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Abstract. A new algebraic inequality with radicals is proposed in the paper. Its
refinement is considered too. The arithmetic-geometric mean (AM-GM) inequality and
the Cauchy-Buniakowsky-Schwarz (CBS) inequality are used in the proofs.
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1. Introduction.
The following algebraic inequaity is discussed in the sequel:

(1) Va-1+Jb—1+e-1< Jc(ab+1)+1,

where a,b,ce R and a,b,c>1. Four proofs are proposed of a refinement of the
inequality (1), namely:

(2 \/a—1+\/b—1+x/c—1s\/c(ab+1),

where a,b,ce R and a,b,c>1.

2. Proof of the inequality (1).

Consider the substitutions: a—1=x*b-1=)?, c—1=z°,(x,»,z20). Now, the
given inequality (1) becomes:

x+y+z<\/(z2 +])()c2y2 +x’+y° +2)+1 ,
and from here after squaring and subtracting we get:
XY+ X+ X0y 4+ 2 = 2xy—2xz-2yz+3>0,
or (xy—1)2+(yz—l)2+(xz—1)2+zz(x2y2+1)>0.
This inequality is exact for all x, y,z =0, which implies that the given inequality

(1) is also exact for all @,b>1.Thus, in (1) the strong inequality < is valid. What does
that mean? In any case this gives a possibility for the refinement of (1).
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3. Refinement of the inequality (1).

We propose four proofs of the inequality (2), i.e. of the refinement of the given
inequality (1).

Proof 1. We start by the obvious inequality:

(Va1 y=1-1) 20; (x.y21).
o (x=1)(y=1)=2Jx—1-J[y-1+1>0,
@xy—x—y—Zx/ﬁ-\/ﬁ+220,
o xy2x—1+2Jx—1-\[y-1+y-1,

xyZ(\/x—1+~/y—1)2,i.e.
3) oy 2 x=1+y-1,

where the equality holds true if
Vx—1-\y-1=1,ie. if (x-1)(y-1)=1.
From here

@ =2ty

and from here we get

Now, we get now from (3), that:

Ja—-1+4b—-1++Jc—1 Sx/%+x/;:,/(ab+l)—l+\/;(;),/c(ab+1) , 1.e.
Ja—-1+b—-1++Jc—1 S,/c(ab+1) , q.e.d.

It follows from (4), that the equality holds true if

c(ab+1)=c+ab+1= abc=ab+1.

Applying ab=a+b and abc =ab+1, we obtain:
5) c=®H_ L, 1
ab ab a+b

Proof 2. Using the the substitution a —1=x, b—1=)", c-1=2%, (x,»,220)
in the inequality (2), we obtain:

598



A Refinement of an Inequality with Radicals

x+y+z< \/(z2 +1)(x2y2 +x*+y° +2)
and after squaring and subtracting:

(*) XY+ XY x4y 4 = 2xy—2xz—2yz+22>0,
or

(6) (x2y2+x2+y2+1)22—2(x+y)z+x2y2—2xy+220.

We have, that f(z)=az’+fz+y20 for all zeR if @>0 and

D= -4ay<0, (e, B, 7€ R). Consequently, the inequality (6) holds true if

a=x"y" +x’+y” +1>0 (which holds true obviously)
and
D =4[(x+y)2 —(xzy2 +x*+y° +1)(xzy2 —2xy+2)J <0

or

(7) ¥yt rxtyT +x0y +3x7y x0T 22207y 420y 4+ 20 + 4y
What remains is to prove the inequality (7). Applying the AM-GM inequality, we get:
x4y4+x2y22x3y3 x4y2+x2>x3y x2y4+y22 s 2x2y2+2

y ——— —— <

) Xy, >2xy,
2 2 Y 2 Y

and from here after addition and subtraction, we obtain the inequality (7). Because

>0 and D= B> —4ay<0, it follows, that the inequality (6) is correct, i.e. the given
inequality (2) is valid.

Note, that the equality in (7) holds true iff AM = GM, i.e. xy =1 . This implies that
D=0if:

(2+x2 +L2jz2 —2(x+lj+1:0,
X X

From here Z:LZZL
I X +1
X+—
X
2
Taking into account, that a—1=x?, b-l=y'=— c-1=z"= d ~, we
X (x2+1)
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L T A )
a+b

conclude, that the equality in (2) holds true iff: ¢ =
ab ab

Remark. In this way we can prove the inequality () too: use the folloowing form
of (*):
(xzy2 —2xy+1)+(x2z2 +y*z? +1—2xz—2yz)+xzyzz2 +2z° 20,
or
(x2y2 —2xy +1) + (x222 +y°2° +1=2xz—2yz + 2xyz" ) +(xzy222 +z° —2xyzz) =0

ie.
(**) ()cy—1)2+()cz+zy—l)2+z2 (xy—l)2 >0.

The last inequality is true obviously. The equality in (**) holds when xy—1=0 and

xz+zy—1=0,i.e when x’y’ =1 and z*(x*+)” +2)=1, using the substitution:

ab+1 1 1
c= =l+—=1+ .
ab ab a+b

2

Proof 3. We will apply again the substitution ¢ —1=x>, b—1= )", ¢—1=2z’, where

a,b,c>1,1.e. x,y,z>0. Thus, the given inequality (2) becomes:

® xtyrz (24 +1) (v 1) +1]

The Cauchy-Buniakowsky-Schwarz inequality says for 7 =2, that:
(ab +ab,) <(a’+a; ) (B} +57); (a,.a,.b,.b, € R).

From here for a, =x, b, =1, a, =1, b, =y we get:

(x-l+1-y)2 S(x2+l)(y2+1),i.e.

9) x+yS\/(x2+1)(y2+l),

Fora, =z, b =1a,=10b,= \/<x2 + 1) (y2 + 1) applying the CBS inequality, we
obtain:

21+t (e 1) (32 +1) < (2 1)1+ (2 41) (5 +1)] e
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(10) e [P+ (1) < (2 )1+ (2 1) (7 1) ]
After summing the inequalities (9) and (10), it follows that:
x+y+z< \/(22 +1)[1+(x2 +1)(»? +1)} ,
i.e. the inequality (8) holds truet. The equality in (8) holds true iff

%:%:T:l:xyzlzh/a—lw/b—l —1=(a-1)(b-1)=1=ab=a+b
| p) y

and from here:

1/)c+1 y+1 —l:>
1Ix+l y+1

=2 (¥ +1)(y2+1)=1:>ab(c—l):abc=1+ab:>c=1+a_lb,

:1+l and ¢ =1+ 1 ; (t>0).
ab t a

Proof 4. We will assume, that ¢ and b are constant, while ¢ is one variable.
Consider the function f [1 +<><> — R, where

,/ ab+1) —Ne—1-va—-1-+b-1.

, _\/ab+1_ 1
fle)= e  2e-1

Because

it follows that

f(c)=0=+ab+1-Nc-1 =x/E:>(ab+1)(c—1)=c:>abc—ab+c—1=c:>c=1+L-

a
From here
» 1 \/ab+
f(e)=
and 4(c=1)e-1 s

f,(Hlj:ab\/E ab\ab -\Jab+1 abf( 1 jzzzb2@>o

ab) 4 4(ab+l)ab+l 4 l+ab | 4(1+ab)
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Thus concluding, that the function f (¢) has minimum for ¢ =1 +L We have, that

fon = f[ abj O LTI -5 = Vab - N

Further:
Vab>a-1+\Jb-1 o ab>a+b-2+2(a-1)(b-1) &
& (a-1)(b-1)-2f(a=1)(b-1)+120
o] (a—l)(b—l)—l]zzo,
and we get
ﬁmn:f(l—i_ijzo
ab
Finally: f( ) S = f(1+_)
ab
i.e.
\/a—1+\/b—1+\/c—lS,/c(ab+1),
g.e.d.
i ; : 1 a*+a-1
The equality holds iff (a—-1)(b-1)=1, ie. b= and ¢c=14—=—"""",
a—1 ab a’
where a > 1.
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