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Abstract. A new algebraic inequality with radicals is proposed in the paper. Its 
refi nement is considered too. The arithmetic-geometric mean (AM-GM) inequality and 
the Cauchy-Buniakowsky-Schwarz (CBS) inequality are used in the proofs. 
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1. Introduction.
The following algebraic inequaity is discussed in the sequel:
(1) ( )1 1 1 1 1a b c c ab− + − + − < + +

 
,

where a,b,c ∈  and 1a,b,c ≥ . Four proofs are proposed of a refi nement of the 
inequality (1), namely:

(2) ( )1 1 1 1a b c c ab− + − + − ≤ + ,

where a,b,c ∈  and 1a,b,c ≥ .

2. Proof of the inequality (1).
Consider the substitutions: ( )2 2 21 1 1 0a x , b y , c z , x, y,z− = − = − = ≥ . Now, the 

given inequality (1) becomes:

( )( )2 2 2 2 2x y z z 1 x y x y 2 1+ + < + + + + + ,

and from here after squaring and subtracting we get:
2 2 2 2 2 2 2 2 2 2 2 2 2 3 0x y z x z y z x y z xy xz yz+ + + + − − − + > ,

or ( ) ( ) ( ) ( )2 2 2 2 2 21 1 1 1 0xy yz xz z x y− + − + − + + > .
This inequality is exact for all x, y,z 0≥ , which implies that the given inequality 

(1) is also exact for all 1a,b ≥ . Thus, in  (1) the strong inequality <  is valid. What does 
that mean? In any case this gives a possibility for the refi nement of (1).
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3. Refi nement of the inequality (1).
We propose four proofs of the inequality (2), i.e. of the refi nement of the given 

inequality (1).
Proof 1. We start by the obvious inequality:

( ) ( )
2

1 1 1 0 1x y ; x, y− ⋅ − − ≥ ≥ , 

( )( )1 1 2 1 1 1 0x y x y⇔ − − − − ⋅ − + ≥ ,

2 1 1 2 0xy x y x y⇔ − − − − ⋅ − + ≥ , 

1 2 1 1 1xy x x y y⇔ ≥ − + − ⋅ − + − , 
and from here we get

( )2
1 1xy x y≥ − + − , i.e.

(3) 1 1xy x y≥ − + − ,
where the equality holds true if

1 1 1x y− ⋅ − = , i.e.  if ( )( )1 1 1x y− − = . 
From here
(4) xy x y= +

. 
Now, we get now from (3), that:

( )
( )

( )
3

1 1 1 1 1 1 1 1a b c ab c ab c c ab− + − + − ≤ + − = + − + − ≤ + , i.e.

( )1 1 1 1a b c c ab− + − + − ≤ + , q.e.d.

It follows from (4), that the equality holds true if

( )1 1 1c ab c ab abc ab+ = + + ⇒ = + .
Applying ab a b= +  and 1abc ab= + , we obtain: 

(5) 1 1 11 1abc
ab ab a b

+= = + = +
+

.

Proof 2. Using the the substitution 2 2 21 1 1a x , b y , c z− = − = − = , ( )0x, y,z ≥  in the inequality (2), we obtain:  
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( )( )2 2 2 2 21 2x y z z x y x y+ + ≤ + + + +

and after squaring and subtracting:

( ∗ ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0x y z x y x z y z z xy xz yz+ + + + − − − + ≥ ,
or
(6) ( ) ( )2 2 2 2 2 2 21 2 2 2 0x y x y z x y z x y xy+ + + − + + − + ≥ .

We have, that ( ) 2 0f z z zα β ɣ= + + ≥  for all z ∈  if 0α >  and 

( )2 4 0D , , ,β αɣ α β ɣ= − ≤ ∈ . Consequently,  the inequality (6) holds true if 
2 2 2 2 1 0x y x yα = + + + >  (which holds true obviously) 

and
( ) ( )( )2 2 2 2 2 2 24 1 2 2 0D x y x y x y x y xy⎡ ⎤= + − + + + − + ≤⎣ ⎦

or

(7) 4 4 4 2 2 4 2 2 2 2 3 3 3 33 2 2 2 2 4x y x y x y x y x y x y x y xy xy+ + + + + ≥ + + + .
What remains is to prove the inequality (7). Applying the AM-GM inequality, we get:

4 4 2 2 4 2 2 2 4 2 2 2
3 3 3 3 2 2 2

2 2 2 2
x y x y x y x x y y x yx y , x y, xy , xy+ + + +≥ ≥ ≥ ≥ ,

and from here after addition and subtraction, we obtain the inequality (7). Because 

0α >  and 2 4 0D β αɣ= − ≤ , it follows, that the inequality (6) is correct, i.e. the given 
inequality (2) is valid.

Note, that the equality in (7) holds true iff AM = GM, i.e. 1xy =  . This implies that 
D = 0 if:

2 2
2

1 12 2 1 0x z x
x x

⎛ ⎞ ⎛ ⎞+ + − + + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
,

i.e.  
2

1 1 0x z
x

⎡ ⎤⎛ ⎞+ − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
.

From here  2

1
1 1

xz
xx

x

= =
++

.

Taking into account, that 21 xα − = , 
( )

2
2 2

22 2

11 1
1

xb y , c z
x x

− = = − = =
+

, we 
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conclude, that the equality in (2) holds true iff: 1 1 11 1abc
ab ab a b

+= = + = +
+

 , which is (5).

Remark. In this way we can prove the inequality ( ∗ ) too: use the folloowing form 
of  ( ∗ ):

( ) ( )2 2 2 2 2 2 2 2 2 22 1 1 2 2 0x y xy x z y z xz yz x y z z− + + + + − − + + ≥ ,
or
( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 2 22 1 1 2 2 2 2 0x y xy x z y z xz yz xyz x y z z xyz− + + + + − − + + + − ≥ ,
i.e.
(**) ( ) ( ) ( )2 2 221 1 1 0xy xz zy z xy− + + − + − ≥ .

The last inequality is true obviously. The equality  in (**) holds when 1 0xy − =  and 

1 0xz zy+ − = , i.e. when 2 2 1x y =  and  ( )2 2 2 2 1z x y+ + = , using the substitution:
1 1 11 1abc

ab ab a b
+= = + = +

+
.

Proof 3. We will apply again the substitution 2 2 21 1 1a x , b y , c z− = − = − = , where  
1a,b,c ≥ , i.e. 0x, y,z ≥ . Thus, the given inequality (2) becomes:

(8) ( ) ( )( )2 2 21 1 1 1x y z z x y⎡ ⎤+ + ≤ + + + +⎣ ⎦ .

The Cauchy-Buniakowsky-Schwarz inequality says for 2n = , that:

( ) ( )( ) ( )2 2 2 2 2
1 1 2 2 1 2 1 2 1 2 1 2a b a b a a b b ; a ,a ,b ,b+ ≤ + + ∈ . 

From here for 1 1 2 21 1a x, b , a , b y= = = =  we get:

( ) ( )( )2 2 21 1 1 1x y x y⋅ + ⋅ ≤ + + , i.e.

(9) ( )( )2 21 1x y x y+ ≤ + + ,

For ( )( )2 2
1 1 2 21 1 1 1a z, b , a , b x y= = = = + +  applying the CBS inequality, we 

obtain:

( )( ) ( ) ( )( )2 2 2 2 21 1 1 1 1 1 1 1z x y z x y⎡ ⎤⋅ + ⋅ + + ≤ + + + +⎣ ⎦ , i.e.



601

A Refi nement of an Inequality with Radicals

(10) ( )( ) ( ) ( )( )2 2 2 2 21 1 1 1 1 1z x y z x y⎡ ⎤+ + + ≤ + + + +⎣ ⎦ .

After summing the inequalities (9) and (10), it follows that:

( ) ( )( )2 2 21 1 1 1x y z z x y⎡ ⎤+ + ≤ + + + +⎣ ⎦ ,

i.e. the inequality (8) holds truet. The equality in (8) holds true iff 

( )( )1 2

1 2

1 1 1 1 1 1 1 1
1

a a x xy a b a b ab a b
b b y

= ⇒ = ⇒ = ⇒ − ⋅ − = ⇒ − − = ⇒ = +

and from here:

( )( )
( )( )

( )( ) ( )

2 2

2 2

2 2 2

1 1 1 1
1 1 1

11 1 1 1 1 1

z z x y
x y

z x y ab c abc ab c ,
ab

= ⇒ + + = ⇒
+ +

⇒ + + = ⇒ − ⇒ = + ⇒ = +

i.e. ab a b= +  and 11c
ab

= + , i.e.  11 1a t , b
t

= + = +  and 11c
ab

= + ;  ( )0t > .

Proof 4. We will assume, that a  and b  are constant, while c  is one variable. 

Consider the function f :[ )1,+∞ →   , where 
( ) ( )1 1 1 1f c c ab c a b= + − − − − − − .

Because

( ) 1 1
2 2 1
abf c

c c
+′ = −

−
,

it follows that

( ) ( )( ) 10 1 1 1 1 1 1f c ab c c ab c c abc ab c c c
ab

′ = ⇒ + ⋅ − = ⇒ + − = ⇒ − + − = ⇒ = +  .

From here 

( )
( )

1 1
4 1 1 4

abf c
c c c c

+′′ = −
− −

,
and 

( ) ( )
2 21 1 11 1 0

4 4 1 4 14 1 1
ab ab ab ab ab ab ab a b abf

ab ab abab ab
⋅ +⎛ ⎞ ⎛ ⎞′′ + = − = − = >⎜ ⎟ ⎜ ⎟+ ++ +⎝ ⎠ ⎝ ⎠

,
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Thus concluding, that the function f (c) has minimum for 11c
ab

= + . We have, that
1 1 11 1 1 1 1min

abf f a b ab a b
ab ab ab

+⎛ ⎞= + = − − − − − = − − − −⎜ ⎟⎝ ⎠
.

Further:
( )( )

( )( ) ( )( )

( )( )
2

1 1 2 2 1 1

1 1 2 1 1 1 0

1 1 1 0

ab a b ab a b a b

a b a b

a b ,

≥ − + − ⇔ ≥ + − + − − ⇔

⇔ − − − − − + ≥

⎡ ⎤⇔ − − − ≥⎣ ⎦
and we get

11 0minf f
ab

⎛ ⎞= + ≥⎜ ⎟⎝ ⎠
. 

Finally:  ( ) 11minf c f f
ab

⎛ ⎞≥ = +⎜ ⎟⎝ ⎠
,

i.e.

 ( )1 1 1 1a b c c ab− + − + − ≤ + ,
q.e.d.

The equality holds iff  ( )( )1 1 1a b− − = , i.e. 
1

ab
a

=
−

 and 
2

2

1 11 a ac
ab a

+ −= + = , 
where 1a .>
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