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Abstract. Formation of notion is a fundamental process in education, and for that 
reason it is excessively studied in both psychology and pedagogy. The application 
of the pedagogical techniques has a key role in education in informatics (Asenova, 
1990) and has significantly improved the results in introduction of complex notions 
in our practice. Such complex notion is abstract data type (ADT) which is a key 
concept in computer programming for developing data structures, data types, and 
have vast influence on the algorithms applied on them. In order to introduce the 
notion ADT we adopt a system of tasks that develop the needed knowledge through 
the important data structures of linked lists, queues and stacks.
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Introduction
Notions have a fundamental role in development of the scientific knowledge. 

For that reason, the process of notion formation has been studied by number of re-
searchers in the fields of psychology and pedagogy (see (Usuva, 2011), (Vygotsky, 
1987), (Aleksandrov, 1999), (Rubinstein, 1946), (Davydov, 1996) and the cited 
literature in these works). One of the basic goals of teaching is the formation of 
the notion apparatus in the learner. According to Usova (see (Usuva, 2011)) in the 
complicated spiral process of formation and development of a given notion, the 
following distinct 11 steps can be followed:

1. Specific perception: observation of the objects, demonstrations by the lec-
turer. The attention is drawn towards the features and links between the observed 
objects.

2. Discovery of common essential features of the class of observed objects.
3. Generalization. From the specific examples a transition to abstract conclusion 

for the common essential features of the class of objects.
4. The definition is formulated. Whenever possible, a generic term and a species 

distinction are used.
5. Consolidation of the essential features. It is achieved through a group of ex-

ercises aimed at: 
– Essential features. 

Educational Issues
Въпроси на преподаването
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– Studying of objects that have common essential and unessential features. 
From all features, the essential are selected. The objects are distinct based on 
the unessential features. These unessential features of the examined objects 
help the distinction of similar notions. 

6. Link of the examined notion with other notions. Conclusions are made  or-
ganized, based on which  these links are introduced. Graphs and formulas can be 
analyzed here.

7. Application of the notion in simple situations based on simple tasks. The ex-
ercises reveal also the links to other notions.

8. Classification of notions. The goal is to give the general links of the notion in 
a general system of notions. This helps the comprehension of the role of the classi-
fication for arrangement and systematization of the knowledge.  

9. Application of the notion for solving of creative tasks. Complicated tasks are 
solved. A link to other systems of notions are given from the same discipline or 
from other disciplines.

10. Enrichment of the notion. The notion is enriched with new essential features 
towards its complete fullness. This process may continue in a spiral manner in time.

11. The studied notion is used as a formulation of new notions. In this manner 
the studied notion is developed continuously and is included in new links and new 
systems of notions.

The learners who have passed through the above stages during the assimilation 
of the notions show solid knowledge, understanding of the notions and skills to use 
them in nonstandard situations. This shows that these stages can be used as a goal 
in the development of system of tasks for given notion formulation. In (Assenova 
& Marinov, 2019) it is given such an example is presented in the case of notions 
formation in the education in mathematics.

We will note that some of the notions cannot be formulated in a single discipline. 
Besides that, it is not always necessary to fully formulate a given notion to serve the 
goals of the program. For example, many of the notions in the informatics education 
in the high-school remain on the level of perception, concept, or generalized concept. 
These are the first three stages, according to Usova. In this case the learners themselves 
generalize the essential features of the class of objects, and the generalization is sepa-
rated from the precise examples that cause it. In this case, the level of abstraction that 
contains the minimal features that define the notion is not reached yet. In (Albertovna, 
2017) the authors, referring to the studies of Vygotsky, call this level pre-notion. Pre-no-
tion opens the possibilities for assimilation of given skills and technologies. This gives 
the basis for the development of an abstract definition.

The notion ADT
The notion abstract data type (ADT) is considered important in computer pro-

gramming ever since the development of structured programming as a key concept 
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in controlling the complexity with which the programmer have to cope with. An 
early work by Dijkstra (Dijkstra, 1972) emphasizes the significance of the introduc-
tion of a structures in software development, especially in the case implementation 
of large projects. ADT are shown to play a key role in this process of structures 
incorporation (Guttag, 1977) as a mechanism that allows the separation of  behav-
ior of a data type from its actual implementation. It has been shown that the sub-
routines (in procedural and functional programming these are the functions), even 
though powerful in the case of operations separation, are not enough to describe 
well abstract objects. At that point the idea of two separate types of attributes in a 
computer program emerge: (i) objects and the set of operations that are defined on 
them; (ii) names and abstract meanings of the operations. ADT actually belong to 
the second type of attributes, as it is shown in (Guttag, 1977).

Data abstraction has become a significant part of the approach of computer pro-
gram structure formulation. In (Abelson, 1996) it is pointed out that data abstraction 
is a methodology for structuring of a program in such way that many of its compo-
nents become independent on the particular choice of implementation. The key idea 
is to create an abstraction that separates the way a data type is used from the way 
this data type is represented. In this way the complexity of the program implemen-
tation can be controlled, and something more, different underlying representations 
can be provided for the same data abstraction, each of them superior to the others in 
concrete situations. Thus, as described in (Sedgewick, 1997), ADT is a set of values 
and operations that are defined on those values that are accessible only through an 
interface. The definition given by Sedgewick is very important because it directly 
fits the more recent concepts of object-oriented programming (OOP). Here the key 
part is played by the concept of interface: data is never accessed directly by the 
client program, but only through the operations that are defined by the interface.

The same concept is also given directly in the context of OOP by (Horstmann, 
2008), where ADT is presented as specification of fundamental operations that 
give the characteristics of the data type. The separation of the functionality of a 
data type from its implementation is clearly described using the mechanisms of the 
OOP, since data abstraction and encapsulation are the first two principles of this 
programming paradigm. Data abstraction in this case refers to the ability of the 
programming language to define new data types. In general in OOP these abilities 
are provided by classes. Encapsulation ensures that private parts of a class remain 
hidden from the user, while the public routines (in this case called member func-
tions or methods) provide the public interface that is used to manipulate the type 
representatives. Of course, ADT is not a feature of OOP, it is a general concept that 
is applicable in any of the contemporary programming paradigms.

Following the above formulations, in the general case ADT can be defined as 
a concept of a data type in which its behavior is provided by a set of possible op-
erations that are independent from the concrete implementation. Also, in different 
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applications, different underlying implementations of the ADT can be provided that 
do not affect the functionally of the type, but only underlying representation that 
remain hidden from the user.

There are two straightforward examples that are usually given to illustrate what 
ADT is, and these are queues and stacks (see for example (Goodrich, 2011)).

A queue is a linear data structure that manages a sequence of values in first-in-
first-out (FIFO) out policy. It is defined by two operations that are the interface of 
the data type:

– push operation that adds an element into the back of the sequence;
– pop operation that removes an element from the front of the sequence.
A stack is also linear data structure but it manages a sequence of values in 
last-in-first-out (LIFO) out policy. Again, it is defined by two operations that 
are the interface of the data type:
– push operation that adds an element, but this time into the back of the se-
quence;
– pop operation that removes an element from the back of the sequence.

Even from the first glance it is obvious that these two data structures can have 
identical intrinsic representations, but they differ exactly in the interface that shape 
their behavior. They are very good as examples for ADT because the abstract barri-
er between their underlying implementation, and the characteristics of the data type 
provided by their fundamental operations is obvious. Actually a queue and a stack 
differ in the definition of their push operations.

Something more, in different particular applications, queues and stacks can have 
totally different intrinsic implementations. In the course of OOP usually the un-
derlying implementation that is given is based on linked lists. On the other hand, 
very often in the context of competitive programming training (Skiena 2003) the 
underlying implementation is based on arrays.

In this paper we present a system of tasks that build the notion ADT, following 
the system presented by Usuva (Usuva, 2011)).

System of tasks 
The notion ADT is constructed using the basic data structure linked list that is 

used for the implementation of queues and stacks in the context of OOP. The pro-
gramming language that is used during the course is C++, however the presented 
tasks are fully applicable in the case of any of the other standard programming 
languages that support the OOP paradigm, like Java and Python for example. Even 
more, with few modifications, similar tasks can be presented in the case of proce-
dural or functional programming.

By the time of the problems introduction, the learners are familiar with mecha-
nisms of arrays and vectors, dynamic memory management and basic principles of 
OOP in C++. The goal of the system of tasks is to develop the notions linked list, 
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stack, and queue, and to build the notion ADT based on these examples. The ex-
pected are also the acquisition of additional knowledge in the mechanisms of pro-
gramming in C++ that include automatic memory management (dynamic memory 
management in the context of classes) and friendship mechanism as well.

Definition of linked lists and STL class list
At that point of the curriculum, the learners are fully familiar with the notions of 

arrays and vectors in programming, as basic tools for representation of sequences 
of values of the same data type. The notion linked list is presented based on this 
background.

Following the first step from the system of Usuva perception, we give the basic 
characteristics of the object linked list and its link to the context of OOP. For this 
introduction we use the STL class list that is ready to use standard library features 
and it clearly shows the functionality of the data structure, and its usage.

Task 1. Implement a program that readsn number of strings, places them at the 
end of a linked list, and then print the contents of the linked list.

 
Task 2. Rewrite the function in Listing 1 using an iterator, instead of the member function 
push_back(). The member function insert() takes as first parameter an iterator that points 
the position, and as second parameter, the value to be inserted. 

 
Task 2 introduces a helper term iterator that is common for all sequential data structures in the C++ 
standard library, inclusively vectors. This is also a common feature, as described in the educational 
system of Usuva. 
 
Task 3. Add a function to the program from Task 2 that inserts a new node with data at specific 
location into the linked list. The location is given by its consecutive number. 

 
Task 4. Extend the program from the above problem with a capability to delete an element from the 
linked list given its consecutive number. 
 

void readList(list<string>& slist, int n) 
{ 
    for (int i = 0; i < n; i++) 
    { 
        cout << "> "; 
        string buff; 
        cin >> buff; 
        slist.push_back(buff); 
    } 
} 
Listing 1 Read STL linked list 

void printList(list<string>& slist) 
{ 
    for (list<string>::iterator pos = slist.begin();  
  pos != slist.end();  ++pos) 
    { 
        cout << *pos << " "; 
    } 
    cout << endl; 
} 

Listing 2 Print contents of STL list 

void insert(list<string>& slist, int node, const  
      string &data) 
{ 
    list<string>::iterator pos = slist.begin(); 
    for (int i = 0; i < node; ++pos, i++); 
    slist.insert(pos, data);     
} 

Listing 3 Insert new element at a given location 

Task 2. Rewrite the function in Listing 1 using an iterator, instead of the member 
function push_back(). The member function insert() takes as first parameter 
an iterator that points the position, and as second parameter, the value to be inserted.

 
Task 2. Rewrite the function in Listing 1 using an iterator, instead of the member function 
push_back(). The member function insert() takes as first parameter an iterator that points 
the position, and as second parameter, the value to be inserted. 

 
Task 2 introduces a helper term iterator that is common for all sequential data structures in the C++ 
standard library, inclusively vectors. This is also a common feature, as described in the educational 
system of Usuva. 
 
Task 3. Add a function to the program from Task 2 that inserts a new node with data at specific 
location into the linked list. The location is given by its consecutive number. 

 
Task 4. Extend the program from the above problem with a capability to delete an element from the 
linked list given its consecutive number. 
 

void readList(list<string>& slist, int n) 
{ 
    for (int i = 0; i < n; i++) 
    { 
        cout << "> "; 
        string buff; 
        cin >> buff; 
        slist.push_back(buff); 
    } 
} 
Listing 1 Read STL linked list 

void printList(list<string>& slist) 
{ 
    for (list<string>::iterator pos = slist.begin();  
  pos != slist.end();  ++pos) 
    { 
        cout << *pos << " "; 
    } 
    cout << endl; 
} 

Listing 2 Print contents of STL list 

void insert(list<string>& slist, int node, const  
      string &data) 
{ 
    list<string>::iterator pos = slist.begin(); 
    for (int i = 0; i < node; ++pos, i++); 
    slist.insert(pos, data);     
} 

Listing 3 Insert new element at a given location 
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Task 2 introduces a helper term iterator that is common for all sequential data 
structures in the C++ standard library, inclusively vectors. This is also a common 
feature, as described in the educational system of Usuva.

Task 3. Add a function to the program from Task 2 that inserts a new node with 
data at specific location into the linked list. The location is given by its consecutive 
number.

 
Task 2. Rewrite the function in Listing 1 using an iterator, instead of the member function 
push_back(). The member function insert() takes as first parameter an iterator that points 
the position, and as second parameter, the value to be inserted. 

 
Task 2 introduces a helper term iterator that is common for all sequential data structures in the C++ 
standard library, inclusively vectors. This is also a common feature, as described in the educational 
system of Usuva. 
 
Task 3. Add a function to the program from Task 2 that inserts a new node with data at specific 
location into the linked list. The location is given by its consecutive number. 

 
Task 4. Extend the program from the above problem with a capability to delete an element from the 
linked list given its consecutive number. 
 

void readList(list<string>& slist, int n) 
{ 
    for (int i = 0; i < n; i++) 
    { 
        cout << "> "; 
        string buff; 
        cin >> buff; 
        slist.push_back(buff); 
    } 
} 
Listing 1 Read STL linked list 

void printList(list<string>& slist) 
{ 
    for (list<string>::iterator pos = slist.begin();  
  pos != slist.end();  ++pos) 
    { 
        cout << *pos << " "; 
    } 
    cout << endl; 
} 

Listing 2 Print contents of STL list 

void insert(list<string>& slist, int node, const  
      string &data) 
{ 
    list<string>::iterator pos = slist.begin(); 
    for (int i = 0; i < node; ++pos, i++); 
    slist.insert(pos, data);     
} 

Listing 3 Insert new element at a given location 

Task 4. Extend the program from the above problem with a capability to delete 
an element from the linked list given its consecutive number.

 Task 3 and Task 4 illustrate two important features: the sequential access that is provided by 
the linked lists on opposite of the random access that is provided by the arrays. This gives the link 
of the new notion linked list with a notion of the arrays and vectors, that at that point of the 
curriculum are fully developed. Thus, the notion linked list is described in the terms of perception 
and discovery of common features with existing notions. Next step is to give a definition of the 
notion, by providing of the implementation of the linked list itself. 
  
 
Implementation of linked list 
 The implementation of a linked list of integer keys is composed by the following three 
classes: 

– Node – a node of integer data and pointers to previous and next node; 
– Iterator – an iterator that visits the nodes of the linked list; 
– LList – the linked list itself. 

 
Task 5. Implement the class Node. It contains an integer data field, a pointers of type Node to the 
previous and to the next node in the list. Implement a parameter constructor that sets the data field, 
and initializes the two pointers with nullptr. 

 
Task 6. Implement the class LList. In next exercises more members will be added to the class. 
Default constructor simply creates an empty list by setting both ptr_frst and ptr_last to 
nullptr. 

void remove(list<string>& slist, int node) 
{ 
    list<string>::iterator pos = slist.begin(); 
    for (int i = 0; i < node; ++pos, i++); 
    slist.erase(pos); 
} 

Listing 4 Delete an element at a given location in the list 

class Node 
{ 
    public: 
        Node(int data); 
 
    private: 
        int data; 
        Node* ptr_prev; 
        Node* ptr_next; 
}; 
Listing 5 Definition of the class Node 

Task 3 and Task 4 illustrate two important features: the sequential access that 
is provided by the linked lists on opposite of the random access that is provided 
by the arrays. This gives the link of the new notion linked list with a notion of the 
arrays and vectors, that at that point of the curriculum are fully developed. Thus, the 
notion linked list is described in the terms of perception and discovery of common 
features with existing notions. Next step is to give a definition of the notion, by 
providing of the implementation of the linked list itself.

Implementation of linked list
The implementation of a linked list of integer keys is composed by the follow-

ing three classes:
– Node – a node of integer data and pointers to previous and next node;
– Iterator – an iterator that visits the nodes of the linked list;
– LList – the linked list itself.
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Task 5. Implement the class Node. It contains an integer data field, a pointers of 
type Node to the previous and to the next node in the list. Implement a parameter 
constructor that sets the data field, and initializes the two pointers with nullptr.

 Task 3 and Task 4 illustrate two important features: the sequential access that is provided by 
the linked lists on opposite of the random access that is provided by the arrays. This gives the link 
of the new notion linked list with a notion of the arrays and vectors, that at that point of the 
curriculum are fully developed. Thus, the notion linked list is described in the terms of perception 
and discovery of common features with existing notions. Next step is to give a definition of the 
notion, by providing of the implementation of the linked list itself. 
  
 
Implementation of linked list 
 The implementation of a linked list of integer keys is composed by the following three 
classes: 

– Node – a node of integer data and pointers to previous and next node; 
– Iterator – an iterator that visits the nodes of the linked list; 
– LList – the linked list itself. 

 
Task 5. Implement the class Node. It contains an integer data field, a pointers of type Node to the 
previous and to the next node in the list. Implement a parameter constructor that sets the data field, 
and initializes the two pointers with nullptr. 

 
Task 6. Implement the class LList. In next exercises more members will be added to the class. 
Default constructor simply creates an empty list by setting both ptr_frst and ptr_last to 
nullptr. 

void remove(list<string>& slist, int node) 
{ 
    list<string>::iterator pos = slist.begin(); 
    for (int i = 0; i < node; ++pos, i++); 
    slist.erase(pos); 
} 

Listing 4 Delete an element at a given location in the list 

class Node 
{ 
    public: 
        Node(int data); 
 
    private: 
        int data; 
        Node* ptr_prev; 
        Node* ptr_next; 
}; 
Listing 5 Definition of the class Node 

Task 6. Implement the class LList. In next exercises more members will be 
added to the class. Default constructor simply creates an empty list by setting both 
ptr_frst and ptr_last to nullptr.

Task 7. In class LList, implement the member function pushBack(). Create a new node 
ptr_newn that contains the data filed. We must also grant access of the class LList to the private 
members of the class Node. In C++ this is easily done by defining that LList is a friend class of 
Node in Node definition. 
 In Task 7 again a link is created with a new notion that in this case is an important 
mechanism of the programming language itself. This is the mechanism of friend classes and friend 
functions that grants access to the private section of a class. It is also pointed that this approach 
destroys the encapsulation of the classes and thus proves that C++ is not a purely object-oriented 
language. 
 
Task 8. Implement the destructor of the class LList. For each node in the list, starting from the 
first one, attach a temporary, move the first node to the next one, and then delete the temporary. 

Task 9. Implement class Iterator. It contains two private fields: a pointer to Node that is the 
current position of the iterator, and a pointer to the linked list that contains the iterator. The default 
constructor sets both pointers to nullptr. The constructor with parameters is needed for the 
implementation of begin() and end() member functions of class LList. 

Task 10. Add two member functions to LList: begin() and end(). They return an iterator, 
attached to the list object, that points to the beginning and the end, respectively. The function 
end() returns an iterator whose position pointer is set to nullptr. This is because it returns 
iterator to the past-the-end element which denotes the end of the list. 
 

class LList 
{ 
    public: 
        LList(); 
        void pushBack(int data); 
 
    private: 
        Node* ptr_frst; 
        Node* ptr_last; 
}; 
Listing 6 Definition of the class LList 

Node* ptr_tmp = ptr_frst; 
ptr_frst = ptr_frst->ptr_next; 
delete ptr_tmp; 
ptr_tmp = nullptr; 
Listing 7 Body of the loop that implements the destructor of LList 

class Iterator 
{ 
    public: 
        Iterator(); 
        Iterator(Node* ptr_pos, LList* ptr_cnt); 
    private: 
        Node* ptr_pos; 
        LList* ptr_cnt; 
}; 
Listing 8 Definition of the class iterator 

Task 7. In class LList, implement the member function pushBack(). Create 
a new node ptr_newn that contains the data filed. We must also grant access of 
the class LList to the private members of the class Node. In C++ this is easily 
done by defining that LList is a friend class of Node in Node definition.

In Task 7 again a link is created with a new notion that in this case is an im-
portant mechanism of the programming language itself. This is the mechanism of 
friend classes and friend functions that grants to access to the private section of a 
class. It is also pointed that this approach destroys the encapsulation of the classes 
and thus proves that C++ is not a purely object-oriented language.

Task 8. Implement the destructor of the class LList. For each node in the list, 
starting from the first one, attach a temporary, move the first node to the next one, 
and then delete the temporary.
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Task 7. In class LList, implement the member function pushBack(). Create a new node 
ptr_newn that contains the data filed. We must also grant access of the class LList to the private 
members of the class Node. In C++ this is easily done by defining that LList is a friend class of 
Node in Node definition. 
 In Task 7 again a link is created with a new notion that in this case is an important 
mechanism of the programming language itself. This is the mechanism of friend classes and friend 
functions that grants access to the private section of a class. It is also pointed that this approach 
destroys the encapsulation of the classes and thus proves that C++ is not a purely object-oriented 
language. 
 
Task 8. Implement the destructor of the class LList. For each node in the list, starting from the 
first one, attach a temporary, move the first node to the next one, and then delete the temporary. 

Task 9. Implement class Iterator. It contains two private fields: a pointer to Node that is the 
current position of the iterator, and a pointer to the linked list that contains the iterator. The default 
constructor sets both pointers to nullptr. The constructor with parameters is needed for the 
implementation of begin() and end() member functions of class LList. 

Task 10. Add two member functions to LList: begin() and end(). They return an iterator, 
attached to the list object, that points to the beginning and the end, respectively. The function 
end() returns an iterator whose position pointer is set to nullptr. This is because it returns 
iterator to the past-the-end element which denotes the end of the list. 
 

class LList 
{ 
    public: 
        LList(); 
        void pushBack(int data); 
 
    private: 
        Node* ptr_frst; 
        Node* ptr_last; 
}; 
Listing 6 Definition of the class LList 

Node* ptr_tmp = ptr_frst; 
ptr_frst = ptr_frst->ptr_next; 
delete ptr_tmp; 
ptr_tmp = nullptr; 
Listing 7 Body of the loop that implements the destructor of LList 

class Iterator 
{ 
    public: 
        Iterator(); 
        Iterator(Node* ptr_pos, LList* ptr_cnt); 
    private: 
        Node* ptr_pos; 
        LList* ptr_cnt; 
}; 
Listing 8 Definition of the class iterator 

Task 9. Implement class Iterator. It contains two private fields: a pointer 
to Node that is the current position of the iterator, and a pointer to the linked list 
that contains the iterator. The default constructor sets both pointers to nullptr. 
The constructor with parameters is needed for the implementation of begin() and 
end() member functions of class LList.

Task 7. In class LList, implement the member function pushBack(). Create a new node 
ptr_newn that contains the data filed. We must also grant access of the class LList to the private 
members of the class Node. In C++ this is easily done by defining that LList is a friend class of 
Node in Node definition. 
 In Task 7 again a link is created with a new notion that in this case is an important 
mechanism of the programming language itself. This is the mechanism of friend classes and friend 
functions that grants access to the private section of a class. It is also pointed that this approach 
destroys the encapsulation of the classes and thus proves that C++ is not a purely object-oriented 
language. 
 
Task 8. Implement the destructor of the class LList. For each node in the list, starting from the 
first one, attach a temporary, move the first node to the next one, and then delete the temporary. 

Task 9. Implement class Iterator. It contains two private fields: a pointer to Node that is the 
current position of the iterator, and a pointer to the linked list that contains the iterator. The default 
constructor sets both pointers to nullptr. The constructor with parameters is needed for the 
implementation of begin() and end() member functions of class LList. 

Task 10. Add two member functions to LList: begin() and end(). They return an iterator, 
attached to the list object, that points to the beginning and the end, respectively. The function 
end() returns an iterator whose position pointer is set to nullptr. This is because it returns 
iterator to the past-the-end element which denotes the end of the list. 
 

class LList 
{ 
    public: 
        LList(); 
        void pushBack(int data); 
 
    private: 
        Node* ptr_frst; 
        Node* ptr_last; 
}; 
Listing 6 Definition of the class LList 

Node* ptr_tmp = ptr_frst; 
ptr_frst = ptr_frst->ptr_next; 
delete ptr_tmp; 
ptr_tmp = nullptr; 
Listing 7 Body of the loop that implements the destructor of LList 

class Iterator 
{ 
    public: 
        Iterator(); 
        Iterator(Node* ptr_pos, LList* ptr_cnt); 
    private: 
        Node* ptr_pos; 
        LList* ptr_cnt; 
}; 
Listing 8 Definition of the class iterator 

Task 10. Add two member functions to LList: begin() and end(). They 
return an iterator, attached to the list object, that points to the beginning and the 
end, respectively. The function end() returns an iterator whose position pointer 
is set to nullptr. This is because it returns iterator to the past-the-end element 
which denotes the end of the list.

Task 11. In class Iterator add a member function next() that moves the iterator 
to the next node, and prev() that moves the iterator to the previous node. In prev() 
first verify that current position is not the first node. If current position is not nullptr, 
move to the previous node, otherwise go to the last node of the list. Implement a 
member function get() that returns the integer that is pointed by the iterator.

Task 11. In class Iterator add a member function next() that moves the iterator to the next node, 
and prev() that moves the iterator to the previous node. In prev() first verify that current 
position is not the first node. If current position is not nullptr, move to the previous node, 
otherwise go to the last node of the list. Implement a member function get() that returns the 
integer that is pointed by the iterator. 

With the later tasks, the notion linked list is more or less built and we are ready to move to the 
subsequent notions of queue and stack, that actually will lead us to the development of the notion 
ADT. 
 
Queue and stack definition by the STL classes queue and stack 
 With the notion linked list developed, we are ready to use it as basis of the introduction of 
the two notions queue and stack. Firstly, the standard library classes are used to illustrate the 
application of the two terms, before the mechanism of their implementation is presented to the 
learner. 
 First, we start with the term queue. A queue is a sequence of elements of the same data type 
that are managed in the first-in-first-out (FIFO) policy. The elements in a queue are removed in the 
same order in which they have been inserted. Two operations are defined: 

– push add an element into the back of the queue; 
– pop remove an element from the front of the queue. 

In STL queue is a template class defined in the header queue. 
 
Task 12. Write a program that reads a sequence of personal names as strings, stores them in a 
queue, and prints them out in the standard output in the same order. 

 

The purpose of Task 12 is actually the perception of the notion without explaining at that point the 
intrinsic structure of its implementation. With the existing notion of linked list, and the example of 
queue simple usage, the learner gets the idea of the characteristics of the object queue simply by 

void Iterator::prev() 
{ 
    assert(ptr_pos != ptr_cnt->ptr_frst); 
    ptr_pos = ptr_pos ? ptr_pos->ptr_prev :  
     ptr_cnt->ptr_last;  
} 
Listing 9 Move the iterator to the previous position 

do 
{ ... else 
    { 
        qnames.push(buff); 
    } 
} while (more); 
Listing 10 Read strings and  store them in a queue 

while (!qnames.empty()) 
{ 
    cout << qnames.front() << " "; 
    qnames.pop(); 
} 
cout << endl; 
Listing 11 Print the contents of the queue 
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With the later tasks, the notion linked list is more or less built and we are ready 
to move to the subsequent notions of queue and stack, that actually will lead us to 
the development of the notion ADT.

Queue and stack definition by the STL classes queue and stack
With the notion linked list developed, we are ready to use it as basis of the in-

troduction of the two notions queue and stack. Firstly, the standard library classes 
are used to illustrate the application of the two terms, before the mechanism of their 
implementation is presented to the learner.

First, we start with the term queue. A queue is a sequence of elements of the 
same data type that are managed in the first-in-first-out (FIFO) policy. The elements 
in a queue are removed in the same order in which they have been inserted. Two 
operations are defined:

– push add an element into the back of the queue;
– pop remove an element from the front of the queue.

In STL queue is a template class defined in the header queue.

Task 12. Write a program that reads a sequence of personal names as strings, 
stores them in a queue, and prints them out in the standard output in the same order.

Task 11. In class Iterator add a member function next() that moves the iterator to the next node, 
and prev() that moves the iterator to the previous node. In prev() first verify that current 
position is not the first node. If current position is not nullptr, move to the previous node, 
otherwise go to the last node of the list. Implement a member function get() that returns the 
integer that is pointed by the iterator. 

With the later tasks, the notion linked list is more or less built and we are ready to move to the 
subsequent notions of queue and stack, that actually will lead us to the development of the notion 
ADT. 
 
Queue and stack definition by the STL classes queue and stack 
 With the notion linked list developed, we are ready to use it as basis of the introduction of 
the two notions queue and stack. Firstly, the standard library classes are used to illustrate the 
application of the two terms, before the mechanism of their implementation is presented to the 
learner. 
 First, we start with the term queue. A queue is a sequence of elements of the same data type 
that are managed in the first-in-first-out (FIFO) policy. The elements in a queue are removed in the 
same order in which they have been inserted. Two operations are defined: 

– push add an element into the back of the queue; 
– pop remove an element from the front of the queue. 

In STL queue is a template class defined in the header queue. 
 
Task 12. Write a program that reads a sequence of personal names as strings, stores them in a 
queue, and prints them out in the standard output in the same order. 

 

The purpose of Task 12 is actually the perception of the notion without explaining at that point the 
intrinsic structure of its implementation. With the existing notion of linked list, and the example of 
queue simple usage, the learner gets the idea of the characteristics of the object queue simply by 

void Iterator::prev() 
{ 
    assert(ptr_pos != ptr_cnt->ptr_frst); 
    ptr_pos = ptr_pos ? ptr_pos->ptr_prev :  
     ptr_cnt->ptr_last;  
} 
Listing 9 Move the iterator to the previous position 

do 
{ ... else 
    { 
        qnames.push(buff); 
    } 
} while (more); 
Listing 10 Read strings and  store them in a queue 

while (!qnames.empty()) 
{ 
    cout << qnames.front() << " "; 
    qnames.pop(); 
} 
cout << endl; 
Listing 11 Print the contents of the queue 

The purpose of Task 12 is actually the perception of the notion without explaining 
at that point the intrinsic structure of its implementation. With the existing notion of 
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linked list, and the simple example of queue usage, the learner gets the idea of the 
characteristics of the object queue simply by naming the two interface operations 
push() and pop(). The presentation of the notion stack is absolutely analogous.

A stack is a sequence of elements of the same data type that are managed in the 
last-in-first-out (LIFO) policy. The elements in a stack are removed in the reversed 
order in which they have been inserted. The two operations push and pop are defined:

– push add an element into the back of the stack;
– pop remove an element from the back of the stack.

Task 13. Write a program that reads a sequence of personal names as strings, 
stores them in a stack, and prints them out in the standard output in the reversed order.

With the Task 13, also the similarities and differences between queues and stacks 
become immediately obvious that give the common features of the class of objects 
and specifics of the studied object, and at the same time, the link to the environment 
of notions. At that point the idea of ADT still does not exist, but with the next step 
that provides the implementation of both queue and stack based on linked list, the 
most important feature of abstract data types become visible, namely the abstract 
barrier between the data type underlying implementation and its usage provided by 
the interface of functionalities.

Queue and stack implementation
The implementation of queue that stores integer keys is based on singly linked 

list. The implementation consist of the following two classes:
– Node – node of the linked list composed by integer data field and a pointer to 

the next element;
– Queue – the class queue itself, based on a pointer to the head, and the tail of the list.

Task 14. Implement class Node that represents a node of singly linked list of 
integers. A node contains an integer data field and a pointer to the next node.

naming the two interface operations push() and pop(). The presentation of the notion stack is 
absolutely analogous. 
 A stack is a sequence of elements of the same data type that are managed in the last-in-first-
out (LIFO) policy. The elements in a stack are removed in the reversed order in which they have 
been inserted. The two operations push and pop are defined: 

– push add an element into the back of the stack; 
– pop remove an element from the back of the stack. 
 

Task 13. Write a program that reads a sequence of personal names as strings, stores them in a stack, 
and prints them out in the standard output in the reversed order. 
 
 With the Task 13, also the similarities and differences between queues and stacks become 
immediately obvious that give the common features of the class of objects and specifics of the 
studied object, and at the same time, the link to the environment of notions. At that point the idea of 
ADT still does not exist, but with the next step that provides the implementation of both queue and 
stack based on linked list, the most important feature of abstract data types become visible, namely 
the abstract barrier between the data type underlying implementation and its usage provided by the 
interface of functionalities. 
 
Queue and stack implementation 
The implementation of queue that stores integer keys is based on singly linked list. The 
implementation consist of the following two classes: 

– Node – node of the linked list composed by integer data field and a pointer to the next 
element; 
– Queue – the class queue itself, based on a pointer to the head, and the tail of the list. 
 

Task 14. Implement class Node that represents a node of singly linked list of integers. A node 
contains an integer data field and a pointer to the next node. 

 In this task the learner is implementing a data structure that is very similar to the one that 
was implemented for the purposes of the linked list. This gives the link to the existing notion of 
linked list, but also shows the difference between to distinct types of list: singly linked list and 
doubly linked list.  
 
Task 15. Define the class Queue that will be implemented based on singly linked list. The first 
node of the list is called head, the last node is called tail. The queue front is located at the head of 
the list. The queue back is located at the tail of the list. The class Queue contains pointers to the 
head and to the tail of the list. The default constructor sets them to nullptr and creates an empty 
queue. Destructor is the same as in the case of LList. 
 

class Node 
{ 
    public: 
        Node(int data); 
 
    private: 
        int data; 
        Node* ptr_next; 
 
    friend class Queue; 
}; 
Listing 12 Class Node definition 
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In this task the learner is implementing a data structure that is very similar to the 
one that was implemented for the purposes of the linked list. This gives the link to 
the existing notion of linked list, but also shows the difference between two distinct 
types of list: singly linked list and doubly linked list. 

Task 15. Define the class Queue that will be implemented based on singly 
linked list. The first node of the list is called head, the last node is called tail. The 
queue front is located at the head of the list. The queue back is located at the tail of 
the list. The class Queue contains pointers to the head and to the tail of the list. The 
default constructor sets them to nullptr and creates an empty queue. Destructor 
is the same as in the case of LList.

Task 16. In Queue implement a member function push() that adds an element 
to the tail of the linked list, that represents the queue back:

1. Create a new node and store the integer data in it.
2. If the pointer to tail is not nullptr, the queue is not empty, and then 

attach the new node after the ptr_tail. Otherwise  ptr_head must 
point to the new node.

3. The new node becomes the tail node of the queue by redirecting ptr_tail 
to point to it.

Task 16. In Queue implement a member function push() that adds an element to the tail of the 
linked list, that represents the queue back: 

1. Create a new node and store the integer data in it. 
2. If the pointer to tail is not nullptr, the queue is not empty, and then attach the new node 

after the ptr_tail. Otherwise  ptr_head must point to the new node. 
3. The new node becomes the tail node of the queue by redirecting ptr_tail to point to it. 

 
Task 17. In Queue implement a member function pop() that removes an element from the head 
of the linked list, that represents the queue front. 

1. Assert that the queue is not empty, and attach a temporary pointer to the ptr_head that 
points the node to remove. 

2. In the case the queue is composed by a single node, set both ptr_head and ptr_tail to 
nullptr. 

3. In the case the queue is composed by more than one node, redirect the ptr_head pointer 
to the next node. 

4. Finally, delete the temporary pointer, that store the address of the former list head node. 
 

 Tasks 15 to 16 introduce the principle of separation of the implementation from the 
functionality definition that is typical for the ADT. The underlying implementation is actually a 
familiar object, namely the linked list. The functionality of the queue is provided by the two 
member functions push() and pop() that implement the FIFO policy of element management in 
the data structure. This example also show how from the point of view of the linked list as a notion, 
step 9 of Usova is used: application of the notion in more complex examples. The same step latter is 
introduced for stacks and queues, when they are applied in the implementation of graph algorithms 
(see also (Cormen, 2009), (Sedgewick, 2001), (Goodrich, 2011) and (Skiena, 2003)). 
 The implementation of the stack data structure is presented in analogy to the queue, by 
pointing out both similarities, and differences between them. 
 
Task 18.  Based on the previous example for queue implementation, implement a class Node, and a 
class Stack. Do not store the location of the tail. All members without the function push() are 
nearly the same. Instead of function front(), implement a function top() that returns the value 
at the top of the stack, that is stored at the head node. 
 
Defining the notion ADT based on the examples of queues and stacks 
 After fully defining the notions queue and stack, we are ready do give the formal definition 
of ADT, based on these two typical examples. 

class Queue 
{ 
    public: 
        Queue(); 
        ~Queue(); 
        void push(int data); 
        void pop(); 
        int front() const; 
        bool empty() const; 
 
    private: 
        Node* ptr_head;  
        Node* ptr_tail; 
}; 
Listing 13 Class Queue definition 

Task 17. In Queue implement a member function pop() that removes an ele-
ment from the head of the linked list, that represents the queue front.

1. Assert that the queue is not empty, and attach a temporary pointer to the 
ptr_head that points the node to remove.

2. In the case the queue is composed by a single node, set both ptr_head 
and ptr_tail to nullptr.

3. In the case the queue is composed by more than one node, redirect the 
ptr_head pointer to the next node.
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4. Finally, delete the temporary pointer, that stores the address of the former 
list head node.

Tasks 15 and 16 introduce the principle of separation of the implementation from the 
functionality definition that is typical for the ADT. The underlying implementation is ac-
tually a familiar object, namely the linked list. The functionality of the queue is provided 
by the two member functions push() and pop() that implement the FIFO policy of element 
management in the data structure. This example also shows how from the point of view of 
the linked list as a notion, step 9 of Usova is used: application of the notion in more com-
plex examples. The same step latter is introduced for stacks and queues, when they are 
applied in the implementation of graph algorithms (see also (Cormen, 2009), (Sedgewick, 
2001), (Goodrich, 2011) and (Skiena, 2003)).

The implementation of the stack data structure is presented in analogy to the queue, by 
pointing out both similarities, and differences between them.

Task 18.  Based on the previous example for queue implementation, implement a 
class Node, and a class Stack. Do not store the location of the tail. All members with-
out the function push() are nearly the same. Instead of function front(), implement a 
function top() that returns the value at the top of the stack, that is stored at the head node.

Defining the notion ADT based on the examples of queues and stacks
After fully defining the notions queue and stack, we are ready do give the formal defi-

nition of ADT, based on these two typical examples.

Definition 1. Abstract Data Type (commonly abbreviated ADT) is a concept that de-
fines a data type by specifying the operations on it independently on the concrete imple-
mentation.

Both queues and stacks are ADTs.
What remains is to show how the notion ADT can be enriched, and this can be achieved 

by asking the learner to provide a completely different intrinsic implementation to both 
queue and stack.

Task 19. Implement both queue and stack, but this time based on arrays, instead of 
linked list. The interfaces of two data types must remain completely the same.

Task 19 helps the learner to understand the independence of ADT intrinsic implemen-
tation from its functionality that is provided by the public member functions of the classes. 
Something more, now it is also obvious that in different situations, different implementa-
tions can show better results, but this does not change the way the data type is used. For 
example, when the size of the expected data is large, and impracticable, the implementa-
tion based on linked list is more appropriate. On contrary, when the size of the data is not 
that huge, and can be estimated, implementation based on arrays can give better results.
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Conclusion
The presented approach in formation of the notions linked list, queue, stack, and 

abstract data type (ADT) develops more in-depth, conscious and enduring knowl-
edge. It is based on the greater activity of the students and as a methodology it is 
implemented as a specially developed system of tasks. The system of tasks pro-
vides the whole process of knowledge acquisition: introduction, consolidation and 
application. Its creation requires more effort on the part of the lecturer and more 
time resources for its application in the learning process. For this reason, it is not 
possible to use it fully during each lesson, but it gives good results for the use of its 
individual elements in certain lectures, as well as full use on those topics that are 
more complex for students.

The system of tasks, or a system that is derived from this one, is applicable in high-
school course of computer programming for advanced students, or in an introductory 
course on data structures in the university curriculum. In methodological terms, when 
developing a system of tasks, we follow the work of (Asenova, 1990) and (Assenova & 
Marinov 2019).
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