
608

Математика 	 Volume 63,	 Mathematics
и информатика 	 Number 6, 2020	 and Informatics

ABSTRACT DATA TYPES
Lasko M. Laskov

New Bulgarian University (Bulgaria)

Abstract. Formation of notion is a fundamental process in education, and for that
reason it is excessively studied in both psychology and pedagogy. The application
of the pedagogical techniques has a key role in education in informatics (Asenova,
1990) and has significantly improved the results in introduction of complex notions
in our practice. Such complex notion is abstract data type (ADT) which is a key
concept in computer programming for developing data structures, data types, and
have vast influence on the algorithms applied on them. In order to introduce the
notion ADT we adopt a system of tasks that develop the needed knowledge through
the important data structures of linked lists, queues and stacks.

Keywords: system of tasks; teaching through tasks; concept formulation;
informatics education; computer programming; object-oriented programming;
abstract data types

Introduction
Notions have a fundamental role in development of the scientific knowledge.

For that reason, the process of notion formation has been studied by number of re-
searchers in the fields of psychology and pedagogy (see (Usuva, 2011), (Vygotsky,
1987), (Aleksandrov, 1999), (Rubinstein, 1946), (Davydov, 1996) and the cited
literature in these works). One of the basic goals of teaching is the formation of
the notion apparatus in the learner. According to Usova (see (Usuva, 2011)) in the
complicated spiral process of formation and development of a given notion, the
following distinct 11 steps can be followed:

1. Specific perception: observation of the objects, demonstrations by the lec-
turer. The attention is drawn towards the features and links between the observed
objects.

2. Discovery of common essential features of the class of observed objects.
3. Generalization. From the specific examples a transition to abstract conclusion

for the common essential features of the class of objects.
4. The definition is formulated. Whenever possible, a generic term and a species

distinction are used.
5. Consolidation of the essential features. It is achieved through a group of ex-

ercises aimed at:
– Essential features.

Educational Issues
Въпроси на преподаването

609

Abstract Data Types

– Studying of objects that have common essential and unessential features.
From all features, the essential are selected. The objects are distinct based on
the unessential features. These unessential features of the examined objects
help the distinction of similar notions.

6. Link of the examined notion with other notions. Conclusions are made or-
ganized, based on which these links are introduced. Graphs and formulas can be
analyzed here.

7. Application of the notion in simple situations based on simple tasks. The ex-
ercises reveal also the links to other notions.

8. Classification of notions. The goal is to give the general links of the notion in
a general system of notions. This helps the comprehension of the role of the classi-
fication for arrangement and systematization of the knowledge.

9. Application of the notion for solving of creative tasks. Complicated tasks are
solved. A link to other systems of notions are given from the same discipline or
from other disciplines.

10. Enrichment of the notion. The notion is enriched with new essential features
towards its complete fullness. This process may continue in a spiral manner in time.

11. The studied notion is used as a formulation of new notions. In this manner
the studied notion is developed continuously and is included in new links and new
systems of notions.

The learners who have passed through the above stages during the assimilation
of the notions show solid knowledge, understanding of the notions and skills to use
them in nonstandard situations. This shows that these stages can be used as a goal
in the development of system of tasks for given notion formulation. In (Assenova
& Marinov, 2019) it is given such an example is presented in the case of notions
formation in the education in mathematics.

We will note that some of the notions cannot be formulated in a single discipline.
Besides that, it is not always necessary to fully formulate a given notion to serve the
goals of the program. For example, many of the notions in the informatics education
in the high-school remain on the level of perception, concept, or generalized concept.
These are the first three stages, according to Usova. In this case the learners themselves
generalize the essential features of the class of objects, and the generalization is sepa-
rated from the precise examples that cause it. In this case, the level of abstraction that
contains the minimal features that define the notion is not reached yet. In (Albertovna,
2017) the authors, referring to the studies of Vygotsky, call this level pre-notion. Pre-no-
tion opens the possibilities for assimilation of given skills and technologies. This gives
the basis for the development of an abstract definition.

The notion ADT
The notion abstract data type (ADT) is considered important in computer pro-

gramming ever since the development of structured programming as a key concept

610

Lasko M. Laskov

in controlling the complexity with which the programmer have to cope with. An
early work by Dijkstra (Dijkstra, 1972) emphasizes the significance of the introduc-
tion of a structures in software development, especially in the case implementation
of large projects. ADT are shown to play a key role in this process of structures
incorporation (Guttag, 1977) as a mechanism that allows the separation of behav-
ior of a data type from its actual implementation. It has been shown that the sub-
routines (in procedural and functional programming these are the functions), even
though powerful in the case of operations separation, are not enough to describe
well abstract objects. At that point the idea of two separate types of attributes in a
computer program emerge: (i) objects and the set of operations that are defined on
them; (ii) names and abstract meanings of the operations. ADT actually belong to
the second type of attributes, as it is shown in (Guttag, 1977).

Data abstraction has become a significant part of the approach of computer pro-
gram structure formulation. In (Abelson, 1996) it is pointed out that data abstraction
is a methodology for structuring of a program in such way that many of its compo-
nents become independent on the particular choice of implementation. The key idea
is to create an abstraction that separates the way a data type is used from the way
this data type is represented. In this way the complexity of the program implemen-
tation can be controlled, and something more, different underlying representations
can be provided for the same data abstraction, each of them superior to the others in
concrete situations. Thus, as described in (Sedgewick, 1997), ADT is a set of values
and operations that are defined on those values that are accessible only through an
interface. The definition given by Sedgewick is very important because it directly
fits the more recent concepts of object-oriented programming (OOP). Here the key
part is played by the concept of interface: data is never accessed directly by the
client program, but only through the operations that are defined by the interface.

The same concept is also given directly in the context of OOP by (Horstmann,
2008), where ADT is presented as specification of fundamental operations that
give the characteristics of the data type. The separation of the functionality of a
data type from its implementation is clearly described using the mechanisms of the
OOP, since data abstraction and encapsulation are the first two principles of this
programming paradigm. Data abstraction in this case refers to the ability of the
programming language to define new data types. In general in OOP these abilities
are provided by classes. Encapsulation ensures that private parts of a class remain
hidden from the user, while the public routines (in this case called member func-
tions or methods) provide the public interface that is used to manipulate the type
representatives. Of course, ADT is not a feature of OOP, it is a general concept that
is applicable in any of the contemporary programming paradigms.

Following the above formulations, in the general case ADT can be defined as
a concept of a data type in which its behavior is provided by a set of possible op-
erations that are independent from the concrete implementation. Also, in different

611

Abstract Data Types

applications, different underlying implementations of the ADT can be provided that
do not affect the functionally of the type, but only underlying representation that
remain hidden from the user.

There are two straightforward examples that are usually given to illustrate what
ADT is, and these are queues and stacks (see for example (Goodrich, 2011)).

A queue is a linear data structure that manages a sequence of values in first-in-
first-out (FIFO) out policy. It is defined by two operations that are the interface of
the data type:

– push operation that adds an element into the back of the sequence;
– pop operation that removes an element from the front of the sequence.
A stack is also linear data structure but it manages a sequence of values in
last-in-first-out (LIFO) out policy. Again, it is defined by two operations that
are the interface of the data type:
– push operation that adds an element, but this time into the back of the se-
quence;
– pop operation that removes an element from the back of the sequence.

Even from the first glance it is obvious that these two data structures can have
identical intrinsic representations, but they differ exactly in the interface that shape
their behavior. They are very good as examples for ADT because the abstract barri-
er between their underlying implementation, and the characteristics of the data type
provided by their fundamental operations is obvious. Actually a queue and a stack
differ in the definition of their push operations.

Something more, in different particular applications, queues and stacks can have
totally different intrinsic implementations. In the course of OOP usually the un-
derlying implementation that is given is based on linked lists. On the other hand,
very often in the context of competitive programming training (Skiena 2003) the
underlying implementation is based on arrays.

In this paper we present a system of tasks that build the notion ADT, following
the system presented by Usuva (Usuva, 2011)).

System of tasks
The notion ADT is constructed using the basic data structure linked list that is

used for the implementation of queues and stacks in the context of OOP. The pro-
gramming language that is used during the course is C++, however the presented
tasks are fully applicable in the case of any of the other standard programming
languages that support the OOP paradigm, like Java and Python for example. Even
more, with few modifications, similar tasks can be presented in the case of proce-
dural or functional programming.

By the time of the problems introduction, the learners are familiar with mecha-
nisms of arrays and vectors, dynamic memory management and basic principles of
OOP in C++. The goal of the system of tasks is to develop the notions linked list,

612

Lasko M. Laskov

stack, and queue, and to build the notion ADT based on these examples. The ex-
pected are also the acquisition of additional knowledge in the mechanisms of pro-
gramming in C++ that include automatic memory management (dynamic memory
management in the context of classes) and friendship mechanism as well.

Definition of linked lists and STL class list
At that point of the curriculum, the learners are fully familiar with the notions of

arrays and vectors in programming, as basic tools for representation of sequences
of values of the same data type. The notion linked list is presented based on this
background.

Following the first step from the system of Usuva perception, we give the basic
characteristics of the object linked list and its link to the context of OOP. For this
introduction we use the STL class list that is ready to use standard library features
and it clearly shows the functionality of the data structure, and its usage.

Task 1. Implement a program that readsn number of strings, places them at the
end of a linked list, and then print the contents of the linked list.

Task 2. Rewrite the function in Listing 1 using an iterator, instead of the member function
push_back(). The member function insert() takes as first parameter an iterator that points
the position, and as second parameter, the value to be inserted.

Task 2 introduces a helper term iterator that is common for all sequential data structures in the C++
standard library, inclusively vectors. This is also a common feature, as described in the educational
system of Usuva.

Task 3. Add a function to the program from Task 2 that inserts a new node with data at specific
location into the linked list. The location is given by its consecutive number.

Task 4. Extend the program from the above problem with a capability to delete an element from the
linked list given its consecutive number.

void readList(list<string>& slist, int n)
{
 for (int i = 0; i < n; i++)
 {
 cout << "> ";
 string buff;
 cin >> buff;
 slist.push_back(buff);
 }
}
Listing 1 Read STL linked list

void printList(list<string>& slist)
{
 for (list<string>::iterator pos = slist.begin();
 pos != slist.end(); ++pos)
 {
 cout << *pos << " ";
 }
 cout << endl;
}

Listing 2 Print contents of STL list

void insert(list<string>& slist, int node, const
 string &data)
{
 list<string>::iterator pos = slist.begin();
 for (int i = 0; i < node; ++pos, i++);
 slist.insert(pos, data);
}

Listing 3 Insert new element at a given location

Task 2. Rewrite the function in Listing 1 using an iterator, instead of the member
function push_back(). The member function insert() takes as first parameter
an iterator that points the position, and as second parameter, the value to be inserted.

Task 2. Rewrite the function in Listing 1 using an iterator, instead of the member function
push_back(). The member function insert() takes as first parameter an iterator that points
the position, and as second parameter, the value to be inserted.

Task 2 introduces a helper term iterator that is common for all sequential data structures in the C++
standard library, inclusively vectors. This is also a common feature, as described in the educational
system of Usuva.

Task 3. Add a function to the program from Task 2 that inserts a new node with data at specific
location into the linked list. The location is given by its consecutive number.

Task 4. Extend the program from the above problem with a capability to delete an element from the
linked list given its consecutive number.

void readList(list<string>& slist, int n)
{
 for (int i = 0; i < n; i++)
 {
 cout << "> ";
 string buff;
 cin >> buff;
 slist.push_back(buff);
 }
}
Listing 1 Read STL linked list

void printList(list<string>& slist)
{
 for (list<string>::iterator pos = slist.begin();
 pos != slist.end(); ++pos)
 {
 cout << *pos << " ";
 }
 cout << endl;
}

Listing 2 Print contents of STL list

void insert(list<string>& slist, int node, const
 string &data)
{
 list<string>::iterator pos = slist.begin();
 for (int i = 0; i < node; ++pos, i++);
 slist.insert(pos, data);
}

Listing 3 Insert new element at a given location

613

Abstract Data Types

Task 2 introduces a helper term iterator that is common for all sequential data
structures in the C++ standard library, inclusively vectors. This is also a common
feature, as described in the educational system of Usuva.

Task 3. Add a function to the program from Task 2 that inserts a new node with
data at specific location into the linked list. The location is given by its consecutive
number.

Task 2. Rewrite the function in Listing 1 using an iterator, instead of the member function
push_back(). The member function insert() takes as first parameter an iterator that points
the position, and as second parameter, the value to be inserted.

Task 2 introduces a helper term iterator that is common for all sequential data structures in the C++
standard library, inclusively vectors. This is also a common feature, as described in the educational
system of Usuva.

Task 3. Add a function to the program from Task 2 that inserts a new node with data at specific
location into the linked list. The location is given by its consecutive number.

Task 4. Extend the program from the above problem with a capability to delete an element from the
linked list given its consecutive number.

void readList(list<string>& slist, int n)
{
 for (int i = 0; i < n; i++)
 {
 cout << "> ";
 string buff;
 cin >> buff;
 slist.push_back(buff);
 }
}
Listing 1 Read STL linked list

void printList(list<string>& slist)
{
 for (list<string>::iterator pos = slist.begin();
 pos != slist.end(); ++pos)
 {
 cout << *pos << " ";
 }
 cout << endl;
}

Listing 2 Print contents of STL list

void insert(list<string>& slist, int node, const
 string &data)
{
 list<string>::iterator pos = slist.begin();
 for (int i = 0; i < node; ++pos, i++);
 slist.insert(pos, data);
}

Listing 3 Insert new element at a given location

Task 4. Extend the program from the above problem with a capability to delete
an element from the linked list given its consecutive number.

 Task 3 and Task 4 illustrate two important features: the sequential access that is provided by
the linked lists on opposite of the random access that is provided by the arrays. This gives the link
of the new notion linked list with a notion of the arrays and vectors, that at that point of the
curriculum are fully developed. Thus, the notion linked list is described in the terms of perception
and discovery of common features with existing notions. Next step is to give a definition of the
notion, by providing of the implementation of the linked list itself.

Implementation of linked list
 The implementation of a linked list of integer keys is composed by the following three
classes:

– Node – a node of integer data and pointers to previous and next node;
– Iterator – an iterator that visits the nodes of the linked list;
– LList – the linked list itself.

Task 5. Implement the class Node. It contains an integer data field, a pointers of type Node to the
previous and to the next node in the list. Implement a parameter constructor that sets the data field,
and initializes the two pointers with nullptr.

Task 6. Implement the class LList. In next exercises more members will be added to the class.
Default constructor simply creates an empty list by setting both ptr_frst and ptr_last to
nullptr.

void remove(list<string>& slist, int node)
{
 list<string>::iterator pos = slist.begin();
 for (int i = 0; i < node; ++pos, i++);
 slist.erase(pos);
}

Listing 4 Delete an element at a given location in the list

class Node
{
 public:
 Node(int data);

 private:
 int data;
 Node* ptr_prev;
 Node* ptr_next;
};
Listing 5 Definition of the class Node

Task 3 and Task 4 illustrate two important features: the sequential access that
is provided by the linked lists on opposite of the random access that is provided
by the arrays. This gives the link of the new notion linked list with a notion of the
arrays and vectors, that at that point of the curriculum are fully developed. Thus, the
notion linked list is described in the terms of perception and discovery of common
features with existing notions. Next step is to give a definition of the notion, by
providing of the implementation of the linked list itself.

Implementation of linked list
The implementation of a linked list of integer keys is composed by the follow-

ing three classes:
– Node – a node of integer data and pointers to previous and next node;
– Iterator – an iterator that visits the nodes of the linked list;
– LList – the linked list itself.

614

Lasko M. Laskov

Task 5. Implement the class Node. It contains an integer data field, a pointers of
type Node to the previous and to the next node in the list. Implement a parameter
constructor that sets the data field, and initializes the two pointers with nullptr.

 Task 3 and Task 4 illustrate two important features: the sequential access that is provided by
the linked lists on opposite of the random access that is provided by the arrays. This gives the link
of the new notion linked list with a notion of the arrays and vectors, that at that point of the
curriculum are fully developed. Thus, the notion linked list is described in the terms of perception
and discovery of common features with existing notions. Next step is to give a definition of the
notion, by providing of the implementation of the linked list itself.

Implementation of linked list
 The implementation of a linked list of integer keys is composed by the following three
classes:

– Node – a node of integer data and pointers to previous and next node;
– Iterator – an iterator that visits the nodes of the linked list;
– LList – the linked list itself.

Task 5. Implement the class Node. It contains an integer data field, a pointers of type Node to the
previous and to the next node in the list. Implement a parameter constructor that sets the data field,
and initializes the two pointers with nullptr.

Task 6. Implement the class LList. In next exercises more members will be added to the class.
Default constructor simply creates an empty list by setting both ptr_frst and ptr_last to
nullptr.

void remove(list<string>& slist, int node)
{
 list<string>::iterator pos = slist.begin();
 for (int i = 0; i < node; ++pos, i++);
 slist.erase(pos);
}

Listing 4 Delete an element at a given location in the list

class Node
{
 public:
 Node(int data);

 private:
 int data;
 Node* ptr_prev;
 Node* ptr_next;
};
Listing 5 Definition of the class Node

Task 6. Implement the class LList. In next exercises more members will be
added to the class. Default constructor simply creates an empty list by setting both
ptr_frst and ptr_last to nullptr.

Task 7. In class LList, implement the member function pushBack(). Create a new node
ptr_newn that contains the data filed. We must also grant access of the class LList to the private
members of the class Node. In C++ this is easily done by defining that LList is a friend class of
Node in Node definition.
 In Task 7 again a link is created with a new notion that in this case is an important
mechanism of the programming language itself. This is the mechanism of friend classes and friend
functions that grants access to the private section of a class. It is also pointed that this approach
destroys the encapsulation of the classes and thus proves that C++ is not a purely object-oriented
language.

Task 8. Implement the destructor of the class LList. For each node in the list, starting from the
first one, attach a temporary, move the first node to the next one, and then delete the temporary.

Task 9. Implement class Iterator. It contains two private fields: a pointer to Node that is the
current position of the iterator, and a pointer to the linked list that contains the iterator. The default
constructor sets both pointers to nullptr. The constructor with parameters is needed for the
implementation of begin() and end() member functions of class LList.

Task 10. Add two member functions to LList: begin() and end(). They return an iterator,
attached to the list object, that points to the beginning and the end, respectively. The function
end() returns an iterator whose position pointer is set to nullptr. This is because it returns
iterator to the past-the-end element which denotes the end of the list.

class LList
{
 public:
 LList();
 void pushBack(int data);

 private:
 Node* ptr_frst;
 Node* ptr_last;
};
Listing 6 Definition of the class LList

Node* ptr_tmp = ptr_frst;
ptr_frst = ptr_frst->ptr_next;
delete ptr_tmp;
ptr_tmp = nullptr;
Listing 7 Body of the loop that implements the destructor of LList

class Iterator
{
 public:
 Iterator();
 Iterator(Node* ptr_pos, LList* ptr_cnt);
 private:
 Node* ptr_pos;
 LList* ptr_cnt;
};
Listing 8 Definition of the class iterator

Task 7. In class LList, implement the member function pushBack(). Create
a new node ptr_newn that contains the data filed. We must also grant access of
the class LList to the private members of the class Node. In C++ this is easily
done by defining that LList is a friend class of Node in Node definition.

In Task 7 again a link is created with a new notion that in this case is an im-
portant mechanism of the programming language itself. This is the mechanism of
friend classes and friend functions that grants to access to the private section of a
class. It is also pointed that this approach destroys the encapsulation of the classes
and thus proves that C++ is not a purely object-oriented language.

Task 8. Implement the destructor of the class LList. For each node in the list,
starting from the first one, attach a temporary, move the first node to the next one,
and then delete the temporary.

615

Abstract Data Types

Task 7. In class LList, implement the member function pushBack(). Create a new node
ptr_newn that contains the data filed. We must also grant access of the class LList to the private
members of the class Node. In C++ this is easily done by defining that LList is a friend class of
Node in Node definition.
 In Task 7 again a link is created with a new notion that in this case is an important
mechanism of the programming language itself. This is the mechanism of friend classes and friend
functions that grants access to the private section of a class. It is also pointed that this approach
destroys the encapsulation of the classes and thus proves that C++ is not a purely object-oriented
language.

Task 8. Implement the destructor of the class LList. For each node in the list, starting from the
first one, attach a temporary, move the first node to the next one, and then delete the temporary.

Task 9. Implement class Iterator. It contains two private fields: a pointer to Node that is the
current position of the iterator, and a pointer to the linked list that contains the iterator. The default
constructor sets both pointers to nullptr. The constructor with parameters is needed for the
implementation of begin() and end() member functions of class LList.

Task 10. Add two member functions to LList: begin() and end(). They return an iterator,
attached to the list object, that points to the beginning and the end, respectively. The function
end() returns an iterator whose position pointer is set to nullptr. This is because it returns
iterator to the past-the-end element which denotes the end of the list.

class LList
{
 public:
 LList();
 void pushBack(int data);

 private:
 Node* ptr_frst;
 Node* ptr_last;
};
Listing 6 Definition of the class LList

Node* ptr_tmp = ptr_frst;
ptr_frst = ptr_frst->ptr_next;
delete ptr_tmp;
ptr_tmp = nullptr;
Listing 7 Body of the loop that implements the destructor of LList

class Iterator
{
 public:
 Iterator();
 Iterator(Node* ptr_pos, LList* ptr_cnt);
 private:
 Node* ptr_pos;
 LList* ptr_cnt;
};
Listing 8 Definition of the class iterator

Task 9. Implement class Iterator. It contains two private fields: a pointer
to Node that is the current position of the iterator, and a pointer to the linked list
that contains the iterator. The default constructor sets both pointers to nullptr.
The constructor with parameters is needed for the implementation of begin() and
end() member functions of class LList.

Task 7. In class LList, implement the member function pushBack(). Create a new node
ptr_newn that contains the data filed. We must also grant access of the class LList to the private
members of the class Node. In C++ this is easily done by defining that LList is a friend class of
Node in Node definition.
 In Task 7 again a link is created with a new notion that in this case is an important
mechanism of the programming language itself. This is the mechanism of friend classes and friend
functions that grants access to the private section of a class. It is also pointed that this approach
destroys the encapsulation of the classes and thus proves that C++ is not a purely object-oriented
language.

Task 8. Implement the destructor of the class LList. For each node in the list, starting from the
first one, attach a temporary, move the first node to the next one, and then delete the temporary.

Task 9. Implement class Iterator. It contains two private fields: a pointer to Node that is the
current position of the iterator, and a pointer to the linked list that contains the iterator. The default
constructor sets both pointers to nullptr. The constructor with parameters is needed for the
implementation of begin() and end() member functions of class LList.

Task 10. Add two member functions to LList: begin() and end(). They return an iterator,
attached to the list object, that points to the beginning and the end, respectively. The function
end() returns an iterator whose position pointer is set to nullptr. This is because it returns
iterator to the past-the-end element which denotes the end of the list.

class LList
{
 public:
 LList();
 void pushBack(int data);

 private:
 Node* ptr_frst;
 Node* ptr_last;
};
Listing 6 Definition of the class LList

Node* ptr_tmp = ptr_frst;
ptr_frst = ptr_frst->ptr_next;
delete ptr_tmp;
ptr_tmp = nullptr;
Listing 7 Body of the loop that implements the destructor of LList

class Iterator
{
 public:
 Iterator();
 Iterator(Node* ptr_pos, LList* ptr_cnt);
 private:
 Node* ptr_pos;
 LList* ptr_cnt;
};
Listing 8 Definition of the class iterator

Task 10. Add two member functions to LList: begin() and end(). They
return an iterator, attached to the list object, that points to the beginning and the
end, respectively. The function end() returns an iterator whose position pointer
is set to nullptr. This is because it returns iterator to the past-the-end element
which denotes the end of the list.

Task 11. In class Iterator add a member function next() that moves the iterator
to the next node, and prev() that moves the iterator to the previous node. In prev()
first verify that current position is not the first node. If current position is not nullptr,
move to the previous node, otherwise go to the last node of the list. Implement a
member function get() that returns the integer that is pointed by the iterator.

Task 11. In class Iterator add a member function next() that moves the iterator to the next node,
and prev() that moves the iterator to the previous node. In prev() first verify that current
position is not the first node. If current position is not nullptr, move to the previous node,
otherwise go to the last node of the list. Implement a member function get() that returns the
integer that is pointed by the iterator.

With the later tasks, the notion linked list is more or less built and we are ready to move to the
subsequent notions of queue and stack, that actually will lead us to the development of the notion
ADT.

Queue and stack definition by the STL classes queue and stack
 With the notion linked list developed, we are ready to use it as basis of the introduction of
the two notions queue and stack. Firstly, the standard library classes are used to illustrate the
application of the two terms, before the mechanism of their implementation is presented to the
learner.
 First, we start with the term queue. A queue is a sequence of elements of the same data type
that are managed in the first-in-first-out (FIFO) policy. The elements in a queue are removed in the
same order in which they have been inserted. Two operations are defined:

– push add an element into the back of the queue;
– pop remove an element from the front of the queue.

In STL queue is a template class defined in the header queue.

Task 12. Write a program that reads a sequence of personal names as strings, stores them in a
queue, and prints them out in the standard output in the same order.

The purpose of Task 12 is actually the perception of the notion without explaining at that point the
intrinsic structure of its implementation. With the existing notion of linked list, and the example of
queue simple usage, the learner gets the idea of the characteristics of the object queue simply by

void Iterator::prev()
{
 assert(ptr_pos != ptr_cnt->ptr_frst);
 ptr_pos = ptr_pos ? ptr_pos->ptr_prev :
 ptr_cnt->ptr_last;
}
Listing 9 Move the iterator to the previous position

do
{ ... else
 {
 qnames.push(buff);
 }
} while (more);
Listing 10 Read strings and store them in a queue

while (!qnames.empty())
{
 cout << qnames.front() << " ";
 qnames.pop();
}
cout << endl;
Listing 11 Print the contents of the queue

616

Lasko M. Laskov

With the later tasks, the notion linked list is more or less built and we are ready
to move to the subsequent notions of queue and stack, that actually will lead us to
the development of the notion ADT.

Queue and stack definition by the STL classes queue and stack
With the notion linked list developed, we are ready to use it as basis of the in-

troduction of the two notions queue and stack. Firstly, the standard library classes
are used to illustrate the application of the two terms, before the mechanism of their
implementation is presented to the learner.

First, we start with the term queue. A queue is a sequence of elements of the
same data type that are managed in the first-in-first-out (FIFO) policy. The elements
in a queue are removed in the same order in which they have been inserted. Two
operations are defined:

– push add an element into the back of the queue;
– pop remove an element from the front of the queue.

In STL queue is a template class defined in the header queue.

Task 12. Write a program that reads a sequence of personal names as strings,
stores them in a queue, and prints them out in the standard output in the same order.

Task 11. In class Iterator add a member function next() that moves the iterator to the next node,
and prev() that moves the iterator to the previous node. In prev() first verify that current
position is not the first node. If current position is not nullptr, move to the previous node,
otherwise go to the last node of the list. Implement a member function get() that returns the
integer that is pointed by the iterator.

With the later tasks, the notion linked list is more or less built and we are ready to move to the
subsequent notions of queue and stack, that actually will lead us to the development of the notion
ADT.

Queue and stack definition by the STL classes queue and stack
 With the notion linked list developed, we are ready to use it as basis of the introduction of
the two notions queue and stack. Firstly, the standard library classes are used to illustrate the
application of the two terms, before the mechanism of their implementation is presented to the
learner.
 First, we start with the term queue. A queue is a sequence of elements of the same data type
that are managed in the first-in-first-out (FIFO) policy. The elements in a queue are removed in the
same order in which they have been inserted. Two operations are defined:

– push add an element into the back of the queue;
– pop remove an element from the front of the queue.

In STL queue is a template class defined in the header queue.

Task 12. Write a program that reads a sequence of personal names as strings, stores them in a
queue, and prints them out in the standard output in the same order.

The purpose of Task 12 is actually the perception of the notion without explaining at that point the
intrinsic structure of its implementation. With the existing notion of linked list, and the example of
queue simple usage, the learner gets the idea of the characteristics of the object queue simply by

void Iterator::prev()
{
 assert(ptr_pos != ptr_cnt->ptr_frst);
 ptr_pos = ptr_pos ? ptr_pos->ptr_prev :
 ptr_cnt->ptr_last;
}
Listing 9 Move the iterator to the previous position

do
{ ... else
 {
 qnames.push(buff);
 }
} while (more);
Listing 10 Read strings and store them in a queue

while (!qnames.empty())
{
 cout << qnames.front() << " ";
 qnames.pop();
}
cout << endl;
Listing 11 Print the contents of the queue

The purpose of Task 12 is actually the perception of the notion without explaining
at that point the intrinsic structure of its implementation. With the existing notion of

617

Abstract Data Types

linked list, and the simple example of queue usage, the learner gets the idea of the
characteristics of the object queue simply by naming the two interface operations
push() and pop(). The presentation of the notion stack is absolutely analogous.

A stack is a sequence of elements of the same data type that are managed in the
last-in-first-out (LIFO) policy. The elements in a stack are removed in the reversed
order in which they have been inserted. The two operations push and pop are defined:

– push add an element into the back of the stack;
– pop remove an element from the back of the stack.

Task 13. Write a program that reads a sequence of personal names as strings,
stores them in a stack, and prints them out in the standard output in the reversed order.

With the Task 13, also the similarities and differences between queues and stacks
become immediately obvious that give the common features of the class of objects
and specifics of the studied object, and at the same time, the link to the environment
of notions. At that point the idea of ADT still does not exist, but with the next step
that provides the implementation of both queue and stack based on linked list, the
most important feature of abstract data types become visible, namely the abstract
barrier between the data type underlying implementation and its usage provided by
the interface of functionalities.

Queue and stack implementation
The implementation of queue that stores integer keys is based on singly linked

list. The implementation consist of the following two classes:
– Node – node of the linked list composed by integer data field and a pointer to

the next element;
– Queue – the class queue itself, based on a pointer to the head, and the tail of the list.

Task 14. Implement class Node that represents a node of singly linked list of
integers. A node contains an integer data field and a pointer to the next node.

naming the two interface operations push() and pop(). The presentation of the notion stack is
absolutely analogous.
 A stack is a sequence of elements of the same data type that are managed in the last-in-first-
out (LIFO) policy. The elements in a stack are removed in the reversed order in which they have
been inserted. The two operations push and pop are defined:

– push add an element into the back of the stack;
– pop remove an element from the back of the stack.

Task 13. Write a program that reads a sequence of personal names as strings, stores them in a stack,
and prints them out in the standard output in the reversed order.

 With the Task 13, also the similarities and differences between queues and stacks become
immediately obvious that give the common features of the class of objects and specifics of the
studied object, and at the same time, the link to the environment of notions. At that point the idea of
ADT still does not exist, but with the next step that provides the implementation of both queue and
stack based on linked list, the most important feature of abstract data types become visible, namely
the abstract barrier between the data type underlying implementation and its usage provided by the
interface of functionalities.

Queue and stack implementation
The implementation of queue that stores integer keys is based on singly linked list. The
implementation consist of the following two classes:

– Node – node of the linked list composed by integer data field and a pointer to the next
element;
– Queue – the class queue itself, based on a pointer to the head, and the tail of the list.

Task 14. Implement class Node that represents a node of singly linked list of integers. A node
contains an integer data field and a pointer to the next node.

 In this task the learner is implementing a data structure that is very similar to the one that
was implemented for the purposes of the linked list. This gives the link to the existing notion of
linked list, but also shows the difference between to distinct types of list: singly linked list and
doubly linked list.

Task 15. Define the class Queue that will be implemented based on singly linked list. The first
node of the list is called head, the last node is called tail. The queue front is located at the head of
the list. The queue back is located at the tail of the list. The class Queue contains pointers to the
head and to the tail of the list. The default constructor sets them to nullptr and creates an empty
queue. Destructor is the same as in the case of LList.

class Node
{
 public:
 Node(int data);

 private:
 int data;
 Node* ptr_next;

 friend class Queue;
};
Listing 12 Class Node definition

618

Lasko M. Laskov

In this task the learner is implementing a data structure that is very similar to the
one that was implemented for the purposes of the linked list. This gives the link to
the existing notion of linked list, but also shows the difference between two distinct
types of list: singly linked list and doubly linked list.

Task 15. Define the class Queue that will be implemented based on singly
linked list. The first node of the list is called head, the last node is called tail. The
queue front is located at the head of the list. The queue back is located at the tail of
the list. The class Queue contains pointers to the head and to the tail of the list. The
default constructor sets them to nullptr and creates an empty queue. Destructor
is the same as in the case of LList.

Task 16. In Queue implement a member function push() that adds an element
to the tail of the linked list, that represents the queue back:

1. Create a new node and store the integer data in it.
2. If the pointer to tail is not nullptr, the queue is not empty, and then

attach the new node after the ptr_tail. Otherwise ptr_head must
point to the new node.

3. The new node becomes the tail node of the queue by redirecting ptr_tail
to point to it.

Task 16. In Queue implement a member function push() that adds an element to the tail of the
linked list, that represents the queue back:

1. Create a new node and store the integer data in it.
2. If the pointer to tail is not nullptr, the queue is not empty, and then attach the new node

after the ptr_tail. Otherwise ptr_head must point to the new node.
3. The new node becomes the tail node of the queue by redirecting ptr_tail to point to it.

Task 17. In Queue implement a member function pop() that removes an element from the head
of the linked list, that represents the queue front.

1. Assert that the queue is not empty, and attach a temporary pointer to the ptr_head that
points the node to remove.

2. In the case the queue is composed by a single node, set both ptr_head and ptr_tail to
nullptr.

3. In the case the queue is composed by more than one node, redirect the ptr_head pointer
to the next node.

4. Finally, delete the temporary pointer, that store the address of the former list head node.

 Tasks 15 to 16 introduce the principle of separation of the implementation from the
functionality definition that is typical for the ADT. The underlying implementation is actually a
familiar object, namely the linked list. The functionality of the queue is provided by the two
member functions push() and pop() that implement the FIFO policy of element management in
the data structure. This example also show how from the point of view of the linked list as a notion,
step 9 of Usova is used: application of the notion in more complex examples. The same step latter is
introduced for stacks and queues, when they are applied in the implementation of graph algorithms
(see also (Cormen, 2009), (Sedgewick, 2001), (Goodrich, 2011) and (Skiena, 2003)).
 The implementation of the stack data structure is presented in analogy to the queue, by
pointing out both similarities, and differences between them.

Task 18. Based on the previous example for queue implementation, implement a class Node, and a
class Stack. Do not store the location of the tail. All members without the function push() are
nearly the same. Instead of function front(), implement a function top() that returns the value
at the top of the stack, that is stored at the head node.

Defining the notion ADT based on the examples of queues and stacks
 After fully defining the notions queue and stack, we are ready do give the formal definition
of ADT, based on these two typical examples.

class Queue
{
 public:
 Queue();
 ~Queue();
 void push(int data);
 void pop();
 int front() const;
 bool empty() const;

 private:
 Node* ptr_head;
 Node* ptr_tail;
};
Listing 13 Class Queue definition

Task 17. In Queue implement a member function pop() that removes an ele-
ment from the head of the linked list, that represents the queue front.

1. Assert that the queue is not empty, and attach a temporary pointer to the
ptr_head that points the node to remove.

2. In the case the queue is composed by a single node, set both ptr_head
and ptr_tail to nullptr.

3. In the case the queue is composed by more than one node, redirect the
ptr_head pointer to the next node.

619

Abstract Data Types

4. Finally, delete the temporary pointer, that stores the address of the former
list head node.

Tasks 15 and 16 introduce the principle of separation of the implementation from the
functionality definition that is typical for the ADT. The underlying implementation is ac-
tually a familiar object, namely the linked list. The functionality of the queue is provided
by the two member functions push() and pop() that implement the FIFO policy of element
management in the data structure. This example also shows how from the point of view of
the linked list as a notion, step 9 of Usova is used: application of the notion in more com-
plex examples. The same step latter is introduced for stacks and queues, when they are
applied in the implementation of graph algorithms (see also (Cormen, 2009), (Sedgewick,
2001), (Goodrich, 2011) and (Skiena, 2003)).

The implementation of the stack data structure is presented in analogy to the queue, by
pointing out both similarities, and differences between them.

Task 18. Based on the previous example for queue implementation, implement a
class Node, and a class Stack. Do not store the location of the tail. All members with-
out the function push() are nearly the same. Instead of function front(), implement a
function top() that returns the value at the top of the stack, that is stored at the head node.

Defining the notion ADT based on the examples of queues and stacks
After fully defining the notions queue and stack, we are ready do give the formal defi-

nition of ADT, based on these two typical examples.

Definition 1. Abstract Data Type (commonly abbreviated ADT) is a concept that de-
fines a data type by specifying the operations on it independently on the concrete imple-
mentation.

Both queues and stacks are ADTs.
What remains is to show how the notion ADT can be enriched, and this can be achieved

by asking the learner to provide a completely different intrinsic implementation to both
queue and stack.

Task 19. Implement both queue and stack, but this time based on arrays, instead of
linked list. The interfaces of two data types must remain completely the same.

Task 19 helps the learner to understand the independence of ADT intrinsic implemen-
tation from its functionality that is provided by the public member functions of the classes.
Something more, now it is also obvious that in different situations, different implementa-
tions can show better results, but this does not change the way the data type is used. For
example, when the size of the expected data is large, and impracticable, the implementa-
tion based on linked list is more appropriate. On contrary, when the size of the data is not
that huge, and can be estimated, implementation based on arrays can give better results.

620

Lasko M. Laskov

Conclusion
The presented approach in formation of the notions linked list, queue, stack, and

abstract data type (ADT) develops more in-depth, conscious and enduring knowl-
edge. It is based on the greater activity of the students and as a methodology it is
implemented as a specially developed system of tasks. The system of tasks pro-
vides the whole process of knowledge acquisition: introduction, consolidation and
application. Its creation requires more effort on the part of the lecturer and more
time resources for its application in the learning process. For this reason, it is not
possible to use it fully during each lesson, but it gives good results for the use of its
individual elements in certain lectures, as well as full use on those topics that are
more complex for students.

The system of tasks, or a system that is derived from this one, is applicable in high-
school course of computer programming for advanced students, or in an introductory
course on data structures in the university curriculum. In methodological terms, when
developing a system of tasks, we follow the work of (Asenova, 1990) and (Assenova &
Marinov 2019).

REFERENCES
Abelson H., G. J. Sussman, with J. Sussman (1996). Structure and Interpretation of

Computer Programs (2nd ed.), MIT Electrical Endeepgineering and Computer
Science, ISBN-13: 978-0262510875, ISBN-10: 0262510871.

Albertovna B. I., Z. N. Ivanovna, K. I. Evgenievna & P. U. Valerievna. (2017)
Levels of formation of notions in high-school course of Informatics, KGU,
Pedagogy. Psychology. Sociocinetics 3, 191 – 193. [In Russian]. Original title:
Б. И. Альбертовна, Ивановна З. Н., Евгеньевна К. 	 И., Валерьевна
П. У. Уровни формирования понятий школьного курса информатики, 	
Вестник КГУ 2017, Педагогика. Психология. Социокинетика № 3, с 191 –
193.

Aleksandrov A. D., A. N. Kolmogorov & M. A. Lavrent’ev. (1999) Mathematics:
Its Content, Methods and Meaning, Dover Books on Mathematics Series,
Courier Corporation, ISBN 0486409163.

Asenova, P. (1990). Design and implementation of a system of tasks in teaching
algorithms in Bulgarian schools. PhD thesis. Мoscow. RAE. [In Russian].
Original title: Асенова, П. (1990). Построение и использование системы
задач для обучения алгоритмизации в курсе информатики болгарской
школы. Дисс. канд. пед. наук. Москва. РАО.

Asenova, P., M. Marinov. (2019). System of tasks in mathematics education.
Mathematics and Informatics, 62 (1), 52 – 70.

Asenova, P. & M. Marinov. (2018). Teaching mathematics with computer systems,
Math. And Education in Math., 47, 213 – 121.

621

Abstract Data Types

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein, (2009). Introduction
to Algorithms (3rd ed.). The MIT Press, ISBN-13: 978-0262033848, ISBN-10:
9780262033848.

Davydov, V. V. (1996), The Theory of Developmental Education, INTOR Moskow.
[In Russian].

Dijkstra, E. W. (1972) Notes on structured programming. In Structured
Programming, Academic Press, New York.

Goodrich M. T., R. Tamassia & D. M. Mount (2011). Data Structures and
Algorithms in C++, (2nd ed.), Wiley, ISBN: 978-0-470-38327-8.

Guttag, J. V. (1977) Abstract Data Type and the Development of Data Structures.
Commun. ACM 20(6): 396 – 404.

Horsmann, C. & T. A. Budd (2008). Big C++ (2nd ed.), Wiley, ISBN: 978-0-470-
38328-5.

Rubinstein, S.L. (1946) Fundamentals of general psychology, State Study-
Pedagogical Publishing House of the Ministry of Education of Russian Soviet
Federative Socialist Republic, Moscow, USSR, 704. [In Russian].

Sedgewick, R. (1997). Algorithms in C: Parts 1 – 4, Fundamentals, Data Structures,
Sorting, and Searching (3rd ed.). Addison-Wesley Longman Publishing Co.,
Inc., USA, ISBN-13: 978-0201314526, ISBN-10: 0201314525.

Sedgewick, R. (2001). Algorithms in C: Part 5, Graph algorithms (3rd ed.).
Addison-Wesley Professional, ISBN-13: 978-0201316636, ISBN-10:
0201316633.

Skiena S. S. & M. A. Revilla (2003). Programming Challenges: The Programming
Contest Training Manual (Texts in Computer Science), Springer, ISBN
0387001638.

Vygotsky, L. S. (1987). Thinking and speech. In The collected works of L.S.
Vygotsky. Problems of general psychology (Vol. 1, pp. 37 – 285) (translated by
Norris Minick). New York, London: Plenum Press.

Usova, A. V. (2011). Some methodological aspects of the problem of scientific
notions formation in learners in schools and students in universities, Mir nauki,
kulturi, obrazovania, No 4(29). [in Russian]. Original title: А.В. Усова. Не-
которые методические аспекты проблемы формирования научных поня-
тий у учащихся школ и студентов вузов. Мир науки, культуры, образова-
ния. № 4 (29) 2011.

 Dr. Lasko M. Laskov, Assoc. Prof.
ORCID: 0000-0003-1833-8184

Department of Informatics
New Bulgarian University

21, Montevideo Blvd.
1618 Sofia, Bulgaria

E-mail: llaskov@nbu.bg

