cycles with respect to trans-
lation, i.e., sliding on the board. Hence, as well as for symmetry reasons, we may 
assume that we have to consider only the set S = {1, 2,…, k/2 + 1} as a set of pos-
sible starting points. A comparison between the speed of Algorithm 1 (slower) and 
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Algorithm 2 (faster) is shown in Table 1. The comparison was made on a common 
laptop with an 8th-generation Intel core i5 processor. Programs are written in C++.

Table 1. The number of nonequivalent closed knight’s paths and the elapsed 
time in seconds of the two algorithms

k Number  
of nonequivalent cycles Algorithm 1 Algorithm 2

6 25  1 s  1 s
8 480  1 s  1 s
10 12000 2 s 1 s
12 350256 44 s 18 s
14 10780549 2097 s 692 s
16 344680960 ??? ≈ 24 hours

2. Equivalent solutions
Let’s take a look at the figures in Table 2. They are all obtained from the main 

figure in the upper left corner by rotating (counter-clockwise) in steps of 90° and 
applying symmetry about the vertical axis. We say that these 8 figures are equiva-
lent to each other. Our task to enumerate and classify the closed knight’s paths of a 
given length is essentially to enumerate some set of figures up to equivalence, i.e. 
to give just one representative from each equivalence class.
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For pruning the unnecessary solutions, we apply the following approach, illustrated in Figure 1 for 

paths of length 8. The fields on the board are numbered row by row with the numbers 1, 2, …, (k+1)2. 
In our example, the cells are numbered from 1 to 25 row-wise. Then every figure is represented by a 
sequence of 8 cell numbers. Each individual geometric figure represents 16 different sequences (8 ways 
to choose the starting point and two ways to choose the direction of the figure – clockwise or counter-
clockwise). It is easy to see that for each of the 8 cases in Figure 1, the lexicographically smallest of 
these 16 sequences is chosen to represent the corresponding figure. The figure in the upper left corner, 
represented by the sequence “2,9,18,15,24,17,6,13” is minimal because this sequence is 
lexicographically smaller than the representing sequences of the other 7 figures, that start with 

                                                     
    2,9,18,15,24,17,6,13           4,7,18,11,22,19,10,13          3,10,19,22,13,16,7,14              3,6,17,24,13,20,9 

                                                   
     2,9,20,13,24,17,8,11           4,7,16,13,22,19,8,15           4,7,16,23,12,19,10,13           2,9,20,23,14,17,6,13 

Figure 1. The 8 equivalent solutions Figure 1. The 8 equivalent solutions

For pruning the unnecessary solutions, we apply the following approach, il-
lustrated in Figure 1 for paths of length 8. The fields on the board are numbered 
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row by row with the numbers 1, 2, …, (k+1)2. In our example, the cells are num-
bered from 1 to 25 row-wise. Then every figure is represented by a sequence of  
8 cell numbers. Each individual geometric figure represents 16 different sequences  
(8 ways to choose the starting point and two ways to choose the direction of the 
figure – clockwise or counter-clockwise). It is easy to see that for each of the  
8 cases in Figure 1, the lexicographically smallest of these 16 sequences is chosen 
to represent the corresponding figure. The figure in the upper left corner, represent-
ed by the sequence “2,9,18,15,24,17,6,13” is minimal because this sequence is lex-
icographically smaller than the representing sequences of the other 7 figures, that 
start with “2,9,20,…”, “3,…” or “4,…”. Each of the other 7 figures is not minimal, 
because with a finite number of rotations and symmetries, it can be transformed 
into a figure with a lexicographically smaller representing sequence.

In the process of generating the figures with Algorithm 1 or Algorithm 2, if a fig-
ure whose sequence is not minimal is obtained, it is not taken into account, because 
it is equivalent to the figure with the corresponding minimal sequence.

In such a way, there is no need to check if a newly constructed solution is equiv-
alent to any of the already obtained thousands of solutions. It is sufficient just to 
check if its representing sequence is a minimal one.

In (Kapralov et al. 2018) we began to distinguish closed knight’s paths that con-
tain the same sets of visited cells but the corresponding polygons are not congruent. 
We call such paths geometrically distinct closed knight’s paths. The first such case 
occurs for length k = 8 and is illustrated on Figure 2.
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In such a way, there is no need to check if a newly constructed solution is equivalent to any of the 
already obtained thousands of solutions. It is sufficient just to check if its representing sequence is a 
minimal one. 
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4. New results 
An important problem related to the task of all knight paths (open or closed) in an m  n chessboard 

is the problem of finding the uncrossed (i.e., non-self-intersecting) knight paths of maximum length 
(Knuth 1975, Jelliss 2023). This problem was proposed by T. R. Dowson in 1930, who gave two 
solutions of length 35 for an 8 × 8 chessboard, and he later claimed (without proof) that they were of 
maximum length (Knuth 1975). More about the solutions of the task in its various variants and the 
current results can be seen on the site (Jelliss 2023). 

With a suitable modification of the algorithms, we enumerated the non-equivalent and 
geometrically distinct closed knight’s paths as well as all non-self-intersecting ones among them. Table 
2 presents all currently known results for the number of closed knight’s paths of length k, as well as 
the number of non-self-intersecting closed paths. New ones are marked with '*'. The previously known 
results are from (Kapralov et al. 2017) and (Kapralov et al. 2018).  

 
Length 

𝑘𝑘
Number of  

nonequivalent cycles 
Number of  

non-self-intersecting cycles 
4 3 3 
6 25 [2] 13* 
8 480 [3] 178* 

10 12000 [3] 3034* 
12 350256* 64877* 
14 10780549* 1503790* 
16 344680960* 36930111* 

Table 2. The new results 

5. Conclusion 

                                               
        3, 7, 15, 11, 24, 28, 20, 16                3, 7, 15, 28, 20, 16, 24, 11               3, 7, 20, 28, 15, 11, 24, 16 

Figure 2. Three geometrically distinct closed knight’s paths of length 8 Figure 2. Three geometrically distinct closed knight’s paths of length 8

4. New results
An important problem related to the task of all knight paths (open or closed) in 

an m  n chessboard is the problem of finding the uncrossed (i.e., non-self-inter-
secting) knight paths of maximum length (Knuth 1975), (Jelliss 2023). This prob-
lem was proposed by T. R. Dowson in 1930, who gave two solutions of length 35 
for an 8 × 8 chessboard, and he later claimed (without proof) that they were of 
maximum length (Knuth 1975). More about the solutions of the task in its various 
variants and the current results can be seen on the site (Jelliss 2023).
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With a suitable modification of the algorithms, we enumerated the non-equiv-
alent and geometrically distinct closed knight’s paths as well as all non-self-in-
tersecting ones among them. Table 2 presents all currently known results for the 
number of closed knight’s paths of length k, as well as the number of non-self-inter-
secting closed paths. New ones are marked with ‘*’. The previously known results 
are from (Kapralov et al. 2017) and (Kapralov et al. 2018). 

Table 2. The new results
Length  

k
Number  

of nonequivalent cycles
Number  

of non-self-intersecting cycles
4 3 3
6 25 [2] 13*

8 480 [3] 178*

10 12000 [3] 3034*

12 350256* 64877*

14 10780549* 1503790*

16 344680960* 36930111*

5. Conclusion
So far, the problem under consideration has been presented as a research prob-

lem. It was inspired by a competition task proposed by the first author at the 2015 
National Spring Tournament in Informatics2. It is well known that the knight’s walk 
problem and the 8 queens’ problem are classic examples in the study of recursion and 
backtracking. That is why they occupy a well-deserved place in the relevant books 
or textbooks. So, the general problem of finding all open or closed knight’s paths on 
an m  n chessboard and related problems have a pedagogical meaning. This general 
problem offers many possibilities and relevant examples in teaching subjects like 
“Programming”, “Algorithms and data structures”, “Graph algorithms”, “Competi-
tive programming”, etc. It can be included in the study of topics like recursion, ex-
haustive search and backtracking, depth-first search, greedy algorithms, etc. For each 
of these subjects, the theme of the knight’s paths or cycles can be used for lectures, 
labs, homework, and projects. Their difficulty can have different levels:

 initial – search for only one knight’s path or cycle, experiments with chess 
boards of different sizes, square and rectangular;

 intermediate – search and enumerate all knight’s paths/cycles, checking for 
the non-existence of a cycle in boards of certain sizes, search for semi-magic 
knight’s paths/cycles. For details see (Jelliss 2023), etc.;

 high – learning and applying as a computer programs some equivalences and 
rejecting equivalent solutions which can be added to some intermediate-level 
problems;
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 challenge – to check some results presented here and/or get new results.
Finally, we note that the knight’s path problem continues to evolve, mostly due 

to the power of the latest processors. The site (Jelliss 2023) shows a lot of recent 
solutions to the various types of the knight’s path problem in m  n chess boards, 
the size of which is increasing more and more.
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