

A NOTE ON THE ARBELOS IN WASAN GEOMETRY: SATOH'S PROBLEM AND A CIRCLE PATTERN

Hiroshi Okumura
Maebashi Gunma (Japan)

Abstract. We generalize a problem in Wasan geometry involving an arbelos, and construct a self-similar circle pattern.

Keywords: arbelos; self-similar figure

1. Introduction

Let α , β and γ be circles with diameters AO , BO and AB , respectively, for a point O on the segment AB . The configuration consisting of the three circles and the radical axis of α and β are called an arbelos and the axis, respectively. The radii of α and β are denoted by a and b , respectively, and the reflection in the axis is denoted by σ . In this note we generalize the following problem proposed by Satoh (佐藤幸吉定寄) in a Sangaku presented in Iwate in 1850 (Yasutomi, 1987) (see Fig. 1).

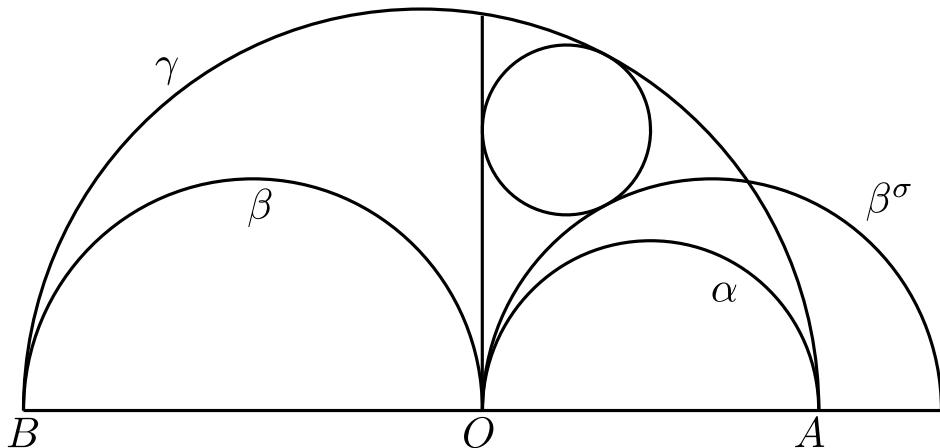


Figure 1

Problem 1. Show that the two circles touching β^σ externally, γ internally and the axis from the side opposite to B , get radius $a/2$.

2. Generalization

Let $\alpha(n)$ (resp. $\beta(n)$) be the circle of radius na (resp. nb) touching the axis at O from the side opposite to A (resp. B) for a non-negative real number n . Let α_2 (resp. β_2) be one of the two circles touching $\beta(n)$ (resp. $\alpha(n)$) externally, γ internally and the axis from the side opposite to B (resp. A), where the circles α_2 and β_2 lie on the same side of the segment AB . Problem 1 is the case $n = 1$ in the next theorem (see Fig. 2).

Theorem 1. The circles α_2 and β_2 have radii $a/(n+1)$ and $b/(n+1)$, respectively, and touch at a point on the axis.

Proof. We assume that D is the center of α_2 , F is the foot of perpendicular from D to AB and $d = |DF|$. If r is the radius of α_2 , then we get $(a+b-r)^2 - ((a-b)-r)^2 = (nb+r)^2 - (nb-r)^2 = d^2$ from the two right triangles formed by D, F and the center of γ , and D, F and the center of $\beta(n)$. Solving the equations, we have $r = a/(n+1)$ and $d = 2\sqrt{nab/(n+1)}$. Similarly β_2 has radius $b/(n+1)$. Since d is symmetric in a and b , the distance from the center of β_2 to AB also equals d . Therefore the circle α_2, β_2 touch at a point on the axis.

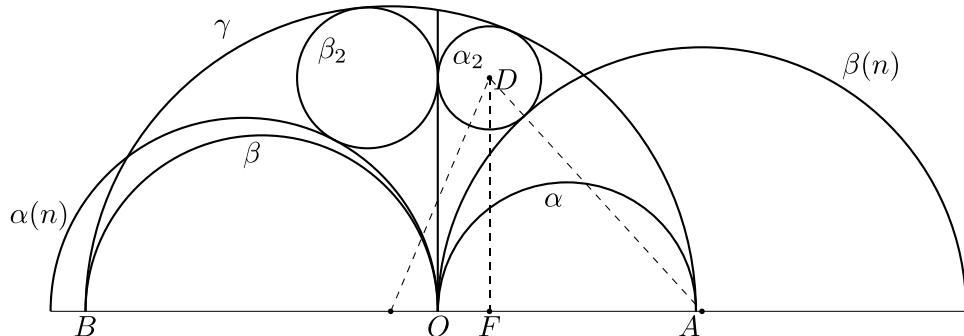


Figure 2

Notice that if $n = 0$, then the circle $\beta(n)$ is a point circle and the circles α and α_2 coincide, also β and β_2 coincide.

3. A self-similar circle pattern

In this section we construct a self-similar circle pattern by Theorem 1. We now consider the case $n = 1$ in the theorem as in Problem 1. We denote the arbelos formed by α , β and γ by (α, β, γ) , and denote the configuration consisting of (α, β, γ) and $(\alpha, \beta, \gamma)^\sigma$ by \mathcal{C}_1 , which is symmetric in the axis (see Fig. 3). Notice that the axis and the segment AB are not included in \mathcal{C}_1 . For a similar mapping τ , we call the figure \mathcal{C}_1^τ a symmetric arbelos of radius $|A^\tau B^\tau|$. Let us assume $|AB| = 1$.

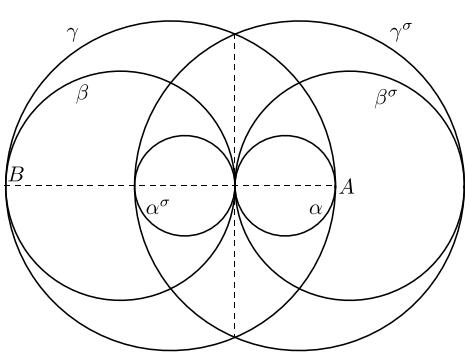


Figure 3: \mathcal{C}_1

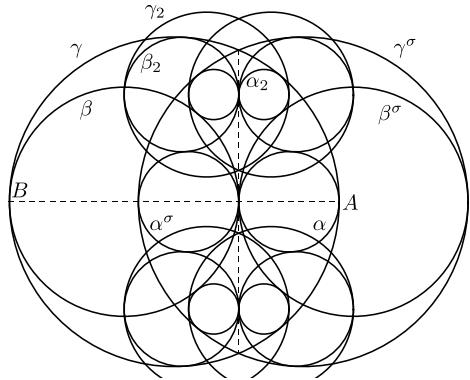


Figure 4: \mathcal{C}_2

Let γ_2 be the smallest circle touching α_2 and β_2 internally. Then the arbelos $(\alpha_2, \beta_2, \gamma_2)$ is similar to (α, β, γ) by Theorem 1. We call the figure consisting of $(\alpha_2, \beta_2, \gamma_2) \cup (\alpha_2, \beta_2, \gamma_2)^\sigma$ and its reflection in AB the two small copies of \mathcal{C}_1 , which consists of two symmetric arbeloi of radius $1/2$. We define the two small copies of \mathcal{C}_1^τ for a similar mapping τ similarly. We denote the configuration consisting of \mathcal{C}_1 and its two small copies by \mathcal{C}_2 (see Fig. 4). If the figure \mathcal{C}_k is constructed, which consists of \mathcal{C}_1 , two symmetric arbeloi of radius $1/2$, four symmetric arbeloi of radius $1/2^2, \dots, 2^{k-1}$ symmetric arbeloi of radius $1/2^{k-1}$, then we add the two small copies of each of the 2^{k-1} symmetric arbeloi of radius $1/2^k$, and denote the resulting configuration by \mathcal{C}_{k+1} . By this construction, we can get \mathcal{C}_n for any positive integer n . Then $\mathcal{C}_0 = \bigcup_{i>1} \mathcal{C}_i$ is a self-similar circle configuration (see Fig. 5).

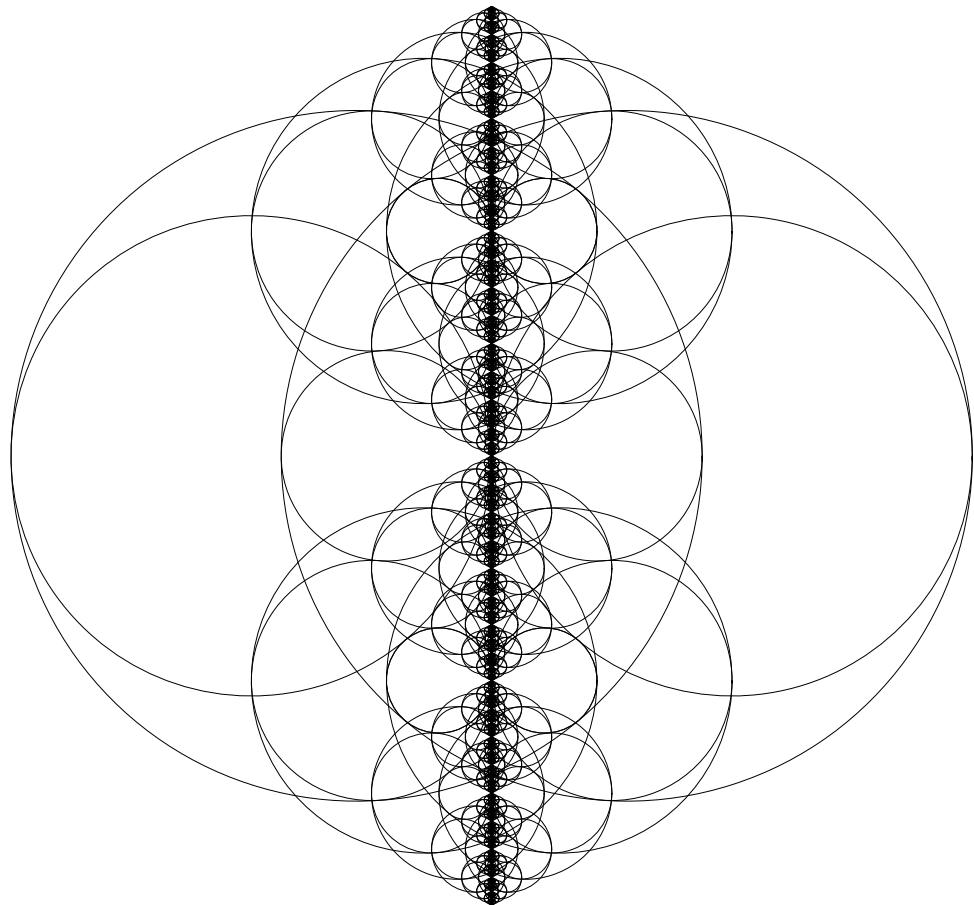


Figure 5: C_0

REFERENCES

Yasutomi, Y.(安富有恒)(1987). The extant sangakus in Iwate (和算一岩手の現存算額のすべて). Tokyo: Seijisha(青磁社).

✉ **Prof. Dr. Hiroshi Okumura**
Maebashi Gunma 371-0123, Japan
E-mail: hokmr@yandex.com